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Abstract: Crack detection plays a pivotal role in structural health monitoring. Deep convolutional
neural networks (DCNN) provide a way to achieve image classification efficiently and accurately
due to their powerful image processing ability. In this paper, we propose a semi-supervised learning
method based on a DCNN to achieve anomaly crack detection. In the proposed method, the training
set for the network only requires a small number of normal (non-crack) images but can achieve high
detection accuracy. Moreover, the trained model has strong robustness in the condition of uneven
illumination and evident crack difference. The proposed method is applied to the images of walls,
bridges and pavements, and the results show that the detection accuracy comes up to 99.48%, 92.31%
and 97.57%, respectively. In addition, the features of the neural network can be visualized to describe
its working principle. This method has great potential in practical engineering applications.

Keywords: anomaly crack detection; deep convolutional neural network; semi-supervised learning;
infrastructure cracks; neural network visualization

1. Introduction

During the service life of infrastructure such as buildings, bridges and roads, crack
defects are always inevitable, which may lead to structural performance degradation and
may even bring about catastrophic failures and enormous loss of human lives [1,2]. To
reduce the adverse effect of crack defects, it is necessary to conduct defect detection and
inspection for regular maintenance.

Traditional methods for crack detection are mainly based on manual visual inspec-
tion by certified inspectors, which may be labor intensive, time consuming and highly
subjective [3]. In the last few years, crack detection techniques based on image process-
ing have developed rapidly, and several approaches such as edge detection [4], region
growth [5], threshold segmentation [6] and morphological operations [7] have emerged
and been applied to the detection of infrastructure defects. With these methods, the cracks
can be easily extracted from the background according to the edge, color, shape and other
information of the images. However, it is worth noting that the key to the success of
such image-processing-based approaches is to select an appropriate threshold value for
accurate image classification. An improper parameter may cause relatively poor detection
accuracy [8], especially for scenes with complex backgrounds.

With the great improvement of computer hardware, image recognition and detection
based on machine learning (ML) have achieved great breakthroughs. The basic idea of ML
is to extract common crack features from the training set and to apply them to the testing
set for detection. Generally, ML can be divided into supervised learning, unsupervised
learning and semi-supervised learning based on learning mechanisms. Unsupervised
learning can learn the differences between cracks and backgrounds autonomously without
manual labeling of image data, and it can remove the influence of subjective factors. Some
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unsupervised learning approaches, such as the K-means algorithm [9] and principal com-
ponent analysis (PCA) [10], have been used to discover the laws hidden in image data and
to extract cracks from the background, and they perform poorly on images including noise
and uneven illumination. To extract cracks effectively from complex backgrounds, some
supervised learning-based methods, for instance, the support vector machine (SVM) [11],
random forest (RF) [12] and decision tree (DT) [13], have been developed and applied to
crack classification. With a large number of labeled high-quality image data, the classi-
fier can be trained to obtain featured information of crack classification. Generally, these
methods heavily depend on the quality and quantity of manually extracted features. For
infrastructure with complex conditions, it is difficult to obtain universal features suitable
for all cracks and to achieve a desirable detection effect. Recently, the success of deep
learning in the field of computer vision provides an opportunity for the development of
crack classification models. The image classification models developed based on convo-
lutional neural networks (CNNs) have satisfactory prediction accuracy that even exceeds
that of humans [14] and can effectively remove the influence of uneven illumination [15]
and noise [16]. They work well in pavement crack detection [17] and concrete structure
crack detection [18], and the model training is time consuming. To improve the training ef-
ficiency, transfer learning [19,20] is integrated into the crack classification model. Although
high-performance models based on transfer learning can be obtained and perform well
in crack detection, a huge number of samples is required to train the models. Generally,
infrastructure in normal service may have very few crack defects of concern, resulting in
a relatively high cost of obtaining the desired training samples. Moreover, crack labeling
used in neural network models is usually performed manually and is labor intensive, which
limit the wide application of this kind of method in crack detection.

Semi-supervised learning combines supervised learning with unsupervised learning
together, and it can train classifiers with few labeled samples. Typical semi-supervised learn-
ing algorithms, for example, self-training [21], hybrid models [22], graph-based ones [23]
and SVM-based [24] ones can be applied to wall crack detection [25], pavement crack detec-
tion [26] and steel structure surface defect detection [27]. During the training, classifiers are
trained by a small amount of labeled data and then are employed to classify a great amount
of unlabeled data. Subsequently, the mislabeled samples are picked out and corrected
manually and are reused as the training data in the next round. In these methods, a large
amount of anomaly (crack) data is the key to obtaining a high-performance classifier. In
practical engineering, it is generally difficult to obtain abnormal crack data mainly due to
the low frequency of abnormal events, high artificial manufacturing cost and the difficulty
of obtaining a large number of open labeled abnormal data sets.

To address this issue, normal data instead of anomaly data are paid attention to and
collected to train anomaly classifiers. Such a technique is called semi-supervised anomaly
detection. With normal data as a training set, a classifier with a specific threshold is obtained
and then employed to determine whether the testing images are abnormal. Currently, this
technology has been already widely used in cancer detection [28], ultrasound detection [29],
disease detection of industrial products [30–32] and infrastructure diseases [33,34]. Al-
though anomaly detection technology can meet practical needs to some extent, there is
very limited research on how to explain it. To further investigate the working principles
of anomaly detection, an anomaly detection method named deep support vector data
description (DSVDD) has been exploited to learn the neural network transformation from
input space to output space [35]. In this way, most of the normal data (red dots) are mapped
into a hypersphere characterized by the center c and the radius R of minimum volume, and
anomalies (blue dots) fall outside, as shown in Figure 1. The boundary between normal
and anomaly samples is defined as the classification threshold. To visualize the neural
network, a fully convolutional data description (FCDD) has been developed [36], in which
the abnormal images are displayed in the form of a thermal map. In such a way, it provides
a more intuitive explanation of the working principles of anomaly detection.
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Figure 1. Diagram of DSVDD data division.

Inspired by the transfer learning and semi-supervised anomaly detection methods,
the transfer learning model based on the VGG-16 is employed to conduct semi-supervised
anomaly detection. In this study, cracks on the infrastructure image are seen as abnormal,
whereas images without cracks are considered normal. With a part of normal images as
the training set, the classifiers are trained and employed to classify other images. In this
way, the classifiers can achieve high accuracy and testing speeds and describe the working
principles of the neural network.

The rest of this paper is organized as follows. In Section 2, the methodology, the
experimental flow and the performance evaluation indicators of the network model are
briefly introduced. In Section 3, the effects of crack images in the training set on network
model performance are compared. In Section 4, the effectiveness of the proposed method
in different data sets is validated in terms of experiments. Finally, conclusions are made in
Section 5.

2. Methodology
2.1. CNN Architecture

To conduct semi-supervised anomaly detection effectively, an improved VGG-16
network model with the network architecture, as shown in Figure 2, is used. Here, we
use the VGG-16 network model [37] as the backbone network mainly based on its several
advantages, such as excellent performance in the task of transfer learning [19,20] with
simple architecture, strong generalization ability and flexibility but with relatively high
training efficiency. However, the traditional VGG-16 still has some limitations. For example,
in the classification task, only the label of the testing sample can be output, but not the
visual feature map. To address this issue, some modifications are made. At first, the first
four Conv blocks of the traditional VGG-16 model are frozen, and then the remaining part,
which contains the fifth Conv block (including three convolution layers and one maximum
pooling layer), three fully connected layers and one softmax layer, is replaced by a fully
convolutional classifier, with its architecture shown in the red dashed box. In other words,
both the traditional VGG-16 neural network model and the improved one have the same
first four Conv blocks, and the latter one introduces a fully convolutional classifier to output
the visual feature map and has random initialization and trainable convolutional layers.
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Figure 2. The network architecture of improved VGG-16. The two-dimensional array denotes the
convolution or pool kernel size, and the three-dimensional array denotes the size of the output image
and the channels.

In algorithm implementation, the procedure of the improved VGG-16 is summarized
as follows. In the training stages, some normal crack images of the same size are used as
the input, and their characteristics are extracted after passing through four Conv blocks
in sequence. In this process, the model training only takes a short time, due to the pre-
trained network layers being frozen and the model not needing to relearn the parameters.
Subsequently, the feature map obtained by the first four Conv blocks is input into the “fully
convolutional classifier”, which includes nine layers, as shown in the red dashed box in
Figure 2. In the first four layers, the characteristics are further extracted, and parameter
learning and batch normalization on the feature map are performed. The fifth layer named
Conv2D in the red dashed box is a 1 × 1 convolutional layer. In this layer, it compresses
the network to output into a single channel of data. The sixth layer is a pseudo-Huber
loss function [38], which limits the output heatmaps to positive numbers. An upsampling
layer is followed by the loss function layer to resize the output heatmap to the same size
as the input image. Then, the global average pool layer is employed to calculate the
average thermal scores. Finally, the FCDD objective loss function [36] is evaluated in the
FCDDLossLayer.

The FCDD objective loss function [36] is calculated according to Equation (1), which is
a variant of the Hypersphere Classifier objective [39], as given in Equation (2).

FCDDloss = min
w

1
n

n

∑
i=1

(1− yi)
1

u·v‖A(Xi)‖1 − yi log
(

1− exp
(
− 1

u·v‖A(Xi)‖1

))
(1)

HCloss = min
w

1
n

n

∑
i=1

(1− yi)h(ϕ(Xi; W)− c)− yi log(1− exp(−h(ϕ(Xi; W)− c))) (2)
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where n is the number of samples, i denotes the i-th sample, X1, . . . , Xn represents a
collection of samples and y1, . . . , yn are their labels. yi = 1 denotes an anomaly sample,
and yi = 0 denotes a normal sample. W is the weight of the neural network ϕ, and c
represents the feature center mapped by the training set. h is the pseudo-Huber loss, which

is determined by h(a) =
√
‖a‖2

2 + 1− 1. FCDDloss represents the FCDD objective loss
function, and HCloss represents the Hypersphere Classifier objective loss function.

From Equation (2), it can be known that the value of Xi has a great effect on the loss
function. For example, if yi = 0, the loss whole function tends to be zero when Xi → c ;
otherwise, if yi = 1, the whole loss function increases as the value of ‖Xi − c‖ increases.
Here, c is the bias term in the last layer of the neural network and is omitted in Equa-

tion (1). ‖A(Xi)‖1 represents the sum of all terms in A(X) (A(X) =
√

ϕ(X; W)2 + 1− 1).
Since‖A(Xi)‖1 can satisfy the minimization of normal samples and maximize the anoma-
lous samples, ‖A(Xi)‖1 is taken as the thermal scores in heatmaps. u·v represents the size
of the output image of the network before upsampling.

2.2. Experimental Process

The overall flow chart is shown in Figure 3. Firstly, all images are proportionally
randomly divided into the training set, calibration set and testing set. Image augmentation
and random 50% confetti noise methods are applied to the training set to train the improved
VGG-16 model. Secondly, binary processing is carried out on the image labels of the
calibration set by using the conversion function, i.e., the non-crack images are assigned 0,
and the crack images are assigned 1. The trained network is used to predict the average
thermal scores and binary labels of all images in the calibration set. Then, a receiver
operating characteristic (ROC) curve is created, where the x-axis and the y-axis are the
false positive rate and the true positive rate, respectively. The ROC curve is a stepped
line, and it increases sequentially from left to right. To express the performance of the
classifier more intuitively, the area under the ROC curve (AUC) is proposed, and as the
value of AUC becomes larger, the network performance becomes better. Another measure
indicator of the ROC curve, the maximum Youden index, is used to determine the best
boundary of the classifier, namely the thermal threshold. The thermal threshold is the score
corresponding to the x-axis of the maximum difference between the true positive rate and
the false positive rate. Finally, the image labels of the original testing set are binarized.
Then, the trained classification network model is used to predict the preprocessed testing
set images, and average thermal scores are obtained. The classification results are obtained
with a comparison on the thermal threshold and the average thermal scores, i.e., if the
average thermal score of a sample is greater than the thermal threshold, it is considered a
crack image; otherwise, it is considered a non-crack image.

In the experiments, all the images in the testing set are classified and labeled with
corresponding class labels, and then a comparison is made between these labels and the
real ones to determine the confusion matrix of the model. Subsequently, the evaluation
indicators given in Section 2.3 can be calculated in light of the confusion matrix. To obtain
reliable results, a simple method is used to handle classification with the imbalanced
datasets, including the training set, calibration set and test set. At first, the image sequences
of the dataset are shuffled and randomly divided into the training set, calibration set and
testing set according to proportion. Secondly, steps 1©– 3© in Figure 3 are recycled 10 times to
obtain 10 neural network models with different evaluation indicators. Lastly, the 10 models
are compared, and the best one is selected as the classifier for the corresponding dataset.
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2.3. Evaluation Indicators

Accuracy, Precision, Recall and F1-Score are commonly used indicators to evaluate a
classification network model, as shown in Equations (3)–(6).

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1-Score =
2TP

2TP + FP + FN
=

2 × P × R
P + R

(6)

where TP is the number of crack samples that are correctly predicted; FP is the number
of non-crack samples that are predicted as cracks; FN is the number of crack samples
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that are predicted as non-cracks; and TN is the number of non-crack samples that are
predicted correctly.

3. Results
3.1. Wall Dataset and Training Process

The wall dataset consists of 421 indoor wall images of buildings, including 171 crack
images and 250 non-crack images. These images are captured by a smartphone in uneven
illumination conditions. The dimensions of the images are 3000 × 4000 pixels. To speed up
the training, the original image resolution is reduced to 256 × 256. The dataset contains
images of uneven illumination, holes and various cracks, as shown in Figure 4. To compare
the performance of the model, a testing group and a control group are set up in the
experiment. The differences are that the training set of the testing group has 4 crack
images (about 1~2% images of the wall dataset), whereas the training set of the control
group does not have crack images. The detailed allocation of the testing group and the
control group image samples are shown in Tables 1 and 2, respectively. The numbers in
parentheses represent the number of additional images expanded with image augmentation
techniques, and the numbers outside parentheses represent the total number of images in
the same class.
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Figure 4. Examples of images contained in the wall dataset: (a) non-crack images; (b) crack images.

Table 1. Image samples allocated from the wall testing group dataset.

Number of Images Training (Expansion) Calibration Testing Total (Expansion)

Non-crack 250 (125) 50 75 375 (125)

Crack 8 (4) 50 117 175 (4)

Total 258 (129) 100 192 550 (129)

Table 2. Image samples allocated from the wall control group dataset.

Number of Images Training (Expansion) Calibration Testing Total (Expansion)

Non-crack 250 (125) 50 75 375 (125)

Crack 0 50 121 171

Total 250 (125) 100 196 546 (125)

To alleviate the adverse effects of over-fitting, it is necessary to use image augmentation
techniques to improve the generalization ability of the neural network model. Generally,
image augmentation techniques contain traditional image augmentation (rotation, flip-
ping, random cropping, color jittering, etc.), conditional generative adversarial networks
(GAN) [40], deep convolutional GAN [41], single image GAN [42], other forms of GAN [43],
etc. The application of these technologies significantly improves the recognition perfor-
mance of intelligent algorithms. Taking into account the computation efficiency and the
implementation difficulty of the algorithm, the traditional image augmentation method
is applied to the training set to realize the expansion of the samples, including 90-degree
rotations and 180-degree flips (horizontal and vertical). The partial results of image aug-
mentation are shown in Figure 5. In addition, we use confetti noise to randomly simulate
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anomalous regions in normal images for 50% of the training set images, which is beneficial
to stabilize the loss function during training and to improve the CNN’s robustness. The
partial results of random confetti noise are shown in Figure 6.
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The image preprocessing, network training and testing evaluation in this paper are all
run on a laptop equipped with a Core (TM) i7-10700 @ 2.90GHz CPU with 16 GB RAM and
an NVIDIA Quadro P620 GPU. The crack detection models are trained with 50 epochs, and
the learning rate and batch size of training in the Adam algorithm are set as 0.0001 and 2,
respectively. Each image classification label is assumed to be correct, and the improved
VGG-16 model is trained. According to the training process in Figure 7, the network tends
to be stable with about 35 epochs and a training time of 630 s.
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3.2. Calibration Process

The improved trained VGG-16 model is applied to the calibration set images after the
label binary processing. The testing group and control group are evaluated for comparison,
and the calibration process results are shown in Table 3. From the prediction results, all
the data of the non-crack images in the testing group are close to 0, and some data in the
control group are slightly higher than 0. Compared with the thermal threshold of 0.0121, it
is shown that, in the control group, there are non-crack images predicted as cracks. Looking
at the crack images again, the data in the testing group are almost all greater than 1, and
some data in the control group are near 0. Such results reflect that the cracks are predicted
as non-cracks in the control group. In terms of score range, the range of the testing group is
significantly larger than that of the control group. These results show that existing crack
images in the training set can enlarge the thermal score range and is more beneficial for the
classifier in classifying the images.

Table 3. Calibration process results of the testing group and control group.

Testing Group Control Group

Calibration set prediction result
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3.3. Testing Process

The improved trained VGG-16 model is also applied to the testing images after the
label binary processing. The evaluation indicators of the testing set can be calculated, as
shown in Tables 4 and 5. The mean of Accuracy, Precision, Recall and F1-Score of the testing
group achieve better performance than those of the control group, which is consistent with
the calibration conclusion. Since the center radius of the average thermal scores of the
control group is small, for a slight change, it may identify the non-cracks as cracks. In other
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words, the FP increases, resulting in low robustness and overall performance degradation.
In engineering practice, besides the overall performance of the network model, the testing
speeds are also a very important indicator of concern. The testing speeds of the two groups
are similar, and each image only takes about 0.0553 s and 0.0571 s, respectively. To compare
the model performance between the testing group and the control group, their confusion
matrices are given in Figure 8. It can be seen from Figure 8 that all the values of TP, TN and
accuracy of the testing group are larger than those of the control group.

Table 4. Experimental results of wall testing group image classification.

Situation

Training Set Calibration Set Testing Set

Training
Time (s) AUC Thermal

Threshold Accuracy Precision Recall F1-Score Testing Speeds
(s/img)

1 628 1.0000 0.0622 99.48% 100.00% 99.15% 99.57% 0.0523

2 630 1.0000 0.2739 98.96% 100.00% 98.29% 99.14% 0.0525

3 627 1.0000 0.2026 99.48% 100.00% 99.15% 99.57% 0.0550

4 638 1.0000 0.0539 98.44% 100.00% 97.43% 98.70% 0.0579

5 631 0.9980 0.4289 96.88% 100.00% 94.87% 97.37% 0.0573

6 621 1.0000 0.0813 99.48% 100.00% 99.15% 99.57% 0.0565

7 618 1.0000 0.0947 99.48% 100.00% 99.15% 99.57% 0.0590

8 651 1.0000 0.3309 98.44% 100.00% 97.43% 98.70% 0.0552

9 637 1.0000 0.5644 98.96% 100.00% 98.29% 99.14% 0.0552

10 620 1.0000 0.2005 98.96% 100.00% 98.29% 99.14% 0.0526

Mean 630 0.9998 0.2293 98.86% 100.00% 98.12% 99.05% 0.0553

Table 5. Experimental results of wall control group image classification.

Situation

Training Set Calibration Set Testing Set

Training
Time (s) AUC Thermal

Threshold Accuracy Precision Recall F1-Score Testing Speeds
(s/img)

1 636 0.9732 0.0121 95.41% 98.28% 94.21% 96.20% 0.0528

2 661 0.9992 0.0052 95.41% 99.12% 93.39% 96.17% 0.0558

3 647 0.9912 0.0018 94.90% 95.87% 95.87% 95.87% 0.0547

4 663 0.9940 0.0072 93.37% 95.76% 93.39% 94.56% 0.0584

5 664 0.9952 0.0026 94.90% 100.00% 91.74% 95.69% 0.0580

6 658 0.9296 0.0019 95.41% 100.00% 92.56% 96.14% 0.0579

7 642 0.9896 0.0019 94.90% 95.87% 95.87% 95.87% 0.0564

8 664 0.9880 0.0016 94.90% 95.12% 96.69% 95.90% 0.0606

9 665 0.9903 0.0233 92.86% 98.20% 90.08% 93.97% 0.0583

10 662 0.9900 0.0064 94.39% 100.00% 90.91% 95.24% 0.0582

Mean 656 0.9840 0.0064 94.65% 97.82% 93.47% 95.56% 0.0571

To further elaborate the principles of the classification network, the predicted heatmap
by the network is exploited for analysis. Since the testing group only includes one false
detection image, the heatmaps of FP and FN in Table 6 are from the control group, and
the heatmaps of TP and TN are from the testing group. The average thermal scores of the
corresponding images are shown in the figures below the heatmap, where T in brackets
represents the testing group, and C represents the control group.
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In heatmaps of the TP samples, some areas appear bright red. This means that the
average thermal scores in the area are quite different from the center value of the training
model. Comparing TP samples with the original images, it can be seen that the center of
this area is exactly where the cracks are located. This means that both the classification and
locations of cracks can be achieved in the proposed method.

From the heatmap results of the TN samples, the overall color is approximately the
same, and no anomalous area appears. In the first image of the FP sample, a small part of
the anomalous area appears in the center-right position, which corresponds to a defect spot
in the original image. Although it may not be a crack, it can cause the inspectors’ concern
and make them further determine the disease type.

In the FN results, the network falsely identifies the cracks as non-cracks, and the
cracks show up more clearly. To some extent, it is equivalent to performing a contrast
enhancement process on the original images; therefore, the originally blurred cracks can be
displayed clearly.

4. Discussion

To study the influence of different input datasets on the method, each dataset is used
to train and validate the model under the same parameters. Then, the trained model is
used to test the bridge and pavement images, respectively. The evaluation indicators are
used to validate the performance and effectiveness of the proposed method.

4.1. Bridge Images

Firstly, 1124 RGB images with a resolution of 256 × 256 pixels in the bridge dataset are
used as the experimental samples, including 445 crack images and 679 non-crack images,
with the same portion as the wall dataset in the last experiment. The number of samples
in different sets is listed in Table 7. Moreover, the dataset contains images of black stains,
surface roughness, holes and various cracks, as shown in Figure 9. The partial results of
image augmentation are shown in Figure 10.

Table 7. Image samples allocated from the bridge dataset.

Number of Images Training (Expansion) Calibration Testing Total (Expansion)

Non-crack 680 (340) 134 205 1019 (340)

Crack 44 (22) 134 289 467 (22)

Total 724 (362) 268 494 1486 (362)
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It can be seen from Figure 11a and Table 8 that the trained network model tends to be
stable with about 50 epochs and 1767 s. The model is used to detect the calibration set. The
prediction results are shown in Figure 11b. Generally, the crack detection prediction results
are satisfactory. For non-crack images, the average thermal scores are roughly around 0;
for crack images, some blurry or tiny-crack crack images tend to be 0~1, whereas clear or
wide crack images are greater than 1. This further shows that the average thermal scores
obtained by the proposed method can be approximately considered as the differences from
the central threshold obtained with the network model, i.e., as the average thermal scores
of the image become larger, the difference between cracks and non-crack images becomes
greater, and the possibility of defects becomes higher. In the ROC curve, the AUC value
can reach 0.9730, and finally, the thermal threshold reaches 0.0513.
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Table 8. Experimental results of bridge image classification.

Situation

Training Set Calibration set Testing Set

Training
Time (s) AUC Thermal

Threshold Accuracy Precision Recall F1-Score Testing Speeds
(s/img)

1 1767 0.9730 0.0513 92.31% 96.31% 90.31% 93.21% 0.0531

2 1759 0.9683 0.0556 90.28% 93.19% 89.97% 91.55% 0.0581

3 1763 0.9761 0.1799 90.89% 98.03% 86.16% 91.71% 0.0567

4 1880 0.9710 0.0516 92.11% 95.96% 90.31% 93.05% 0.0622

5 1815 0.9620 0.1316 90.08% 98.00% 84.78% 90.91% 0.0585

6 1922 0.9676 0.0966 92.51% 95.65% 91.35% 93.45% 0.0630

7 1823 0.9735 0.1229 90.69% 95.17% 88.58% 91.76% 0.0574

8 1911 0.9583 0.1046 92.31% 97.00% 89.62% 93.17% 0.0621

9 1814 0.9700 0.0485 91.90% 96.98% 88.93% 92.78% 0.0599

10 1772 0.9809 0.1012 92.11% 94.01% 92.39% 93.19% 0.0614

Mean 1823 0.9701 0.0944 91.52% 96.03% 89.24% 92.48% 0.0592

The trained model is then applied to the testing set. The prediction results are shown
in Table 8. The bridge crack image classifier of the confusion matrix is shown in Figure 12.
The main indicators, Accuracy and F1-Score, reach 92.31% and 93.21%, respectively, and the
testing speed reaches 0.0531 s/img. Some non-crack concrete images containing continuous
grooves have relatively high average thermal scores, resulting in them being misclassified
as cracks. Nevertheless, some small hairy cracks are very close to the background and have
low average thermal scores, resulting in being misclassified as non-crack images.
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4.2. Pavement Images

Secondly, 1157 RGB images with a resolution of 256 × 256 pixels in the pavement
dataset are used as the experimental samples, including 308 crack images and 849 non-crack
images. The specific division results are listed in Table 9. The dataset contains images of
uneven illumination, black stains and various cracks, as shown in Figure 13. The partial
results of image augmentation are shown in Figure 14.
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Table 9. Image samples allocated from the pavement dataset.

Number of Images Training (Expansion) Calibration Testing Total (Expansion)

Non-crack 850 (425) 170 254 1274 (425)

Crack 44 (22) 170 116 308 (22)

Total 894 (447) 340 370 1582 (447)
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Figure 14. Examples of the training images contained in the pavement dataset: (a) original images;
(b) expanded images.

As shown in Figure 15a and Table 10, the trained network model tends to be stable
with about 50 epochs and 2178 s. The model is used to detect the calibration set. The
prediction results are shown in Figure 15b. Generally, the crack detection prediction results
are satisfactory. For the non-crack images, the average thermal scores are roughly around
0, and for the crack images, most of the data are far away from 0. For the ROC curve, the
value of AUC is 0.9726, and the thermal threshold is 0.2133.

Table 10. Experimental results of pavement image classification.

Situation
Training Set Calibration Set Testing Set

Training
Time(s) AUC Thermal

Threshold Accuracy Precision Recall F1-Score Testing Speeds
(s/img)

1 2185 0.9916 0.0835 96.22% 94.74% 93.10% 93.91% 0.0505

2 2263 0.9910 0.0924 96.22% 97.22% 90.52% 93.75% 0.0536

3 2190 0.9957 0.0795 97.03% 94.12% 96.55% 95.32% 0.0512

4 2376 0.9784 0.0348 93.51% 87.70% 92.24% 89.92% 0.0562

5 2253 0.9898 0.1428 95.95% 98.10% 88.79% 93.21% 0.0516

6 2213 0.9912 0.0380 95.95% 89.15% 99.14% 93.88% 0.0522

7 2178 0.9726 0.2133 97.57% 99.08% 93.10% 96.00% 0.0510

8 2335 0.9934 0.0427 95.41% 90.24% 95.69% 92.89% 0.0527

9 2226 0.9903 0.1401 97.03% 94.87% 95.69% 95.28% 0.0565

10 2243 0.9911 0.1174 96.22% 95.54% 92.24% 93.86% 0.0519

Mean 2246 0.9885 0.0985 96.11% 94.08% 93.71% 93.80% 0.0527
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Figure 15. The results of the pavement image classification training and calibration process:
(a) training process; (b) calibration set prediction results; (c) ROC curve; (d) overall diagram of
scores-positive rate; (e) detailed diagram of a scores-positive rate. The red star represents the
thermal threshold.

The obtained trained network model is applied to the testing set. The prediction
results are shown in Table 10. The pavement crack image classifier of the confusion matrix
is shown in Figure 16. The main indicators, Accuracy and F1-Score, reach 97.57% and
96.00%, respectively. Moreover, the testing speeds reach 0.0510 s/img. Some non-crack
images containing tree leaves have relatively high average thermal scores, resulting in them
being misclassified as cracks. Some small hairy cracks have low average thermal scores,
resulting in being misclassified as non-crack images. The effectiveness of the proposed
method is validated again.
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4.3. Comparative Experiments

To validate the effectiveness of the improved VGG-16 model in anomaly detection,
three classical convolutional neural networks, AlexNet [44], ResNet-18 and ResNet-34 [45],
are also used as the backbone network model to conduct numerical experiments on the
same dataset. The detection results of four network models are listed in Table 11. From
Table 11, we can see that the improved VGG-16 model obtains the highest accuracy and
F1-Score for all three cases. Moreover, the other evaluation indicators (Precision and Recall)
of the improved VGG-16 model are also at the same level as the other three models.

Table 11. Experimental results of different backbone networks in each dataset.

Data Sets Backbone Network AUC Thermal Threshold Accuracy Precision Recall F1-Score

Wall

VGG-16 0.9998 0.2293 98.86% 100.00% 98.12% 99.05%

AlexNet 0.9756 0.1568 95.65% 98.65% 96.32% 97.48%

ResNet-18 0.9903 0.2365 97.86% 100.00% 97.04% 98.50%

ResNet-34 0.9964 0.1985 98.37% 100.00% 97.86% 98.89%

Bridge

VGG-16 0.9701 0.0944 91.52% 96.03% 89.24% 92.48%

AlexNet 0.9056 0.0539 83.96% 91.26% 79.09% 84.75%

ResNet-18 0.9568 0.1232 89.65% 87.25% 93.74% 90.36%

ResNet-34 0.9365 0.0789 86.32% 93.72% 82.08% 87.51%

Pavement

VGG-16 0.9885 0.0985 96.11% 94.08% 93.71% 93.80%

AlexNet 0.9563 0.0626 89.36% 90.17% 85.34% 87.69%

ResNet-18 0.9875 0.1259 94.53% 92.47% 90.53% 91.49%

ResNet-34 0.9899 0.0768 95.69% 96.95% 87.59% 92.03%

5. Conclusions

In this paper, we establish a DCNN based on a semi-supervised learning method for
anomaly crack detection to address the challenges posed by the difficulty of obtaining
crack data for in-service infrastructure. Some examples are used to demonstrate the high
efficiency and excellent performance of the trained model in addressing crack detection
problems, including:
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(1) The DCNN is used to realize automatic crack detection, and the influence of subjective
factors can be removed.

(2) Only a small number of labeled datasets are required to train the semi-supervised
model, and the computation time and manpower for labor-intensive labeling tasks
are greatly reduced.

(3) The model is tailor-made for crack detection in infrastructure and has good robustness
for large changes in structural roughness, uneven illumination and crack differences.

(4) The neural network can be visualized to describe its working principle, in terms of
the heatmaps of different testing results.

(5) The effectiveness of the DCNN based on a semi-supervised learning method for
anomaly crack detection is validated by several experiments.

The method can be used to address the issues of the lack of crack data and interfering
with non-crack data effectively. It offers great potential for further applications in engi-
neering practice. In the future, we will conduct a study on how to use the semi-supervised
learning anomaly detection method based on a DCNN in more complex backgrounds and
multi-defect classification detection. Image segmentation is the process of dividing an
image into meaningful pixel-level regions. It is one of the important tasks for crack shape
estimation. In future work, we will also explore image segmentation techniques; therefore,
classification accuracy can be enhanced.
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