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Abstract: Unmanned aerial vehicles (UAVs), particularly quadrotor, have seen steady growth in
use over the last several decades. The quadrotor is an under-actuated nonlinear system with few
actuators in comparison to the degree of freedom (DOF); hence, stabilizing its attitude and positions
is a significant challenge. Furthermore, the inclusion of nonlinear dynamic factors and uncertainties
makes controlling its maneuverability more challenging. The purpose of this research is to design,
implement, and evaluate the effectiveness of linear and nonlinear control methods for controlling an
X3D quadrotor’s intended translation position and rotation angles while hovering. The dynamics of
the X3D quadrotor model were implemented in Simulink. Two linear controllers, linear quadratic
regulator (LQR) and proportional integral derivate (PID), and two nonlinear controllers, fuzzy
controller (FC) and model reference adaptive PID Controller (MRAPC) employing the MIT rule, were
devised and implemented for the response analysis. In the MATLAB Simulink Environment, the
transient performance of nonlinear and linear controllers for an X3D quadrotor is examined in terms
of settling time, rising time, peak time, delay time, and overshoot. Simulation results suggest that the
LQR control approach is better because of its robustness and comparatively superior performance
characteristics to other controllers, particularly nonlinear controllers, listed at the same operating
point, as overshoot is 0.0% and other factors are minimal for the x3D quadrotor. In addition, the LQR
controller is intuitive and simple to implement. In this research, all control approaches were verified
to provide adequate feedback for quadrotor stability.

Keywords: X3D quadrotor; closed-loop system; PID; LQR; fuzzy control; model reference adaptive
PID

1. Introduction

Unmanned aerial vehicles (UAVs) have recently acquired a great deal of interest for
military and civil research applications when a human operator is too risky and time-
consuming. Quadrotors have attracted the interest of scientists in the fields of robotics,
automation, and aviation. A quadrotor is a rotorcraft with a simple nonlinear construction
for vertical take-off and landing (VTOL). It is a system with four actuator inputs that are
under actuated [1]. It features six degrees of freedom, with three translation positions:
longitudinal (x-axis), lateral (y-axis), and height (z-axis), as well as three rotational states
(roll φ , pitch θ and yaw ψ). The thrust of the four rotors controls these output states. The
thrust of the four rotors regulates these output states. Due to its fundamental dynamic
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nature, it offers a great maneuverability advantage. It has a good hovering ability and a
quick response for tracking [2]. It is widely used in both outdoor and indoor situations
for research and monitoring. High-performance quadrotor control in intense and maneu-
verable flight is a challenging problem due to the complex nature of the dynamic model,
severe coupling, and nonlinear characteristics. Scientists may use the control of quadrotors
for testing and evaluating novel concepts in a range of disciplines, including flight control
theory, navigation, and real-time systems.

Many researchers from all around the globe have detailed various methods for oper-
ating quadrotor UAVs, to the extent of developing an effective stabilizing and navigation
system based on the standard control input. A PID controller is extensively used in many
industrial applications because of its simplicity and ease of implementation, on the other
hand, the LQR controller provides better performance concerning certain measures of per-
formance; fuzzy controller and adaptive PID controller are also extensively implemented
for nonlinear systems. Many investigations have been performed on the application of
PID, LQR, fuzzy, state feedback, and other control methods to quadrotor UAVs as a plant,
but there has been relatively little study on the comparison of linear and nonlinear control
methods. The study in [3] proposed a method for simulating and establishing parameters
for a quadcopter to analyze and improve the performance of this system and its stability.
The system was mounted on a structure that could be freely moved along a vertical axis.
The computer received real-time data from sensors and measuring devices. The paper [4]
proposed a comparison of nonlinear and linear control methods for quadrotor systems.
In this paper [5], a comparison of PID and LQR control techniques is provided. Both
controllers provide appropriate feedback for quadrotor stability, according to this study.
For the quadrotor’s flip operation, Byung-Yoon Lee compares the performance of three
distinct types of attitude control systems [6]; PID, sliding mode and open-loop controllers
are all used in his article to develop quadrotor attitude controllers. PID control is one of
the most often used control strategies [1], [7] along with back-stepping [8,9], nonlinear H∞
control [10], Kalman filter [11], and so on. Other control methodologies, such as fuzzy
control systems, are also investigated and applied to a quadrotor, as discussed in [12,13].
In the research in [14,15], the implementation, testation, validation, authentication, and
comparison of LQR, PID, and state feedback controllers have been performed on an X3D
Quadrotor in NI LabVIEW simulation. The application of sub-super-stochastic matrices
to bipartite tracking control in sign networks is presented in [16]. The research [17] repre-
sented an innovative decentralized control strategy for the Cucker–Smale model to analyze
the leader–follower flocking behavior on networks that encompass both cooperative and
rival relationships between agents.

The research [18] addressed the PID and LQR controller implementation for the Qball
X4 trajectory tracking. Simulations and experiments were conducted to compare the
performance of the developed control strategies. A mathematical model was developed in
the research paper [18] to simulate the behavior of a quadrotor with four motors driven
by PID using a simple approach. In the study [19], feedback linearization and the LQR
controller were proposed to stabilize the quadrotor attitude in the trajectory. A gain-
scheduling fuzzy controller for quadrotor position and height control was proposed in the
research [19]. The study [20] compared and implemented three controllers into an actual
quadrotor in real-time, including PID, LQR, and backstepping. The research [21] offered
three robust procedures for controlling a quadrotor in a predetermined trajectory based on
the MIT rule and sliding-mode methods. A variety of commonly used quadrotor controllers
were described in the previous study. With their algorithms, many control techniques have
their strengths and limitations. As a result, the quadrotor’s applications and performance
determine the appropriate controller. The strengths and limitations of several controllers
for controlling quadrotor systems are presented in Table 1.



Appl. Sci. 2022, 12, 9254 3 of 19

Table 1. Strengths and Limitations of Quadrotor Control Techniques.

Controllers Strengths Limitation

PID Gain selection is simple; steady-state error can be avoided. Cannot deal with disturbance or noise, and
cannot handle multiple configurations
simultaneously.

LQR It can handle many inputs and outputs. Not able to overcome steady-state errors.

Backstepping The model must be systematic and recursive; a precise
model is not essential. It can control system nonlinearities,
overcome inadequate disturbances, and guarantee
stability.

Over-parameterization; selecting appropriate
parameters is difficult.

Fuzzy Logic It provides a viable solution to a complex and uncertain
model and does not demand a precise model.

Control rules and system analysis are difficult
to develop. It takes a long time to adjust the
parameters.

H∞ When the system is multivariable and the channels are
cross-coupled, it performs well.

A well-designed model is required.

Sliding Mode
Controller

(SMC)

The performance of high nonlinearity is excellent. Less
sensitivity to perturbations and uncertainty in the model.

The chattering problem can lead to system
instability.

Model Predictive
Control
(MPC)

Predicts future state behaviors; works with multiple input
and output simultaneously; can manage input and output
constraints; and noise and disruptions are not a challenge.

Tracking is slow.

Adaptive
Controller

When parameters are uncertain, the dynamic and
disturbance model are always changing; engineering
effectiveness is comparably acceptable.

It takes time to adapt to the new parameters.

The primary motivation of this research is to show the experimental results of well-
known and recently developed theoretical studies in the field of modern control system
design and analysis for the quadrotor system. One of the most significant properties of
control systems analysis is stability. Control systems must meet specified criteria for the
system under investigation to operate as desired in both transient and steady-state response
values that are as close to the desired value as possible. Therefore, the research presents
the development and comparison of the quadrotor control system. The quadrotor plant is
initially linearized for hover flight before the linear control approaches are implemented.
This research compares the performance of linear and nonlinear control techniques, taking
into consideration the restricted onboard computer resources. Because of the constraints
imposed by nonlinearity factors and external disturbances, the primary goal is to maintain
the translation position’s stability, attitude, and altitude of an x3D quadrotor. The key
contribution of the proposed research is to develop control systems for x3D quadrotors
that will allow them to control the translation position (x, y, z) while stabilizing its attitude
angles (roll φ , pitch θ and yaw ψ) by forcing the position (x, y, z) and yaw (ψ) to track their
respect to reference inputs while keeping the roll (φ) and pitch (θ) angles negligible [21].
The desired parameters, such as rise time, settling time, peak time, and maximum percent
overshoot, and steady-state errors are analyzed in the MATLAB Simulink environment for
the x3D quadrotor. As a result, the suggested solutions are more practical and feasible. The
significant contributions of this research are as follows:

• SIMULINK simulation of nonlinear X3D quadrotor model to validate control ap-
proaches.

• Two linear control systems are implemented: the conventional PID and the LQR
control system.

• Two nonlinear control systems are implemented: fuzzy control and model reference
adaptive PID controller (MRAPC) using MIT rules.
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• Performance comparison of all controllers for quadrotor trajectory tracking based on
transient response. The proposed controllers’ performance is anticipated to be better
in the presence of parameter uncertainty and external disturbances.

The following is the format of this paper: The mathematical model of an X3D quadrotor
is presented in Section 2. The quadrotor’s control methods are discussed in Section 3. The
study and comparison of the aforementioned control strategies for an X3D quadrotor are
presented in Section 4. The conclusion is found in Section 5.

2. Mathematical Modeling of X3d Quadrotor

Kinematics and dynamics are the two parts of the X3D model system and are described
using the Newton–Euler theorem rules as: (1) A quadrotor has a symmetrical and rigid
frame, (2) the quadrotor’s center of gravity is the same as the body’s fixed frame origin,
(3) the propellers have a rigid design, (4) the square of the propeller’s speed determines
thrust and drag. The X3D quadrotor parameter list is mentioned in Table 2. The complexity
of the re-evaluated X3D model, as illustrated in Figure 1, has been significantly decreased.
Equation (1) gives the onboard controller’s input vector.

U =
[
Uφ , Uθ , Uψ , Uthrust

]
(1)

Table 2. X3D Quadrotor parameter list.

Parameters Symbol Value

Quadrotor Mass m 0.54 kg

Gravity Acceleration g 9.807 m/s2

Arm length of Quadrotor L 0.225 m

Inertia Moment
Ixx
Iyy
Izz

0.022 kg.m2

0.022 kg.m2

0.0018 kg.m2
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Figure 1. X3D Quadrotor re-evaluation model.

The angular velocity (Sω) and collective thrust (Sc) outputs of the onboard controller
are delivered from the kinematics of the reference body X3D, which results in the system’s
final output in terms of translation position (P) and orientation (Θ). The Newton–Euler
formulation provides a comprehensive mathematical account of quadrotor dynamics [14].
Position, Euler angle, linear velocity, and angular velocity are among the 12-degree-of-
freedom output states described by Equation (2).

12− DOF =
[

x, y, z, φ, θ, ψ,
.
x,

.
y,

.
z,

.
φ,

.
θ,

.
ψ
]

(2)

The right-handed system is the inertial (Earth) frame of reference E = [Oe,Xe , Ye, Ze]
and denotes the origin, which is the center of the earth. Its purpose is to determine the
quadrotor’s location. Right-handedness is reflected in the bodily frame of reference as
B = [OB,XB , YB, ZB] and denotes the origin, which is located at the quadrotor’s center of
gravity. It is used to figure out the quadrotor’s orientation with the earth frame.

In the body frame, the torque, the force FB, angular velocity ωB, and linear velocity
vB are all computed. The body and the earth reference frames are shown in Figure 2.
The coordinates of the quadrotor (body frame) can be aligned with the earth frame in the
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following sequence: Ze on the earth, the frame is aligned to the yaw angle on the body
frame ZB (positive ψ), Ye is aligned to the pitch angle on YB (positive θ), and Xe is aligned
to the roll angle on XB (positive ϕ). Rotation matrices (xφD, yθD, zψD) about the three
axes (roll, pitch, and yaw) are described in Equation (3).

xφD = [1 0 0 0 cos cos φ sin sin φ 0 − sin sin φ cos cos φ ]yθD
= [cos cos θ 0 − sin sin θ 0 1 0 sin sin θ 0 cos cos θ ] zψD
= [cos cos ψ − sin sin ψ 0 sin sin ψ cos cos ψ 0 0 0 1 ]

(3)
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By multiplying a frame with a direction cosine matrix (DCM), a reference frame may
be converted from earth to body and vice versa (DCM) [1] as in Equation (4).

DCM = EBD(Θ) = (xφD).(yθD).(zψD) (4)

Equation (5) gives an orthogonal rotation matrix from the body frame to the inertia
(earth) frame.

EBD(Θ) = [cos cos θ cos cos ψ cos θ sin sin ψ − sin sin θ sin sin φsin sin θ sin sin ψ − cos cos φ sin sin ψ
sin sin φ sin sin θ sin sin ψ + cos cos φ cos cos ψ sin sin φcos cos θ cos φ sin sin θ cos cos ψ

+sin sin φ sin sin ψ sin sin φ cos cos θ cos φ cos cos θ ]
(5)

In Equation (6), the translational velocity VE of the X3D is given about the earth frame.

VE =
.
P = BED(Θ).VB (6)

Equations (7) and (8) can be used to convert angular velocities in the body frame to
angular velocities in the earth frame.( .

Θ
)
= BEH(Θ).Bω (7)

[ .
φ

.
θ

.
ψ
]
=

[
1 θ φ θ φ 0 φ − φ 0

φ

θ

φ

θ

]
[p q r ] (8)

Equation (9) can be used to compute the angular velocity in the body frame.

Bω = Sω . Kω (9)

Equation (10) can be used to determine the angular velocity in the earth frame.

Eω =
.

Θ = BEH(Θ).Bω (10)

All external forces are added together to provide the overall force operating on the
X3D quadrotor. As seen in Equation (11).

TotBF = RotorBF + gBF (11)



Appl. Sci. 2022, 12, 9254 6 of 19

where RotorBF = 1BF + 2BF + 3BF + 4BF.
The upward forces created by the X3D rotors are 1BF to 4BF, and Fg is the force

impacting the body. The angular velocity of rotors affects the RotorBF.
The nonlinear Simulink model of the x3D quadrotor is presented in Figure 3. The

nonlinear dynamic equations of the x3D quadrotor are linearized using a first-order Taylor
approximation to implement the linear controller. The X3D near the hover position’s
aggregate linearized equations may be expressed as Equation (14):

.
x = Vx ,

.
y = Vy ,

.
z = Vz

.
φ = p,

.
θ = q ,

.
ψ = r

.
Vx = −φg

.
Vy = θg

.
Vz =

Fz+I f . VZ
m

(12)
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3. X3D Quadrotor Controller Design

For an X3D quadrotor control system, two control loops are suggested, as shown in
Figure 4. The position controller in the outer control loop controls the system’s slower
dynamics (longitudinal and lateral translations), while the attitude/altitude controller in
the inner control loop controls the system’s quicker dynamics (attitude and altitude).
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The quadrotor’s intended rotor speed is output by the attitude/altitude controller.
The PID controller, LQR controller, fuzzy logic controller, and model reference adaptive
PID using MIT rule controller were used in this research to stabilize the translation position
and attitude/altitude of an X3D quadrotor.

3.1. PID Control System

PID controllers are the most fundamental feedback controllers that are frequently
utilized in many industrial applications [22]. A PID controller calculates an error value that
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distinguishes between the desired set point and the measured process value. By changing
the process control inputs, the controller tries to decrease the error. To use the PID controller
for achieving ideal values for a better control system, a complete mathematical model of
the plant is required to determine the three parameters (proportional gain KP, integral gain
KI , and derivative gain KD) [23]. Six PID controllers for attitude/altitude stabilization and
translation trajectories are presented in this research. The attitude angles are controlled by
three PID controllers (φ, θ and ψ). The altitude (z-axis) of the X3D quadrotor is controlled
by one PID controller, while the longitudinal and lateral positions (x-axis and y-axis) are
controlled by two PID controllers. Hence, the attitude is determined by the positions. The
Euler angles’ preliminary conditions are set to (0, 0, and 0) to begin the experiment. The
angular velocity and thrust for the X3D quadrotor are then generated by combining all PID
controllers with the combinational control. Figure 5 depicts the PID controller feedback
loops for an X3D quadrotor [24]. Equation (13) illustrates the discrete-time transfer function
for each PID controller.

PID =

(
KP + Z−1KD +

1
Z−1 KI

)
(13)
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In Equations (14) and (15), the equations for PID attitude control are provided.

eattitude = Θre f reance −Θmeasured . EBD(Θ) (14)

Θdesire = eattitude.PID (15)

Similar to PID for attitude control, PID for height control (z−axis) and PID for transla-
tion position control (x−axis and y−axis) are calculated. The height (z−axis) and intended
angular velocity are used as inputs in the combination control step, and following satura-
tion, thrust and the actual angular velocity are transmitted to the X3D quadrotor’s nonlinear
model, as shown in Equations (16)–(18). The classical discrete PID is implemented in all the
controller blocks, and the parametric gain values are listed in Table 3.

ωdesire = (Θdesire −Θmeasured).EBH(Θ) (16)

U[X, Y,ψ] = sat{ωdesire} (17)

UZ = sat{Zdesire} (18)

Table 3. Parametric Gain values of each PID Controllers.

Parametric Gain
Controllers

PID Altitude (Z) PID (X, Y) PID (ΦΦΦ, θ, ψ)

KP 1.5 2 1

KI 0 0 0

KD 0.5 1 0.1
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3.2. LQR Control System

The linear quadratic regulator (LQR) controller has been widely used in engineering
applications such as voltage source inverters and wheeled inverted pendulum vehicles [25].
There is comparably little research on using the LQR control technique to track and stabilize
the quadrotor. The LQR control system is designed to give optimum control while being
cost-effective [26]. Owing to the significant uncertainties and nonlinearities in quadrotor
dynamics, as well as model unreliability due to parameter fluctuations and linearity approx-
imation, implementing the LQR control system on the quadrotor is a difficult undertaking.
As a result, the quadrotor system dynamics are described by a linear state–space equation,
with a quadratic cost function as the least appropriate cost function [27]. Equations (19)
and (20) depicts the form of the continuous state–space model:

.
xs(t) = Axs(t) + Bu(t) (19)

y(t) = Cxs(t) + Du(t) (20)

To develop the continuous state–space model, the X3D’s linearized state–space Equa-
tion (21) and (22) is employed. The A matrix is shown below, with C = I9X9 and D = 09x4
as the C and D matrices, respectively.

.
xs(t) = A xs(t) (21)

[ .
x

.
y

.
z

.
φ

.
θ

.
ψ

.
Vx

.
Vy

.
Vz

]
= [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g 0 0 0

−g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I f
m

][
x y z φ θ ψ Vx Vy Vz

] (22)

Equation (23) derives the discrete case quadratic cost function.

J =
∞

∑
k=0

∣∣∣∣∣xk
TQxk + uk

T Ruk (23)

The weighted matrices of the state vector and input vector, respectively, are Q and
R. The Q and R gain matrices for simulation were determined using Bryson’s method.
Equation (24) yields the Q and R gain matrices for the X3D quadrotor.

Q

= [10 0 0 0 10 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

= [10 0 0 10 0 0 0 0 0 0 0 0 10 0 0 10 ]

(24)

The parameters k, P, and e for the LQR system may be retrieved using the MATLAB
lqr function, as indicated in Equation (25).

[k, P, e] = lqr(A, B, Q, R) (25)

3.3. Fuzzy Logic Control System

The correlation between the input data and the output action is described using
human language descriptions in fuzzy logic. It is a mathematical system that takes analog
input values and compares them to variables that need values between 0 and 1 [28]. The
proper process input is determined by a fuzzy controller’s fuzzy membership function and
inference rule. The quadrotor’s translation position must be controlled while its attitude
(roll, pitch, and yaw angle) must be stabilized [29]. In this article, an X3D quadrotor is
controlled using Mamdani’s fuzzy inference approach. The quadrotor’s attitude (desired
angles of roll, pitch, and yaw) is controlled by three fuzzy controllers, denoted as FC (φ),
FC (θ) and FC (ψ), respectively (desired angles of roll φ, pitch θ, and yaw ψ) [30]. FC (Z)
determines the altitude of the quadrotor. The quadrotor’s translation position is controlled
by two additional fuzzy controllers, FC (X) and FC (Y). The states ϕ and θ are used to
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control the X and Y positions, respectively. All six fuzzy logical controllers use the same
two identical inputs as described below.

• Error (e) denotes the difference between the desired and measured signals.
• Derivative error (de) is the error rate.

Figure 6 depicts the implementation of a fuzzy system for quadrotor control. Error
is stabilized between [−1, +1] and [−3, +3], whereas the error rate is stabilized between
[−3, +3].
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Figure 6. X3D Quadrotor Control using a Fuzzy Controller.

The output with three fuzzy logic values (N, Z, and P) is used for the input variables e
and de, as indicated in Table 4; N stands for negative, Z for zero, and P for positive. Table 1
explains the rules: If the error (e) is negative and the rate of error (de) is negative, then
the output will be negative. Figure 7 depicts all of the FCs’ controller inputs as well as
membership functions.

Table 4. X3D Quadrotor’s Fuzzy Rules.

Error (e)

Rate of Error (de)

FC (X), FC(Y), FC (φ), FC(θ)

P Z N

P P P Z

Z P Z N

N Z N N

FC (Z), FC(ψ)

P Z N

P Z Z N

Z Z N P

N N P P

The surface view of all Fuzzy controllers is shown in Figures 8 and 9.
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3.4. Model Reference Adaptive PID Control System Based on MIT Rule

Numerous controllers, including PI, PD, PID, and feedback, can be adapted utilizing
particular adaptation methods to improve system performance. In this research, the model
reference adaptive PID controller based on MIT rule was used to investigate the fast-
tracking and stability control of quadrotor [31]. The Massachusetts Institute of Technology
(MIT) developed the MRAC-based MIT rule in 1960 [32]. It employs the model reference
adaptation control technique to ensure that the actual plant output follows the output of
the reference model when the reference inputs are the same for any practical system with
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undetermined and unpredictable characteristics that can be adjusted by control settings [33]
as illustrated in Figure 10. This section presents the MIT-rule-based design parameter
adaption rules for a PID controller. The following are the steps to creating an MRAC
using the MIT rule. Obtain the MRAC system reference model that yields the desired
trajectory ym.

Gm(s) =
ym(s)
uc(s)

=
αs + ωn

2

s2 + 2sζωn + ωn2 (26)
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Closed-loop characteristics such as settling time tS and overshoot (OS) are used to
estimate the damping ratio ζ and natural frequency ωn. Table 5 lists the specifications of
the reference model for the X3D quadrotor.

Table 5. X3D Quadrotor reference model specifications.

Parameters Values

Settling time 20s

Damping ratio 0.707

Steady-state error 0%

The transfer function of the reference model is changed as follows:

Gm(s) =
ym(s)
uc(s)

=
0.1058

s2 + 0.1496 + 0.1058
(27)

1. State the adaptive law of MRAC system for PID controller as

u(t) = KPe(t) + KI

∫ t

0
e(t)dt− KD

dyp

dt
(28)

where e(t) = uc − yp

The PID controller’s transfer function in Laplace domain is described in Equation (29)

U(s) = KPE +
KI
s

E− KDsyp (29)

2. State the tracking error e for the system as

e = r− yp (30)

where r is the system reference input.

de
dt

= −
dyp

dt
(31)
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3. As stated in Equation (34), estimate the adaption error ε.

ε = yp − ym (32)

where yp denotes the plant output and ym denotes the reference model output.
4. As follows, describe the MIT rule, which is described as the temporal rate Φ of change

proportional to the cost function’s (J) negative gradient.

dΦ

dt
= −γ

∂J
∂Φ

= −γe
∂e
∂Φ

(33)

For calculating the value of PID controller parameters (
.
KP,

.
KD,

.
K I), use the MIT Rule

(gradient method). The following are the estimated adjustment parameters.

dKp
dt = −γpε

(
s

s2 + 2sζωn + ωn2

)
e

dKI
dt = −(γI)ε

(
1

s2 + 2sζωn + ωn2

)
e

dKD
dt = γDε

(
s2

s2 + 2sζωn + ωn2

)
yp

(34)

For the approximate parameters KP, KI and KD of adaptation, the law is as (35).

θ1 = Kp = −
(

γp
s

)
ε

(
s

s2 + 2sζωn + ωn2

)
e

θ2 = KI = −
( γI

s
)
ε

(
1

s2 + 2sζωn + ωn2

)
e

θ3 = KD =
(

γp
s

)
ε

(
s2

s2 + 2sζωn + ωn2

)
yp

(35)

The value of the adaptation gain (γ) has a direct relationship with the convergence rate.
The simulation results show that it is correct for small values (γ) but impulsive for

high values, indicating that the right selection of (γ) is critical. The quadrotor’s attitude
(roll φ, pitch θ, and yaw ψ) is controlled by three MARC adaptive PID controllers, indicated
by MARC φ, MARC θ and MARC ψ, respectively. MARC Z oversees controlling the
quadrotor’s height, while MARC X and MARC Y are in charge of controlling the quadrotor’s
position. The architecture of the MARC adaptive PID controller with MIT rule including all
six degrees of freedom (DOF) quadrotor output is shown in Figure 11. Three PID controller
parameters (KP , KI , and Kd) can be modified using the MARC system and the MIT rule to
make the nonlinear X3D Quadrotor stable and track to the appropriate reference input.
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4. Simulation Results

All linear and nonlinear controllers can provide system stability and optimum perfor-
mance under their nominal conditions. It is indeed challenging to obtain equivalent results
from both the simulation and the real-time experiment due to highly precise parameter
adjustment and nonlinear parameters and dynamics. Researchers generally use modelled
linear controllers because of their simplicity of design and implementation, as well as
their ability to produce high-quality experimental data. On the other hand, robustness,
noise and disturbance elimination, limitation control at the endpoints, and more precise
trajectory tracking are all advantages of nonlinear controllers [34–36]. Therefore, theoretical
studies reveal that linear controllers such as LQR and PID are good at maintaining stability
under nominal conditions but not so good at ensuring robustness. The fuzzy controller, on
the other hand, cannot guarantee nominal stability but can offer adequate and excellent
maneuvering performance. Furthermore, hybrid and adaptive controllers are created as
units in which many controllers can work together to provide the finest balance of robust-
ness, nominal stability, flexibility, optimality, simplicity, tracking ability, rapid response,
and disturbance rejection to a system, among other features. High computation, a large
amount of training data, estimation error, and the existence of uncertainty are the issues
that these controllers must confront to achieve satisfying performance, even though they
are capable of ensuring remarkable outcomes when the system is disturbed by uncertainty.
For example, LQR becomes LQG when the Kalman filter is used to generate a state observer
and eliminate signal noise. Secondly, to achieve excellent maneuvering performance, a
model reference adaptive controller is used to update the PID controller gain. Figure 12
shows the proposed control structure, which includes a control unit, an X3D Quadrotor, an
inertial measurement unit (IMU), and a Kalman filter. The reference input will be received
first by the quadrotor system. It measures the translational position and rotational position,
velocities, and accelerations of the X3D Quadrotor at a specified time. The output of the
quadrotor is then sent to the IMU sensor, which includes a three-axis accelerometer and
a gyroscope. The Kalman filter is used to rectify and filter the output of an IMU sensor
before it is fed back to the control unit. The control unit then generates an output that is
equivalent to the thrust that all motors must provide in order to maintain the well-defined
requirements of the X3D quadrotor. The proposed control structure mentioned above is
implemented in the MATLAB Simulink environment. To evaluate the performance of all
control systems for the specified reference position, unit step tests are performed in all
the three axes, x, y, and z. Desired references for step input at the xyz positions are set
to 1. The simulation period of an X3D Quadrotor system is defined as 30, 50, and 400 s,
correspondingly, for positional testing (x, y, and z) among suggested controllers.
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Figures 13–18 illustrate the output response of the closed-loop control system for the
longitudinal position (x-axis), lateral position (y-axis), altitude (z-axis), and attitude (roll,
pitch, and yaw angle) for each of the four controllers. All controllers work well in keeping
the quadrotor in the proper reference position, as can be seen in these figures. Tables 6–8
provides the comparison of step test results in terms of rising time, settling time, peak time,
and overshoot for all three dimensions (x, y, and z). Figures 13 and 14 show the X and Y
position responses, whereas Figure 15 shows the height (z-axis) response.
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The aggregate performance of the PID controller, LQR controller, fuzzy controller, and
MRAPC with MIT rule controller appears to be satisfactory, as demonstrated in Figure 13
and Table 6, where the root mean square error (RMSE) and normalized root mean square
error (NRMSE) for simulations are less than 1 m along the x-axis. Although, the LQR
controller is superior to others because it reduces overshoot, rising time, and settling time
along the x-axis. Nevertheless, the performance of PID, LQR, fuzzy, and MRAPC with MIT
rule appears to be good, as demonstrated in Figure 14 and Table 7, where the root mean
square error (RMSE) and normalized root mean square error (RMSE) for simulations are
below 1 m along the y-axis.

In terms of overshoot, rising time, and settling time along the y-axis, the LQR controller
performs better.

According to Figure 15 and Table 8, the LQR controller achieves superior results along
the z-axis than other control approaches because there is no overshoot, the rising time is
shorter, and the settling time is shorter. In Figure 16, the LQR controller stabilizes the roll
angle in 4 s, which is a much quicker period than the findings of other controllers.
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Figure 18. Yaw (ψ) Control result depending on step input for all control systems.

Table 6. Performance comparison of all controllers for the longitudinal position (x-axis).

Controllers
Performance Index (x-axis)

Setting Time TS Rise Time Tr Overshoot (%) Peak Time Tp RMS Error NRMS Error

PID 24.3 1.2 4.2 5.1 0.16 0.11

LQR 4.18 2.55 0.0 30 0.21 0.21

Fuzzy Logic 36.48 3.15 38.64 8.8 0.23 0.17

MRAPC with MIT 17.24 7.1 119.58 22.5 0.22 0.10

The LQR controller, as shown in Figure 17, requires a shorter time to stabilize the pitch
angle than other controllers.

Figure 18 demonstrates that the system has a negligible yaw angle in the case of the
LQR controller structure.
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Table 7. Performance comparison of all controllers for the lateral position (Y-axis).

Controllers
Performance Index (y-axis)

Setting Time TS Rise Time Tr Overshoot (%) Peak Time Tp RMS Error NRMS Error

PID 19.08 1.1 43.2 4 0.17 0.12

LQR 4.18 2.5 0.0 30 0.21 0.21

Fuzzy Logic 37.54 3.35 39.162 8.8 0.24 0.18

MRAPC with MIT 170.74 104.7 8.8 213.1 0.425 0.426

Table 8. Performance comparison of control techniques for Z-position.

Controllers
Performance Index (z-axis)

Setting Time TS Rise Time Tr Overshoot (%) Peak Time Tp RMS Error NRMS Error

PID 7.06 0.6 4.7 2.2 0.08 0.08

LQR 4.16 2.25 0.0 30 0.18 0.18

Fuzzy Logic 14.21 32.75 2.67 50 0.814 0.815

MRAPC with MIT 21.86 3.3 0.77 26.85 0.056 0.056

5. Conclusions

The system proposed in this manuscript is a quadrotor. Controlling and stabilizing the
quadrotor is a substantial issue due to nonlinearity and under-actuated configurations, such
as a lower number of control inputs than degrees of freedom (DOF). A comparison of four
alternative control methods, such as the LQR controller, PID controller, fuzzy controller,
and model reference adaptive PID controller using the MIT rule, has been provided in
this article for an X3D quadrotor. These controllers demonstrate the stability, robustness,
and control of a quadrotor during maneuvers and trajectory tracking in the presence
of nonlinear dynamics. The results of simulations demonstrate that given the identical
translation position, altitude, and attitude inputs, each control system responds differently.
However, based on the features that are required for the quadrotor application, it is possible
to select the most suited system. When compared to other controllers at almost the same
operating conditions, the LQR controller yields the highest accuracy in x, y, and z-step
performance. The LQR controller has a 0.0% overshoot and a 4.1% shorter settling time than
other controllers, particularly nonlinear controllers. In terms of the highest settling time
and overshoot, the model reference adaptive PID controller using the MIT rule performs the
worst. It is worth mentioning that the linear controller methods are quite ubiquitous and
easy to implement, and they may be used for a wide range of real-world control systems.
For potential research directions, all the controllers will be deployed on the X3D quadrotor
board, and the X3D quadrotor’s real-time performance, validation, and authentication of all
control systems will be monitored; in addition, other machine learning and deep learning
algorithms will be implemented for autonomous operation.
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