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Featured Application: This research presents the novelty in establishing the true dynamic bend-
ing moment using only one bridge of strain gauge. This is achieved by using the actual measured
bending stress combined with phase lag stress at an angle of 90 degrees.

Abstract: The measurement of shaft bending (whirling) moment can be performed via a telemetry
system including strain gauges which can obtain the bending stress. By using a single bridge of
strain gauge, it was possible to obtain only the nominal bending moment. However, in case of the
propeller shaft vibration measurement, the true dynamic bending moment is needed to evaluate the
effect of propeller forces on the stability of the bearings. To deal with this, typically two bridges of
strain gauge at 90 degrees are needed. This research presents a novel reliability assessment method
in establishing the true dynamic bending moment using only one bridge of strain gauge. This is
achieved by using the actual bending stress measured by strain gauge combined with its own phase
lag stress at an angle of 90 degrees. To validate this technique, the experiments were performed
under the rapid turning transient states during a sea trial of a 50,000 DWT oil/chemical tanker. As a
result, great fluctuations in propeller force were detected, resulting in a non-uniform oil film in the
bearings. The displacement sensor was also installed and confirmed the established true dynamic
bending moment.

Keywords: true dynamic bending moment; strain gauge; propeller force; bearing stability; oil film

1. Introduction

Shaft alignment is influenced by hull deformation, engine output, propeller force
and propeller eccentric thrust. These factors lead to an unevenly distributed load on the
bearings, and subsequently, they increase the risk of damage [1]. It is necessary to ensure
the distances between the bearings and to set the specific height for each bearing with
respect to the fair curve alignment theory [2–4]. Therefore, the load can be shared evenly for
every bearing [5]. Even so, the after-stern tube bearing damage can still occur under sudden
changes in the stern water flow field, such as rapid ship turning [6–12]. It is known that the
major cause of rapid ship turning is the unstable behavior of the shaft due to the change
in eccentric thrust of the propeller. This is a result of the change in the countercurrent
distribution at the rear of the stern, which temporarily applies excessive load to the stern
tube bearing.

In the cases of newly built ships, it has become more difficult to ensure the stability
of the shafting system [13–15] due to the current green and eco-friendly trend in marine
transportation. Accordingly, the low-speed, ultra-long stroke engine has been widely
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applied to enhance ship operation efficiency [16,17]. To maintain the ship’s speed at a lower
engine speed, the propeller diameter is slightly increased compared to the previous design.
This design change not only increases the propeller mass but also the load and pressure
rise, which are applied to the after-stern tube bearing in terms of shaft alignment, making
it easier to achieve the safety tolerance recognized by the manufacturer.

In this context, this study concerns the bending moment behavior of the propeller
shaft in a medium-range tanker of 50,000 deadweight tonnage (DWT). Due to the friction of
the ship’s hull moving in water while sailing, a boundary layer of water is created around
the ship and moves at the same speed as the hull. The thickness of this layer increases
from the fore-to-aft of the ship. The displacement of water by the ship also induces wake
waves. Under rapid turning conditions, the quick change in direction of the ship’s heading
causes a sudden change in the wake field [18]. This was determined by the non-uniform
water flow in the propeller working area behind the ship’s hull. Many studies have been
conducted in the wake field. The study by Mikkelsen et al. [19] used computational fluid
dynamics (CFD) analysis to investigate the nominal wake fields of a container ship in
regular waves with wavelength equal to the ship length in five different headings. The
result reveals significant fluctuation in the nominal wake fraction in wave conditions.
Sprenger et al. [20] created a framework for more than 1300 different model tests for three
ship hulls of different geometry and hydrodynamic characteristics that focuses on the added
resistance and drift forces, propulsion and rudder force tests in waves and the assessment
of maneuverability of ships in waves. A series of measurements carried out by Valanto and
Hong [21] showed that all ship motion components have a clear effect on the additional
wave resistance. Wu et al. [22] used the wake field data of multiple two-dimensional planes
obtained by scanning particle image velocimetry (PIV) measurements to reconstruct the
three-dimensional, three-component (3D-3C) wake field. Shuai Sun et al. [23] conducted
computational studies using the Reynolds Averaged Navier–Stokes (RANS) method on
viscous wake fields and the propulsion performance of a four-screw ship. Their results
provided the behavior of vortices and turbulent structures in the hull. The wake field
caused fluctuation amplitudes of the loads on the propeller. Another study was conducted
by Sadat-Hosseini and his team [24]. They performed experiments and computations
for a containership in calm water and regular waves. They found that that a significant
fluctuation in the wake field can affect propeller/engine performance. As a result, the
propeller forces fluctuated, and that changed the behavior of the bending moment as well
as the stability of the propulsion shafting system. In the case ship of this study, several
related works have already been published [25], but there is still an issue that needs to
be clarified.

It is well-known that the measurement of the bending moment and shaft alignment
can be performed via the bending stress obtained by strain gauges with telemetry systems.
This technique does not require disassembling the shaft line. It was introduced early by
Grant [26], Forrest and Labasky [27]. This method can be conducted while the ship is afloat,
as opposed to more traditional methods which often require dry docking of the ship. Cdr
Amit Batra et al. [28] carried out propulsion shaft alignment measurements on an afloat
warship. Zhang et al. [29] identified the specific bearing load based on a three-section
strain gauge. A study by Avgouleas et al. [30] used strain gauges to verify the satisfactory
alignment of the entire shafting system as well as the accurate gearbox positioning of a
high-speed naval craft. There are many other studies that also used this method [31–34]. By
the same manner, in the previous work on this case ship [25], the authors determined the
nominal bending moment though a single bridge of strain gauge. This affects the position
of the shaft in the bearing as well as the pressure distribution of the lubrication film. It
is noted that the nominal bending moment has only one value which does not change
during a shaft rotation. It is related to the quasi-static condition. In fact, the propeller force
varies at every angle of rotation. This fluctuation leads to a continuously changing oil film
pressure in the bearing, which repeats itself for every rotation of the shaft, resulting in the
instability of the bearings. It is related to the dynamic condition which is not accessible
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by the nominal bending moment only. Establishing the true dynamic bending moment is
needed to evaluate the effect of propeller forces on the bearings as well as whole propulsion
system. Ordinarily, two bridges of strain gauge at 90 degrees are needed. This research
explores the novelty in establishing the true dynamic bending moment using only one
bridge of strain gauge. This new technique provides reliable results compared to the
conventional method requiring double bridges. It helps to simplify the equipment and,
therefore, to reduce the measurement cost. The experiments were carried out under the
rapid turning transient states of the target ship as port turn and starboard turn, which
significantly affected the working conditions of the propeller. A half-bridge of strain gauge
was installed at the close vicinity of forward stern tube seal box as a means to establish
the true dynamic bending moment. The final purpose was to investigate the effect of the
propeller force on the bearings and propulsion system because of the sudden change in the
stern’s wake-field during rapid turning. Displacement measurement was also performed
simultaneously to confirm the accuracy of this technical method.

2. Methodology
2.1. Research Approach

The research approach in this case study is based on measurement as described in
the flowchart in Figure 1. Accordingly, the measurement sensors including the strain
gauge and displacement sensor were installed to obtain the status of the propulsion system.
Through the data acquisition (DAQ) system, all data were acquired simultaneously and
then recorded during experiments. The strain gauge signals were analyzed to establish the
nominal and the true dynamic bending moments. These would be compared to the shaft
center movements to validate the accuracy of the research method.
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Figure 1. The flowchart of research approach.

2.2. Bending Moment Measurement Using Strain Gauges

The strain gauge method is a high-accuracy technique recommended by ISO Interna-
tional Standard for bending moment measurement [35]. The most common strain gauge
wiring configuration is in the form of a Wheatstone bridge [36–38]. Depending on the
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measurement task, the bridge layout can be configurated as full-bridge, half-bridge or
quarter-bridge. In this measurement, the half-bridge configuration was applied with two
active strain gauges positioned on the same shaft cross-section at 180 degrees to each other,
as described in Figure 2. This can compensate for the temperature effect and exclude the
axial vibrations (only the bending moment is measured). The position of the strain gauge
bridge is defined as the position of strain gauge No. 1.
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The bending moment of the shaft at the position of the strain gauge bridge (local
bending moment) can be obtained from the bending strain as follows [27]:

Ms =
Eε

I
d
2
× 10−6 (1)

where:
Ms = local bending moment (kN·m);
ε = measured strain by strain gauge bridge (m/m);
E = Young’s Modulus (MPa);
I = second moment of shaft cross-section (mm4);
d = diameter of the shaft cross-section (mm).
In the case of the solid shaft:

I =
πd4

64
(2)

Therefore:

Ms = Eε
πd3

32
× 10−6 (3)

The local bending moment for a full revolution is depicted in Figure 3. Accordingly,
the local bending moment at any angle can be determined by:

Ms = Mbcos(θ − λ) + Ms (4)

where:
Mb = nominal bending moment (kN·m);
θ = angle of rotation related to vertical direction (degree);
λ = angle between normal to neutral axis (NA) and vertical direction or bending angle

(degree);
Ms = mean value of local bending for one revolution (kN·m).
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Under the assumption that the propeller forces are the same for all propeller blades,
the mean value of local bending, Ms, is constant with the variation in the shaft speed. It can
be zeroed if the zero calibration is performed when the bridge is located at the horizontal
position. To calculate the nominal bending moment, only the zero-to-peak value is needed:

Mb =
Ms max −Ms min

2
(5)

The bending angle, λ, is determined by the travel from the upper vertical to the point
of maximum local bending moment. This technique is very simple and precise for the pure
sinusoid or approximate sinusoid of the static bending moment.

2.3. Bending Moment Calculation Using Frequency Domain

The above method using the zero-to-peak value is very common and makes it conve-
nient to obtain the bending moment such as during static conditions when slow turning.
However, its accuracy is lower in the case of combined vibration as a dynamic test. As
explained earlier, the bending moment of the propeller shaft during ship operation is
influenced by many factors such as hull deformation, engine output, propeller force and
propeller eccentric thrust. Therefore, the peak values of local bending moments may be not
at normal to NA, leading to slightly erroneous results of bending angle, λ. As shown in
Figure 3 and Equation (4), the nominal bending moment during one revolution is deter-
mined by the zero-to-peak value, which is the amplitude of the first-order vibration, and
the bending angle can be found as the first-order phase angle. To do this, frequency do-
main analysis must be performed, and the Fourier transformation is the key mathematical
tool here.

In this method, the tachometer is required to determine the shaft revolution. The
tacho-pulse marks the beginning and end of a revolution when the strain gauge bridge is
located at the upper vertical position. The measured local bending moment in time domain
is divided into each complete revolution for analysis. Next, the Fourier transformation is
performed to parametrize the time domain data in terms of frequency. The fast Fourier
transform (FFT) is recommended to speed up the computation. Next, the signal is converted
and represented in the frequency domain, and only the first-order frequency is concerned
for the nominal bending amplitude and bending angle with accuracy.

2.4. True Dynamic Bending Moment Establishment

Direct reading of the strain gauge results will be presented in the rotating coordinate
system. Two of the above methods can only obtain the nominal bending moment. This
affects the position of the shaft in the bearing as well as the pressure distribution of the
lubrication film. However, the vibration component of the propeller forces leads to a
continuously changing pressure distribution in the bearing, which repeats itself for every
rotation of shaft. To identify the propeller-induced forces of the vertical and horizontal
position for every rotating angle, it is necessary to evaluate the true dynamic bending
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moment. Typically, this requires two bridges of strain gauge (S1 and S2) positioned
90 degrees to each other. When the bridge S1 is located at the angle θ related to the
upper vertical axis, then the bridge S2 is located at the angle of (θ − 90

◦
). The local bending

moments measured by these bridges are denoted by Ms1 and Ms2, respectively, as described
in Figure 4.
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The true dynamic bending moment of shaft, M∗b , is obtained by:

→
M∗b =

→
Ms1 +

→
Ms2 (6)

We have: →
M∗b =

→
Mv +

→
Mh (7)

→
Ms1 =

→
Mv1 +

→
Mh1 (8)

→
Ms2 =

→
Mv2 +

→
Mh2 (9)

Substituting the Equations (7)–(9) into Equation (6), the vertical and horizontal bending
moments are determined as follows:

→
Mh =

→
Mh1 +

→
Mh2 (10)

→
Mv =

→
Mv1 +

→
Mv2 (11)

or:
Mh = Ms1 sin θ + Ms2 sin

(
θ − 90

◦)
= Ms1 sin θ −Ms2 cos θ

(12)

Mv = Ms1 cos θ + Ms2 cos
(
θ − 90

◦)
= Ms1 cos θ + Ms2 sin θ

(13)

The true dynamic bending angle is determined by

λ = tan−1
(

Mh
Mv

)
if Mv ≥ 0 (14)

or:
λ = tan−1

(
Mh
Mv

)
+ 180

◦
if Mv < 0 (15)
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In the case that only one bridge of strain gauge, S1, is installed, a new measurement
technique is required to obtain the true dynamic bending moment. The propeller has
four blades, the true dynamic bending moment includes the nominal bending (static) and
the fourth-order bending moment fluctuation (dynamic) due to the propeller force. The
nominal bending moment does not change during a shaft rotation. Assuming that the
propeller force distribution by all blades are even, the main fluctuation of the fourth-order
repeats its period after every 90

◦
. Here is the key point of this research. Consider the state

where the bridge S1 was at angle (θ − 90
◦
) and the local bending moment was measured

as Ms1
′. In the current state, S1 is at angle θ, and the local bending moment now is Ms1.

The bridge S2 (if available) now is at angle (θ − 90
◦
) and obtains Ms2. The local bending

moment repeats after shaft rotation every 90
◦
, meaning that Ms2 = Ms1

′ (both are measured
at the same position of angle but 90 degrees out of phase). Thus, bridge S2 can be omitted,
and the true dynamic bending moment is established using the actual bending stress, Ms1,
combined with its own phase lag stress at an angle of 90 degrees, Ms1

′. This research
presents the novelty of establishing the true dynamic bending moment using a single strain
gauge bridge, simplifying the equipment and therefore reducing the measurement cost.

3. Experiment and Results
3.1. Experiment Setup

Table 1 describes the main specification of the case ship and propulsion system for
bending moment measurement. A half-bridge of strain gauge was installed in close vicinity
to the forward stern tube seal box. The strain gauges are of type WFLA-3 with a 3 mm
gauge length produced by the Tokyo Measuring Instrument Lab. The telemetry transmitter
model is T24-AR of KYMA. To measure the radial displacement of the propeller shaft,
the laser displacement sensor type VDM18-300/32/105/122 of PEPPERL+FUCHS was
installed in the vertical direction on the same shaft, cross-sessional with the strain gauges,
as shown in Figure 5. The accuracy of the laser is±0.2 mm. The displacement measurement
can be used to cross-check the behavior of the bending moment obtained by the strain
gauge measurement.

Table 1. Specifications of ship and propulsion system.

Ship Propeller

Type Oil/chemical tanker Manufacturer HMD
Deadweight 50,000 DWT Type Fixed pitch propeller
Dimension 174.0 m × 32.2 m × 19.1 m Number of blades 4

Diameter 6600 mm

Main engine Material Ni-Al-Bronze

Manufacturer MAN B&W Mass 18,200 kg
Type 6G50ME-B Cap and nut mass 1538 kg
MCR 7700 kW × 93.4 rpm

NCR 5344 kW × 82.7 rpm Propeller shaft

Material Forged steel

Flywheel Diameter 500 mm

Mass 11,207 kg Tensile strength 600 N/mm2
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Figure 5. Equipment installation in engine room.

The experiment followed International Convention for the Safety of Life at Sea, SOLAS
II-1/29/3 (rudder test), released by the International Maritime Organization (IMO). The
purpose of this study is to investigate the effect of the propeller force on bearings and
propulsion system because of the sudden change in the stern’s wake-field during rapid
turning. The testing procedure is described in Figure 6 in the full laden condition for both
port and starboard turning tests as follows:

• Stage (1): Rudder angle 0 degrees: NCR straight going (begin);
• Stage (2): Rudder angle changes from 0 to 12 degrees (port or starboard);
• Stage (3): Rudder angle 12 degrees: ship’s heading is gradually changing;
• Stage (4): Rudder angle 0 degrees: NCR straight going (end).
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3.2. Results and Discussion

By using the actual bending stress combined with the phase lag stress, the true dynamic
bending moments during every full shaft revolution were taken in both horizontal and
vertical direction then illustrated as in Figure 7. The displacement movement measured
by the laser sensor, described in Figure 7c, confirms the accuracy of the establishing
method. Accordingly, in the vertical direction, the waveforms of the bending moment and
displacement are similar to each other.
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Figures 8–10 depict the true dynamic behaviors of the propeller shaft for the whole
process of the rapid port turning test. The displacement movement, described in Figure 10,
once again confirms the behavior of the bending moment. Additionally, the nominal bend-
ing moment was also achieved by using the Fourier transformation for every revolution.
There is only one nominal bending moment value that can be obtained for each full rev-
olution. This can be also called the static or average of bending moment. As shown in
Figures 8 and 9, the values of the nominal bending moment obtained by the conventional
method were the same as the mean values (or average values) of the established true dy-
namic bending moment. By plotting all the vertical and horizontal positions of the nominal
bending moments in a graph, we can demonstrate the trajectory of the bending moment,
as shown in Figure 11a. At each stage of the test procedure, one revolution was selected
to draw the orbit plot of the true dynamic bending moment, as in Figure 11b. Similarly,
the shaft bending moment behavior during a rapid starboard turn was analyzed and then
depicted in Figure 11.
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According to the tendency of nominal values, the bending moment of the propeller
shaft had moved downward counterclockwise at the beginning (Stage (1) to Stage (3)) and
then returned in the same trajectory at the end (Stage (3) to Stage (4)) of the port turn, as
described in Figure 11a. In the event of a starboard turn, the bending moment had moved
in the opposite direction, upward clockwise at the beginning, and then retuned at the end,
as in Figure 12a. This phenomenon was due to the influence of the propeller’s eccentric
thrust on the propeller shaft. The propeller worked like a seesaw: when this end moved
up, the other end moved down [25]. The eccentric thrust in the case of the port turn is
opposite to that of the static load of the propeller’s weight. This results in the reduction in
load on the after-stern tube bearing (ASTB) [39]. The opposite effect during the starboard
turn causes the ASTB to go in and out of stable condition.
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The shaft behavior can be evaluated in more detail during a revolution by the true
dynamic bending moment, which shows the dynamic movement of the shaft. As depicted
in Figures 11b and 12b, the moment orbit in Stage (3) is larger than the others for both
tests. This means the propeller force fluctuation was greater than the previous stage. The
phenomenon occurred more clearly in the case of the starboard turn. This results in a
non-uniform oil film in the bearings. This instability can be referred to as an oil whirl or
even an oil whip regarding the intensity of the turbulence [40–43]. An oil whirl occurs
due to the external fluctuating forces such as those generated by the propeller blades. It is
transmitted to the bearings, which then creates the imbalance in the hydraulic forces on
the oil film. When the oil whirl becomes intense, it becomes an oil whip, which possibly
leads to bearing wear and premature failure. In the case ship in this study, the fluctuation
behavior was not significant. However, the early detection of signs of bearing instability is
essential for the safe operation of bearings.

4. Conclusions

This research presents the novelty in establishing the true dynamic bending moment
using only one bridge of strain gauge instead of double bridges. This technique was applied
in the experiments on a 50,000 DWT tanker under the rapid turning transient states, such
as port turns and starboard turns, that significantly affected the working conditions of
propeller. The following is the summary of what the experiment achieved:

1. The strain gauge method is a high-precision technique for measuring the bending
moment vibration. The nominal bending moment during one revolution can be
determined by the zero-to-peak value in the time domain or the first-order vibration
in the frequency domain. To identify the effect of forces induced by the propeller on
the vertical and horizontal positions for each angle of rotation, it is recommended to
evaluate the true dynamic bending moment by installing two strain gauge bridges
positioned 90 degrees to each other.

2. In case the second bridge, S2, is not available, the true dynamic bending moment can
be measured by using the actual bending stress combined with the phase lag stress of
the only one bridge of strain gauge at an angle of 90◦. The waveform of the established
true bending moment was similar to the waveform of the measured displacement. The
mean values (average values) of the established true dynamic bending moment were
the same as the values of the nominal bending moment obtained by the conventional
method. Both waveforms and amplitudes were validated. These confirmed the
accuracy of the suggested method.
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3. The rapid change in the ship’s heading caused a sudden change in the wake-field,
which temporarily applied excessive load to the propeller blades and then transmitted
to the shaft and bearings. The bending moment of the propeller shaft had moved
upward clockwise at the beginning, then returned in the same trajectory at the end of
the starboard turn. The propeller operated as a seesaw, which confirmed the increased
load on the ASTB. The phenomenon occurred in the opposite direction during the
port turn.

4. The moment orbit when the rudder angle was 12 degrees is larger than the other
stages with respect to the greater propeller force fluctuation. This occurred more
clearly in the case of the starboard turn, resulting in a non-uniform oil film on the
bearings. This instability can be referred to as an oil whirl. When the oil whirl becomes
intense, it becomes an oil whip, which possibly leads to bearing wear and premature
failure. The fluctuation behavior was not significant, but early detection of instability
is essential for the safe operation of bearings.

5. In further work, the displacement sensors should be installed on both vertical and
horizontal directions to fully cross-verify the behavior of the bending moment. Addi-
tionally, the establishing method presented in this research can be applied in the case
of a four-blade propeller. In other cases, it is recommended to install two bridges of
strain gauge for each shaft cross-section in order to directly establish the true dynamic
bending moment.
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