
Citation: Kamalova, A.; Lee, S.G.;

Kwon, S.H. Occupancy

Reward-Driven Exploration with

Deep Reinforcement Learning for

Mobile Robot System. Appl. Sci. 2022,

12, 9249. https://doi.org/10.3390/

app12189249

Academic Editors: Luis Gracia and

J. Ernesto Solanes

Received: 24 July 2022

Accepted: 11 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Occupancy Reward-Driven Exploration with Deep
Reinforcement Learning for Mobile Robot System
Albina Kamalova * , Suk Gyu Lee and Soon Hak Kwon

Department of Electrical Engineering, Yeungnam University, Gyeongsan 38541, Korea
* Correspondence: dyupleks@gmail.com; Tel.: +82-10-9921-6172

Abstract: This paper investigates the solution to a mobile-robot exploration problem following
autonomous driving principles. The exploration task is formulated in this study as a process of
building a map while a robot moves in an indoor environment beginning from full uncertainties. The
sequence of robot decisions of how to move defines the strategy of the exploration that this paper
aims to investigate, applying one of the Deep Reinforcement Learning methods, known as the Deep
Deterministic Policy Gradient (DDPG) algorithm. A custom environment is created representing
the mapping process with a map visualization, a robot model, and a reward function. The actor-
critic network receives and sends input and output data, respectively, to the custom environment.
The input is the data from the laser sensor, which is equipped on the robot. The output is the
continuous actions of the robot in terms of linear and angular velocities. The training results of this
study show the strengths and weaknesses of the DDPG algorithm for the robotic mapping problem.
The implementation was developed in MATLAB platform using its corresponding toolboxes. A
comparison with another exploration algorithm is also provided.

Keywords: mobile-robot system; reinforcement learning; deep neural network; mapping; exploration;
navigation

1. Introduction

In the past two decades, an enormous number of works on the mobile-robot ex-
ploration domain or the so-called mapping or map coverage have been published [1,2].
Generally, every novel exploration technique aims to solve three basic challenges. The first
is to explore fully a given space using an onboard robot-vision system. The second is to
not encounter any obstacles while driving through. The next is to optimize the driving
course in the exploration, saving time and energy costs. This represents a bigger picture of
mapping, addressing only problematics.

Delving deeper into the field, various characteristics of an exploration can be dis-
covered. For instance, for environment types, the exploration can be conducted indoors,
outdoors [3], on cluttered rough terrain [4,5], in a post-disaster extreme environment [6], in
the ocean [7], or on a planetary surface [8]. The exploration can have requirements based
on the map type (grid map [9], octomap [10], point cloud map [11], semantic map [12])
or the approach (deterministic [13,14], stochastic [15], artificial intelligence [16,17], SLAM-
(Simultaneous Localization and Mapping) type [18,19]). In addition, the exploration can
be processed by different robot systems [20]: a mobile-robot system or multi-robot system.
These various characteristics are the reasons why mapping the field is an important topic
in robotics and why it remains relevant today.

In mobile-robot exploration, a robot is launched into a space with entirely unknown
information about the indoor environment. A robot can have vision using a sensor or
camera that senses at a certain sensing distance or image resolution, respectively. During
mapping, the robot drives towards and perceives more knowledge about the environment.
It can have a task or an action command while it moves in the environment. The task can be
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a point in the environment, which is called a local point or a waypoint [21]. The computation
of the waypoints in the mapping is conducted by a computational algorithm, which many
scholars have attempted to either modify in combination with other techniques or create
new ones. In this study, the exploration does not use the waypoint concept. Instead, the
robot moves by following the action command being transmitted to the robot motors.

The final result of the robotic exploration is a finite map. The map is a data model of
the robot’s surroundings. The robot needs the map on a regular basis to have knowledge
of its position for further missions. Object recognition, object segmentation, planning
movement, and many other typical human activities in indoor space are required for an
existing known map, which is true for a robot as well.

Artificial intelligence (AI) is a significant topic in science nowadays [22]. It is believed
that AI is a general term, which describes how computers or hardware systems can think
and behave like a human. A subfield of AI is machine learning [23]. It is mainly focused on
learning from data training. Over decades, machine learning evolved into deep learning,
which could transform the data into multiple-layer representations due to feature detection
or pattern classification [24]. The considerable success of some applications, such as image
recognition, speech recognition, email spam filtering, and the winning of AlphaGo in the
board game Go, motivated developers around the world to apply machine learning or deep
learning techniques in various fields.

The process of the learning divides machine learning, deep or otherwise, into three
subfields: supervised learning, unsupervised learning, and reinforcement learning [25]. In
the first two types of learning, only neural networks are considered, which are trained with
and without labeled input data, respectively. The third type, reinforcement learning (RL),
differs from the first two such that a neural network in RL can be employed as a nonlinear
approximator function; this is why the term Deep Reinforcement Learning (deep-RL) is
used. The deep-RL can be understood with the concept of an agent, environment, action,
observation, and reward, all of which will be discussed in detail. RL is classified into two
types: model-based and model-free. The model-based RL has the model of an environment
and a planning of agent dynamics, whereas an agent of the model-free RL learns only by
values, without explicitly knowing an environment model. Most applications, like this
study, are based on model-free RL. In the model-free category, there are three approaches
of algorithms for an agent’s learning: value-based, policy-based, and actor-critic. The
value-based algorithms are when an agent uses the value function to evaluate the goodness
or badness of states. In turn, the policy-based algorithms follow a policy of an agent’s
behavior, which is a map from state to action. The actor-critic approach is a mix of value-
based and policy-based algorithms; this approach is applied in this paper. Figure 1 shows
the summary of machine learning classification from artificial intelligence to RL algorithms.
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In this study, the model-free actor-critic RL approach aims to solve the mobile robot
exploration problem in indoor environments. There are several algorithms that can be
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listed under the actor-critic category: Deep Deterministic Policy Gradient (DDPG), Twin
Delayed Deep Deterministic Policy Gradients (TD3), Proximal Policy Optimization (PPO),
Soft Actor Critic (SAC), and Asynchronous Advantage Actor Critic (A3C). In this study,
the off-policy DDPG algorithm is selected for the mapping problem. The DDPG algorithm
is useful for robotics applications because it allows the control of electric motors due to
continuous output data. The remaining algorithms mentioned above are able to provide
continuous actions as well. However, the DDPG learns directly from the observation data,
which corresponds to the mapping problem using a laser sensor. In addition, the DDPG
algorithm is not often applied to mobile-robot exploration problems, which is a motivation
for the authors to study it in practical application.

The contribution of this study is as follows. A custom environment was created espe-
cially for exploration using the occupancy map and the robot movement. The environment
evaluates the robot’s motion for learning the unknown space using a reward function. In
the same way, it denounces the robot for the negative occasions, such as obstacle collisions.
Another contribution is the creation of the DDPG agent and training process for the custom
environment. At the end of the paper, the positive and negative results of using the DDPG
algorithm are presented for the mapping problem. The comparison of the DDPG algorithm
and the nature-inspired exploration algorithm shows the advantages and disadvantages of
each approach.

It is important to clarify the terminology in this section, as the names for the mobile-
robotics and deep-RL fields intersect. The word “environment” is used in both topics, but
the meanings are not the same. The environment in mapping means a physical or simulated
space with walls and furniture, for example, a room- or an office-like environment. In
deep-RL, the environment is the description of the input/output data reactions, model
visualization, and reward function. In the proceeding sections, the RL environment will
be used to denote this, and the absence of RL means the terms are related to the mobile-
robot system.

This paper is structured as follows. Section 2 discusses the related works of the deep-
RL algorithms in the mobile-robot field. In Section 3, the theory of deep-RL and DDPG
algorithms are explained in detail. In Section 4, the occupancy reward-driven exploration
based on the DDPG agent is proposed. The reward parameters and training options are
discussed in Section 5. Finally, the simulation results and the comparison are presented in
Section 6, which prove the proposed concept in practice.

2. Related Works

With the development of machine learning algorithms, the robotics field obtained
novel and alternative resolutions in its domain along with existing classical methods [26].
Although AI and its concept are not a new trend in computer science [27,28], in robotics,
a significant number of applications based on machine learning and its deep learning
subdomain have been launched recently, with modern AI appearing with the combination
of “big data” and neural network architectures [24,29].

In terms of the applications of deep learning in robotic mapping, two major groups of
approaches can be highlighted. The first one is deep learning with widely used convolu-
tional neural network (CNN) architecture. It can be said that CNN was inspired by human
vision in the manner of how a human is able to perceive objects and use this knowledge for
a multitude of tasks. The major function of CNN is to extract features out of images and
then to classify them as an object. Thus, it follows that the robot motion based on CNN
can be realized in a case when a robot is equipped with a visual sensor that is a camera.
An example is the research [30] on mobile-robot exploration using a hierarchical structure
that fuses CNN layers with decision-making process. It obtains RGB-D information from
the camera as the input and generates the moving direction as the output for the Turtlebot
robot. In the same vein, CNN is applied for exploration in another study [31]. In spite of
the fact that it is trained on the basis of input images of the floor plans, the output result
returns images containing the labels of exit locations in the building. It is assumed that the
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search of exit locations in the building refers also to the robotic exploration problem and
can be called a semantic or visual exploration. More segmentation is processed in another
study [32], capturing the labels (books, ceiling, a chair, floor, a table, etc.) from RGB-D video.
CNN and dense Simultaneous Localization and Mapping (SLAM) are applied together in
order to add the semantic predictions to a map from multiple viewpoints. The human walk
trajectories were predicted by CNN in Ref. [33]. The output results help the robot use this
information for avoiding obstacles and planning further tasks. Concluding the discussion
on the CNN-related approach, it can be emphasized that there are still limitations in train-
ing. It is assumed that CNN learns offline, whereas the mobile-robot exploration usually
works online. This is why CNN-based mapping is sometimes considered an impractical
solution [34].

The second branch of the robot exploration based on deep learning pertains to deep-
RL. Neural networks are also employed in this approach with several numbers of layers,
hence, the term “deep-RL”. However, NNs are considered function approximators or the
so-called policies that can efficiently operate large numbers of actions and states during
training. Based on the field of application, a designer can select an appropriate neural
network type among built-in RL approximators and well-known approximators, like CNN
and RNN.

Table 1 presents related works on mobile-robot exploration. The authors analyzed and
sorted out the literature based on the main classifications of the RL framework: algorithm,
environment, and map representation. In the study of Kollar et al. [35], it can be seen that
the support vector machine algorithm, which is related to supervised machine learning,
was applied instead of a deep neural network. The exploration is formulated into a model
of partially observable Markov decision process (POMDP). The output result in this work
is the optimization of the trajectory in the mapping process. In their study [36], Lei Tai et al.,
proposed to build a map of the corridor environment using depth sensor information.
The CNN model extracts the features from the environment, and the value-based Deep
Q-network (DQN) executes the obstacle avoidance for the Turtlebot robot. However, its
reward strategy does not stimulate the robot to further and faster explore the uncertainties
involved. The static values of 1 and −50 can be referred to as the navigation strategy rather
than the mapping. The research of Zhelo et al. [37] investigated the reward function known
as an intrinsic reward. The robot navigation is trained using targets by the asynchronous
advantage actor-critic algorithm (A3C) with external and intrinsic rewards. Apart from the
reward, the novel term “mapless navigation” is proposed for the exploration, which is used
in other studies, but only for the navigation problem [38–40]. Mapless navigation is when
the robot drives without any knowledge of the environment (such as obstacle position
and the frontier line between explored and unknown areas) to the targets whose positions
are visible due to visible light or Wi-Fi signal localization. This kind of navigation for the
exploration problem does not have the ability to build any finite map acquisitions.

End-to-end navigation in an unknown environment based on DDPG with long short-
term memory (LSTM) is presented in the study of Z. Lu et al. [41]. Its reward function impels
the robot to avoid dynamic obstacles and to choose a smooth trajectory. Chen et al. [42]
offered the idea to explore uncertainties via exploration graphs in conjunction with graph
neural networks and RL. The deep Q-network agent predicts the robot’s optimal sens-
ing action in belief space. The graph abstraction optimizes and generalizes data for the
learning process. This combination of the approaches showed efficient mapping results
in the comparison with other policy categories of graph neural networks and RL agents.
The study of H. Li et al. [43] proposed a new decision approach based on deep-RL. The
approach is a Fully Convolution Q-network (FCQN) with an auxiliary task that receives
the grid map of the partial environment as input and returns the control policy as output.
Shurmann et al. [44] presented and demonstrated real-time exploration using the Turtlebot
robot mounted with an RGB-D camera and Hokuyo laser sensor. To conclude the discussion
on the deep-RL-related exploration group, Ref. [45], focusing on the search for uncertainties
in an occupancy map, can be presented. Refs. [43,45], which use the occupancy-driven
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reward function, are shown in Table 1. The strategy of keeping the robot moving towards
new areas during the process is a key function in mobile-robot exploration. In the same
way, the reward function is a significant component in the deep-RL framework. This is
the reason for the authors’ interest in the reward strategy applied in the related works and
their proposed contribution in this work.

Table 1. Related works on the mobile-robot exploration using deep-RL.

RL Algorithm RL Environment
Map Representation

Approximator Agent Input Output Reward

T. Kollar
et al. [35]

Support Vector
Machine Policy

Learning

Policy Search
Dynamic

Programming
Laser sensor Discrete action Squared error

reward function Occupancy map

L. Tai
et al. [36] CNN Deep

Q-network RGB-D camera
Discrete actions

of 3 moving
directions

Keep moving is
value 1,

collision or stop
are −50

Corridor
environment,

Turtlebot, Gazebo

O. Zhelo
et al. [37]

Actor-critic
network A3C agent Laser sensor Continuous

actions Intrinsic reward

Simulated
environment, 3 maps

with different
floor plans

Z. Lu
et al. [41]

Actor-critic
network with
LTSM module

DDPG agent Laser sensor,
target points

Continuous
actions: linear
and angular

velocities

Novel reward
function for

avoiding
collision

Gazebo

F. Chen
et al. [42]

Graph neural
networks

Deep
Q-network

agent
Laser sensor Sensing action Raw reward Occupancy map

H. Li
et al. [43]

FCQN with
auxiliary task

Deep
Q-network

agent
Partial map Discrete action Heuristic

reward function
Occupancy map,

ROS

H. Surmann
et al. [44]

Actor-critic
network

Fast Hybrid
CPU/GPU
version of
A3C agent

Laser sensor,
RGB-D camera

Continuous
actions: linear
and angular

velocities

Goal reached is
value 20,

collision is
value of −20

Simulated and real
environment, ROS

J. Zhang
et al. [45]

Actor-critic
network and

Neural-SLAM

A3C with
generalized
advantage
estimator

Laser sensor Discrete action

− 0.04 values
for each step,
− 0.96 for

collision, 1
3×5

for new grid

Occupancy map,
Gazebo

There are many other studies that focus on solving other problems encountered in
mobile-robot systems. In particular, deep-RL is frequently applied in navigation [46–52],
path planning [53,54], and collision avoidance [55–58].

3. Background

This section discusses the theory concept of Reinforcement Learning and its continuous
control method—deep deterministic policy gradient (DDPG) [59].

3.1. Reinforcement Learning

Reinforcement Learning (RL) is a goal-oriented approach that extracts successful
actions in an area of concern during its training. This method allows a robot to make correct
decisions for a task without human intervention. The RL consists of two main parts: an
agent and the RL environment (Figure 2).
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The process of RL starts with the environment sending its initial observation (or
so-called state) to the agent. According to its computation, the agent makes the action
in response to this observation. By this, the action changes the environment, which can
be good or bad. Then, the environment sends a new observation and a reward for the
last action to the agent. It receives and updates its knowledge and then takes the next
action based on the computational analysis. The process repeats in this manner until the
environment gives the signal of the end of an episode.

The agent can be seen as a computational controller. It contains a policy and a learning
algorithm. The policy is a function approximator (deep neural network), which selects
appropriate actions with regards to the observations from the RL environment. The learning
algorithm component is to search an optimal policy by maximizing the cumulative reward.
It continuously updates the policy parameters based on reward, actions, and observations.

In this study, we applied the actor-critic agent belonging to the class of RL algorithms.
There are several known varieties of actor-critic agents, which use either a deterministic
actor or stochastic actor, with Q-value critic or a value critic. The difference among them is
in the manner of how the data of an actor and critic are updated in the process.

3.2. Actor-Critic Deep Deterministic Policy Gradient Algorithm

The DDPG algorithm is a model-free, online, off-policy RL method. The DDPG agent
uses a deterministic actor and Q-value critic. The DDPG agent searches for an optimal
policy that maximizes the expected cumulative long-term reward. It can be applied only
for an RL environment with continuous action spaces [59].

In the DDPG algorithm, the actor-critic architecture applies four function approxima-
tions: deterministic actor network, target actor network, critic network, and target critic
network. Considering each separately, Figure 3a represents the actor architecture, in which
the actor µ(O, θµ) directly maps the observations Oi to corresponding actions ai, which
maximizes the long-term reward R. In Figure 3b, the critic Q

(
O, A, θQ) takes actions and

observations and returns the corresponding expectation Q of long-term reward. The param-
eters θµ and θQ are network weights. The general actor-critic architecture is represented in
Figure 3c, in which the RL environment passes the observation to the actor and critic. The
actor determines the action and sends it to the critic. That is, the critic estimates the value
of how much reward the agent will obtain from this situation. Combining the value with
the reward R gives the estimated value of receiving the current observation and making
the current action.
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The actor target network µ′
(

O, θµ′
)

and critic target network Q′
(

O, A, θQ′
)

are
time−delayed copies of their original networks that slowly track the actor and critic
networks. The main role of the target networks is to improve the stability in the learning
by periodically saving the actor and critic parameters. The weight parameters θµ′ and θQ′

of the actor and critic target networks are updated by the equations below for τ � 1:

θQ′ ← τθQ + (1− τ)θQ′ (1)

θµ′ ← τθµ + (1− τ)θµ′ (2)

The critic side of the DDPG algorithm updates the critic by minimizing the loss be-
tween target y and the original Q value of the critic network through the following equation:

L =
1
M ∑

i

(
yi −Q

(
Oi, ai, θQ

))2
(3)

The target y is calculated using the Bellman equation:

yi = ri + γQ′
(

Oi+1, µ′
(

Oi+1, θµ′
)

, θQ′
)

(4)

where Q′ is the next Q value obtained from target networks, γ is the discount factor, and r
is the reward at time i.

The actor side of the DDPG algorithm updates the actor parameters using the sampled
policy gradient using the following equation:

∇θµ J ≈ 1
M ∑

i
∇aQ

(
Oi, A, θQ

)∣∣∣∣∣A=µ(Oi , θµ)·∇θµ µ(Oi, θµ) (5)

Here, ∇aQ
(
Oi, A, θQ) is the gradient of the critic output with respect to the action

computed by the actor network. The gradient of the actor output is ∇θµ µ(Oi, θµ) with
respect to the actor parameters [60].

In the discussion of the DDPG algorithm, which incorporates DQN [61], two trick
techniques with data, the replay buffer and the minibatch, cannot be excluded. The replay
buffer is like a data stack with ‘last in—first out’ principal operation. The experience tuples
(Oi, ai, ri, Oi+1) from the RL environment are added to the end of the buffer so that the
oldest experience is pushed out. The replay buffer can have a large size, and the large size
should be set. The large collection of experiences allows the data not to fall into convergence
and divergence issues. The minibatch is a randomly sampled experience taking from the
replay buffer. In Equations (3) and (5), the notation M is the minibatch size or the number of
sampled experiences. In each time step, the Q-value and policy of critic and actor networks
are updated by sampling a minibatch using the batch normalization technique.
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For the continuous action spaces of the DDGP algorithm, the exploration is done by
adding noise to the current policy using the following equation:

ai = µ(Ot|θµ) + Ni (6)

where Ni is stochastic noise.

4. The Proposed Occupancy-Reward-Driven Exploration

This section presents the mobile-robot exploration approach using the model-free
deep-RL technique, which is DDPG. In the beginning, the issues of the mapping process are
discussed. Then, the model of Markov Decision Process (MDP) for the robotic exploration
system is presented. The actions, states, and rewards as elements of MDP were introduced
in Section 3 in the discussion of the RL framework and DDPG algorithm. Here, we present
the MDP model specially designed for the mobile-robot mapping process while noting that
the MDP is a model that allows the description of the RL environment only.

Afterwards, the section introduces the main components of the custom RL environ-
ment, with its occupancy reward function created for the mobile-robot exploration. Then,
the agent of the actor-critic networks is demonstrated at the end of this section.

4.1. The Robotic Exploration Problem Formalization

Robotic mapping is a process where a real environment is converted into a digital
model by a robot or a group of robots. If we decompose this process into entities, we
assume that we obtain two main objects: a robot and an occupancy map. The robot object
has a sensor, a position, and velocity parameters. The occupancy map object is massive,
with a certain number of cells and their probabilistic values being modified at each time
step (Figure 4). The robot begins to run from the initial position. Operating the simulation,
this position can be any x-, y-coordinates of the free space on the map. In the real-world
experiment, the initial position has zero values on the map, no matter where the robot is
currently in a room [21].
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Figure 4. The occupancy map visualization with occupancy probability values of uncertainties (0.5)
and explored values (varying from 0.0010 to 0.5). The map size is defined as 20 by 10. It is only for
representing the figure window of the simulation and is not used in the algorithm computation.

As the robot moves in the environment, the occupancy map is updated from every
robot position, expanding the terrain acquisition. Step by step, the laser sensor touches
new areas or seen areas, which return different probabilities values from the occupancy
map. The values from the occupancy map at time t are known as explored segments in
this study.

With the aim of continuous and safe driving, some others aspects should be analyzed
and planned for the correct sequential decisions. One of these is obstacle avoidance. The
decision of turning left or right can be made based on the available visibility for the robot as
detected by the laser sensor. The maximum sensing range is a known parameter, depending
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on the sensor model. Based on the maximum range value, the minimum threshold for the
reaction to an obstacle can be defined through test runs. The other parameters for contin-
uous driving are the linear and angular velocities. Their values govern and characterize
the robot’s behavior. The linear velocity is responsible for forward and backward motions.
When the robot turns, the angular velocity deals with the turning motions.

These metrics, such as the explored segments at each time step, the minimum distance
threshold for the obstacle avoidance, and the linear velocity and angular velocity, are
synchronized and adjusted in the reward function below.

4.2. MDP Model for the Robotic Exploration

In this paper, the MDP model for robot exploration is formalized as follows. At
each iteration t, the laser sensor emits and inserts the rays on the occupancy map. If the
rays return any numeric data, it means that they hit an obstacle that is located nearby.
Otherwise, data of NaN format (Not a Number) denote the absence of obstacles and the
presence of free space. Both these types of data are the observations, Ot, that are sent to
the DDPG agent from the RL environment. For the sake of clarity, the occupancy map is
a form of visualization in the RL environment. Furthermore, the function approximator
inside of the agent generates and passes actions at, which are the robot velocities. The RL
environment receives the actions, upgrades the occupancy map, and computes a scalar
reward rt according to the changes. Figure 5 illustrates the MDP model based on the robot
exploration process.
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The reward is a key parameter that motivates the system in making the appropriate
decisions. This means that the reward has a strong effect on the motion of the robot. In
this paper, the reward is computed according to the explored segments of the occupancy
map in each time step t. Since the reward is calculated on the RL environment side, the RL
environment for the mobile-robot exploration is presented first below. Then, the reward
function is introduced in detail in Section 4.4.

4.3. Reinforcement Learning Environment of the Mobile-Robot Exploration

The proposed RL environment, which is presented in Algorithm 1, has a class structure
with property values and several certain functions [62]. It is presented in Algorithm 1. The
constructor function is the main one, in which the action and observation specifications
are defined with their maximum and minimum value ranges. The reset function is called
every time the exploration is launched and when the episode is finished during training. In
our custom RL environment, in lines 8–15, the reset function sets the map visualization to
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the initial uncertainties, sets the robot’s initial position, resets the observation values, and
activates the ROS interface for the laser scan data and velocity commands.

Algorithm 1: The RL environment for the mobile-robot exploration

1: classdef ExplorationRLEnv
2: properties maxRange = 4.095
3: methods
4: function constructor
5: define observation O with lower and upper limit values
6: define action a with lower and upper limit values
7: end
8: function reset
9: initialize robotPose, observation
10: map = occupancyMap
11: enableROSInterface
12: isDone = false
13: isBumpedObs = false
14: reward = 0;
15: end
16: function [observation, reward, isDone] = step (constructor, action)
17: scanMsg = receive(scanSub)
18: scan = lidarScan(scanMsg)
19: observation = scan.Ranges
20: insertRay(map, robotPose, scan, maxRange)
21: velMsg.Linear.X = action(1)
22: velMsg.Angular.Z = action(2)
23: send (velPub, velMsg)
24: if the last 3 robotPose values are the same
25: isBumpedObs = true
26: end
27: if isMapExplored = true || isBumpedObs = true
28: isDone = true
29: resetSimulation
30: clear(‘node’)
31: else
32: isDone = false
33: end
34: if t is equal 1
35: exp = totalMapValues
36: else
37: exp = previousReward–totalMapValues
38: previousReward = totalMapValues
39: end
40: reward at time t
41: end
42: end
43: end

Another required function for the RL environment is the step function. The whole
process of an episode is carried out in the step function. The action as the input parameter
of the step function is taken from the actor-critic neural network of the DDPG agent at each
iteration and passed to the robot as the commands of the linear and angular velocities by
the ROS publisher node (lines 21–23). The observation as the output parameter receives
the sensing laser ranges from the sensor and inserts the rays into the occupancy map in
lines 17–20.

Lines 24–26 show the robot’s collision with obstacles in the mapping. The logic of
these lines is such that if the values of the robot position are not changed in the last three
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iterations, the robot has hit an obstacle and cannot avoid it. In essence, the robot does not
try to avoid the obstacle as usually occurs using classical algorithms. It only detects the
collisions as a bad event that should not be repeated in the next episodes. As the simulation
results will show in the next section, this straightforward logic satisfies and can operate
correctly for the mobile-robot motion. If the experiment runs in real-world conditions, then
a bumper sensor can be used on the robot to detect the collision with an obstacle.

In lines 27–33, the isDone as the output parameter is applied, which is a flag of the
episode states. When the flag has true value, the current episode must be finished, and the
exploration process should be aborted. This happens in two cases: a map is fully explored
or the robot hits an obstacle.

The reward function of lines 34–40 is discussed next in detail.

4.4. Occupancy-Reward-Driven Exploration

The occupancy reward is a function that encourages the robot to seek in unexplored
areas to collect knowledge about the indoor environment. The information is gathered from
the map with occupancy probability values. In this study, the reward is computed based
on the occupancy map M(n, m) of size n×m. For each time step of an episode, the sum of
all map values is summed up and stored in M variable using the following equation:

Mt =
n, m

∑
i=0, j=0

m(i, j) (7)

In order to observe the amount of explored segment discovered in each time step, the
M of the current time must be deducted from those of the previous time:

Et = Mt −Mt−1 (8)

The function approximator with the reward that is computed only by the explored
segments can satisfy the continuous robot driving. However, it was seen during the
training process that the robot trajectory is not optimal and not power-efficient. The robot
spins constantly.

In view of this undesirable motion, the reward function is proposed as follows:

rt = k× vt + q× w2
t + d× s + f × Et (9)

where vt and wt are linear and angular velocities at time t received from the actor-critic
network. The variable s denotes the range of the sensor rays. When the sensor does not
meet with the obstacle, the reward obtains the most significant value; in contrast, when the
obstacle comes near, the s decreases the reward function. k, q, f , and d are coefficients for
the normalization of the reward range.

The reward function should have a range or threshold that can vary. Thus, the actor-
critic network during the training process should distinguish between reward values for
providing appropriate actions in the RL environment. As equation 9 shows, rt consists of
four factors: linear velocity, angular velocity, sensing ranges, and quantity of the explored
segment discovered in one time step. Each has its own priority of how much this factor
affects the reward function. The order of priorities in the reward function will be presented
in the next section.

Finally, all the rewards are summed as G at the end of the episode after a predefined
competing number of time steps, as shown in Equation (10):

G = rt + rt+1 + . . . + rt+1 (10)

Speaking about the reward, it is necessary to consider the penalty as well. In lines 24–26
of Algorithm 1, the code catches the occasion of obstacle collision. When this happens, the
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current episode should stop, and the neural network should learn about the unfavorable
event. In this case, the reward is assigned a negative number as punishment.

4.5. Deep Deterministic Policy Gradient Agent for the Mobile-Robot Exploration

The RL environment has been constructed. Next, the DDPG agent is presented for
the mobile-robot exploration task in Algorithm 2. In general, it can be seen that the agent
consists of two main parts: actor-critic network and training.

In lines 1–3, the information about input and output parameters is obtained. These
parameters allow the agent to communicate with the RL environment, receiving data and
sending computed data.

Algorithm 2: The DDPG agent for the mobile-robot exploration environment

1: env = ExplorationRLEnv
2: action = env.getActionInfo
3: observation = env.getObservationInfo
4: critic = rlQValueFunction(criticNetwork, observation, action, criticOpts)
5: actor = rlContinuousDeterministicActor(actorNetwork, observation, action, actorOpts)
6: agent = rlDDPGAgent(actor, critic, agentOpts)
7: trainStats = train(agent, env, trainOpts)

In line 4, the Q-value critic is created using the MATLAB (R2021b release) built-in
function, rlQValueFunction. Inside the function, four parameters are listed. The main one
is a critic network. The remaining ones are the input and output parameters, and setting
options of the critic network. Figure 6 shows the architecture of the critic network. It can be
seen that the critic network has two paths that later merge into one. The first path starts
from the observation data formed in the feature input layer. The observation path contains
the fully connected and the relu layers. The second path begins from the action data with
2-D inputs and also contains the fully connected layer. These two paths merge into the
addition layer. The output of the critic network is a Q-value, which is a single neuron.
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Next, the deterministic actor is created in line 5 using the built-in function, rlContinious
DeterministicActor. The actor network is presented in Figure 7. It has one sequence of
layers, and it provides direct mapping from the observation to continuous action within
tanh scaling. It should be noted that the actor transmits the output data to the critic as
illustrated in Figure 3c in Section 3.

Furthermore, in line 6, the DDPG agent is composed, applying the critic and actor
in the rlDDPGAgent function. It is important to note here that the setting options, such
as agentOpts, affect the agent learning. They can be tuned according to the results. In
Section 5, values of the setting options are presented for the exploration simulation.
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In line 7, the training is launched using the agent and the RL environment. The results
are discussed in Section 5.

5. Reward Estimation and Training Options

In this section, the reward function is discussed. The limits and parameter priorities
are presented in values. Then, in Section 5.2, the training options of the DDPG agent are
performed with their values as well.

5.1. The Reward Estimation

In Section 4.4, we proposed the reward function rt in Equation (9) for the mobile-robot
exploration. The value limit or range for the reward function, which is important to set
when using the deep-RL technique, was also discussed. The point is that the RL agent
defines the good and bad actions according to the reward function. If the value fluctuates
in a chaotic way, then the actor-critic network cannot determine the positive and negative
decisions. This is the main reason the value limits for the reward function are defined.
When estimating the value, know the upper and lower limits for the parameters in the
reward function must be known, which are the linear velocity, the angular velocity, the
sensing range distance, and the explored segment.

In Table 2, the value limits for the reward parameters are presented. It can be seen
that the upper limit for the observation is 4.095, which is the maximum sensor range in the
simulation. The lower limit is zero. The continuous actions are linear v and angular w ve-
locities, with 0.4 as upper limits and 0 and−0.4 as lower limits, respectively. The maximum
explored segment E is 239, which the sensor of the robot can occupy in the probability occu-
pancy map at time t visiting completely new and free areas. The parameters are normalized
in the upper and lower thresholds of the reward function, −0.2 and 0.8, respectively.

Table 2. The value limits for the reward parameters.

O v w E

Upper limit [4.095 . . . 4.095]′ 0.4 0.4 239
Lower limit [0 . . . 0]′ 0 −0.4 0

To adjust the parameters, the coefficients k, q, d, f are introduced in Equation (9).
However, the priorities of the four parameters in the reward function are included in the
coefficient as well, which affects the robot motion in the exploration process. Thus, the
priorities can be described as follows: 30% for linear velocity, −20% for angular velocity,
20% for sensing ranges, and 30% for the explored segment. Converting the percentage to
numbers, the coefficients are as follows: k = 0.75, q = −1.25, d = 0.07, and f = 0.0013. In
real-world applications, the proposed coefficients can be used without changes when the
robot is Turtlebot2 and the laser sensor is Hokuyo (model no. urg-04lx-ug01). For other
cases, the values of the coefficients should be calculated individually according to robot
kinematics and sensor specifications.

Figure 8 illustrates the above discussion on parameters affecting the reward function
to a greater and lesser extent and the adjustment in their values in one common range. The
lower and upper limits are −0.2 and 0.8, respectively.
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Figure 8. The reward function normalization.

It is appropriate to clarify the reason why angular velocity (w) has a negative value
in the reward function. When the robot drives straight in an obstacle-free area, w equals
0. Driving straight is the most optimal motion according to the mapping and the power
energy cost. This is why any other values of the angular velocity, w < 0 for turning to the
right side and w > 0 to the left side, are negative for the reward function.

5.2. Training Agent

The training is the process of learning and storing the experience for the actor-
critic agent. The training options affect the DDPG agent. Consequently, it changes the
RL environment.

In Algorithm 2, the DDPG agent for the mobile-robot exploration is presented. In this
section, criticOpts, actorOpts, agentOpts, and trainOpts options are given in more detail.
Table 3 shows the training option values of the actor-critic neural network. The learning
rate option is used to specify the training time needed to reach the optimal result. The
L2 regularization factor is used to avoid the overfitting of the training. To speed up the
training, GPU can be activated by the “use device” option. We used the local GPU device
embedded in the PC, the GeForce GTX 1050 Ti model (compute capability 6.1).

Table 3. The options for the actor and critic.

Critic and Actor Options

Learn rate 103

L2 Regularization factor 104

Gradient threshold 1
Use device gpu

The agent and training options are presented in Table 4. The sample time option is
the time interval of output data returned from the simulation. During training, the DDPG
agent stores the simulation data using the experience buffer. In turn, the mini-batch selects
the data from the buffer randomly and upgrades the actor and critic. The agent noise option
is the stochastic noise model that is added at each time step to the agent.

Table 4. The options for the agent and training.

Agent Option Training Option

Sample time 0.1 Max episodes 500
Experience buffer

length 106 Max steps per
episode 150

Discount Factor 0.995 Score averaging
window length 50

Mini batch size 100 Stop training criteria average reward
Target Smooth Factor 0.001 Stop training value 100
Agent noise options 10−5 Verbose true

Plots training process
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In the training option, the simulation parameters were selected. The simulation
runs five hundred times (max episodes). The training can finish under one of these two
conditions: (1) 500 episodes have been completed or (2) the average total rewards have
reached one hundred values for the last 50 simulations.

In MATLAB, it is worth noting that the simulation results can be saved as a file, which
can be loaded again to continue the training process using save and load commands.

6. Simulation Results and Comparison

In practice, the deep-RL method is about two program files that interact with each
other. One of them is the RL environment with reward function and map visualization;
another consists of the DDPG agent with the actor-critic network and training option
settings. They communicate jointly by input data, output data, and reward.

In this section, the simulation results are presented. The comparison with other
algorithms is demonstrated at the end of the section.

6.1. Simulation Results

The training DDPG agent and the exploration are carried out online. It means that
the robot drives in one episode until time runs out, up 150 steps. Figure 9 shows the
environments in which the robot tries to build the maps for two experiments. The first
environment is a simple one without obstacles inside the room. The environment of
Figure 9b is a more sophisticated version of the first one with obstacles. During the training,
the robot drives in one of the environments of Figure 9. Step by step, as it moves during the
mapping, it upgrades the occupancy map of Figure 10. It should be noted that the location
coordinates of walls and obstacles are not used in the computation. The environments
in Figure 9 can be treated as the simulated rooms, which can be easily substituted by
real-world environments.
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Figure 9. The environments of 20 × 15 m size for the two experiments: (a) simple environment,
(b) environment with obstacles.

Figure 10 demonstrates the exploration results of training the DDPG agent. Two results
from each experiment are presented in (a) map coverage percentage and (b) total reward
value. The results were captured during the training according to the greatest values.

Here, it is important to explain the reason for presenting two map results for one
experiment. The results of map (a) and map (b) are different because creating a reward
function based on only one goal, mapping, does not return a positive result. Several
robot behaviors were found to be inappropriate, such as collisions with obstacles, being
stuck in one place without any motion, and turning to one side episode after episode.
These occurred because the linear velocity, angular velocity, and sensing ranges should be
considered in the reward function as they are in the proposed occupancy reward function.
This is why the greatest result of the map coverage is not equal to the greatest result of the
reward function.
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Figure 10. The mapping results of the DDPG agent in the custom environments. (a) Map coverage:
99%, Initial positions: x = 6, y = 4. (b) Total reward (G): 90, Initial positions: x = 6, y = 4. The black
line is the robot trajectory. (c) Map coverage: 86%, Initial positions: x = 13, y = 5. (d) Total reward
(G): 67, Initial positions: x = 13, y = 5. The black line is the robot trajectory.

Nonetheless, a full map coverage was obtained. This proves that the DDPG agent is
able to provide 99% of the exploration in the simple map (Figure 10a). The greatest reward
value (G = 90) returns a positive result of the exploration in Figure 10b.

In Experiment 2, the training of the DDPG agent was carried out in the environment
with obstacles (Figure 10c,d). Two results with the greatest values were taken for the map
coverage and reward function categories. It can be seen that the results are worse compared
to the results of Experiment 1. Only 86% of the map was explored. The reward function
value is 67, which is less than 90.

Based on our practice with the DDPG agent in the mobile-robot exploration, several
conclusions can be drawn:

• The agent can solve the mapping problem, especially in a simple environment.
• The reward function can be described as the single objective function. The navigation

and exploration of new areas using the reward function of DDPG agent are insufficient
for the exploration.

• The mapping performance deteriorates when the number of obstacles in the environ-
ment is increased.

• Increasing the training time did not improve the mapping results. As Figure 11 shows,
the overfitting of the neural network occurs in the training after 500 episodes.

• The mapping is a real-time procedure, and the training of the DDPG agent works
online as well. The two together used as one system can be considered a time-
consuming process.
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Figure 11. The episode reward graph during the training. The light blue line is the reward function.
The dark blue line is the average of the reward function. The orange line is the trained critic data. It
can be seen that the overfitting of the actor-critic occurred after 500 episodes.

The experimental results of the proposed occupancy reward-driven exploration using
the DDPG agent are recorded and demonstrated in video [63].

6.2. Comparison

In this subsection, the deep-RL and the nature-inspired algorithms are compared.
In the authors’ previous studies [21], the GWO algorithm for mobile-robot exploration
showed the best result compared with the other nature-inspired optimization techniques.
As a consequence, the GWO exploration algorithm is selected for the comparison analysis.

Table 5 presents the comparison between the proposed occupancy reward-driven
exploration and the nature-inspired exploration. The GWO exploration algorithm works
with waypoints. To enable the robot to move somewhere, it needs to provide the robot a
point to go to and check that the robot reaches the point in each time step. The continuous
action is a more nature-driven action for the robot.

Table 5. Comparison analysis of the GWO exploration and the DDPG agent exploration. The
advantages are highlighted in bold.

Robot Motion Development Processing
Result Map Coverage

GWO
exploration Waypoints

Waypoint
computation,

algorithm logic

Waiting for the
best result

91.21%, average
result of

10 simulation runs

DDPG
exploration

Continuous
actions

Two files of RL
environment
and RL agent

Long training of
the agent

99% for simple
environment, 86%

for complex
environment

Considering the development criteria, the GWO exploration algorithm requires more
work in implementation than the DDPG one. A waypoint should be calculated based on
some known parameters (frontier points, robot position) and algorithm logic, which should
be considered in the programming. In this case, the DDPG agent is the more intelligent
and straightforward developing tool. It should describe the RL environment and denote a
reward function. The training process and a neural network find appropriate decisions for
the RL environment.
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The processing result criteria is about obtaining the best performance of the algorithm.
The GWO exploration is a stochastic algorithm that returns different results every simula-
tion run. The best result is unpredictable. It can appear in the first 10 simulation runs or
100 runs. It needs to test and wait for the best result using the GWO exploration algorithm.
For the DDPG exploration, the training takes a long time, for instance, 57 h (around 3 days)
for the one-experiment result presented in Figure 10.

Considering the map coverage criteria, the DDPG exploration has the greatest percent-
age result. However, it is only for the free-obstacle environment. Thus, the two approaches
are not universal algorithms for the mapping problem. This is a disadvantage.

6.3. Developing Tools

In this study, the DDPG agent was implemented in the MATLAB platform. Several
libraries were involved in the exploration simulation: Reinforcement Learning Toolbox,
ROS Toolbox, GPU Coder Toolbox, Robotics System Toolbox, Parallel Computing Toolbox,
Navigation Toolbox, and Mapping Toolbox.

The exploration with the single robot in the binary occupancy environment and the
occupancy map was implemented using ExampleHelperRobotSimulator class.

7. Conclusions

In this paper, the Deep Deterministic Policy Gradient algorithm of deep Reinforcement
Learning was deployed in the robotic mapping domain. The custom environment with a
reward function was created considering the robot motion principles and the occupancy
map visualization. The actor-critic neural network received the sensor data and sent the
continuous actions for the robot. The actions in the custom environment were evaluated
by the proposed occupancy reward function. The training shows that the DDPG agent
can solve the mapping problem in the simple free space with wall obstacles. However,
its reward strategy does not stimulate the robot enough for it to explore faster and more
efficiently. The reward function is only able to evaluate a single parameter, which is a
single action.
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