
Citation: Oh, D.; Lim, J.; Park, K.;

Lim, H. Semantic Representation

Using Sub-Symbolic Knowledge in

Commonsense Reasoning. Appl. Sci.

2022, 12, 9202. https://doi.org/

10.3390/app12189202

Academic Editor: Valentino Santucci

Received: 12 August 2022

Accepted: 10 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Semantic Representation Using Sub-Symbolic Knowledge in
Commonsense Reasoning †

Dongsuk Oh 1,‡ , Jungwoo Lim 1,‡, Kinam Park 2 and Heuiseok Lim 1,*

1 Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu,
Seoul 02841, Korea

2 Human-Inspired AI and Computing Research Center, Korea University, Seoul 02841, Korea
* Correspondence: limhseok@korea.ac.kr
† This study is an extension of our research Presented at the 28th International Conference on Computational

Linguistics, Barcelona, Spain, 8–13 December 2020. We have extended our previous study by (1) showing how
to assess pre-trained models on their understanding of questions and demonstrating language model
limitations, (2) proposing a new graph representation strategy with expansion using the AMR graph and
ConceptNet, and (3) showing significant performance improvements in the diverse commonsense
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Abstract: The commonsense question and answering (CSQA) system predicts the right answer
based on a comprehensive understanding of the question. Previous research has developed models
that use QA pairs, the corresponding evidence, or the knowledge graph as an input. Each method
executes QA tasks with representations of pre-trained language models. However, the ability of the
pre-trained language model to comprehend completely remains debatable. In this study, adversarial
attack experiments were conducted on question-understanding. We examined the restrictions on
the question-reasoning process of the pre-trained language model, and then demonstrated the need
for models to use the logical structure of abstract meaning representations (AMRs). Additionally,
the experimental results demonstrated that the method performed best when the AMR graph was
extended with ConceptNet. With this extension, our proposed method outperformed the baseline in
diverse commonsense-reasoning QA tasks.

Keywords: abstract meaning representation; semantic representation; sub-symbolic; commonsense
reasoning; ConceptNet; commonsense question and answering; pre-trained language model

1. Introduction

Based on a clear understanding of the question and commonsense data, the common-
sense question and answering (CSQA) system evaluates a question to obtain the correct
answer. To predict the correct answer, a query has to be comprehensively understood with
commonsense knowledge. As shown in Figure 1, ferret is a key word for answering the
question. Unlike machines, people capture the relationships between the predicates and
arguments of a question and extract the necessary concepts from commonsense knowledge.
However, the machine implicitly gathers statistics on how words appear when combined
with large corpora rather than obtaining a clear representation of concepts [1]. An ulti-
mate machine capable of reasoning commonsense must understand linguistic symbols,
such as semantic representations [2–5]. Furthermore, selecting the concept of the question
analytically from considerable commonsense knowledge is necessary for precise reasoning.
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A. Own house
B. North California
C. Great Britain
D. Hutch
E. Outdoors Original Setting

A. Own house
B. North California
C. Great Britain
D. Hutch
E. ferret Adversarial Setting

Q. What island country is ferret popular?

(a)

country

popular-02

domainferret

domain

amr-unknownARG1

island

ARG2

(b)

ferret Location Of petstore

Type Of animal

Great Britain

Species Of weasel

(c)

Figure 1. ((a) Adversarial Attack in Commonsense Question Answering Task) Comparison of the
prediction of the BERT-base-cased model between the original and adversarial settings. Bold texts
indicate the randomly selected argument among the arguments of the sentences. The underlined
option is the correct answer and the red colored option indicates the predicted answer from the
pre-trained language model, ((b) Example of AMR graph of question) Example of AMR graph of a
question, and ((c) Example of ConceptNet subgraph of question) Example of ConceptNet graph.

Recent tasks have mainly focused on answering questions given relevant documen-
tation or context, requiring little general background knowledge. However, people use
their wealth of world knowledge to answer questions. Due to the increasing demand for
evaluating the capability of machines on commonsense reasoning [6,7] similar to humans,
corresponding datasets appeared recently. OpenBookQA [7] is a new kind of question-
and-answer dataset modeled on open book exams for assessing human comprehension
of a topic. Answering the questions in this dataset requires additional extensive general
knowledge not covered in the book. In addition, the CommonsenseQA dataset [6] builds
using ConceptNet, a knowledge base that contains people’s common sense. This dataset
leverages multiple target concepts with the same semantic relationship to a single source
concept in the ConceptNet. Thus, the model must distinguish each target concept from the
mentioned source.

Two main approaches have been developed to solve these tasks from the model. The
first approach to commonsense reasoning is a fine-tuning method with a pre-trained lan-
guage model. This method collects evidence sentences from knowledge sources, such as
Wikipedia or open mind commonsense (OMCS) [8], and trains a pre-trained language
model using this external commonsense knowledge. During the inference stage, the system
creates an input as a concatenation of questions, candidate answers, and corresponding evi-
dence retrieved from the evidence sources. The system carelessly trains evidence sentences
with commonsense knowledge using a model with numerous parameters. The second
approach applies a reasoning process with a commonsense knowledge graph [9–11]. Based
on the words that appear in the question, this method extracts data from ConceptNet [12]
and represents it using graph encoders. The answer is predicted using graph representation
and attention data from the language models. The system supplements the insufficient
representations of the language model using a commonsense knowledge graph. How-
ever, improving the performance of these approaches without understanding the question
remains difficult.

To improve performance, this study proposes the abstract meaning representation
(AMR) of a question [13]. Within a logical framework, AMR graphs the meaning of single or
multiple sentences. Because its representation lacks a commonsense relationship between
concepts, we expanded this graph with an additional commonsense knowledge graph
based on each concept for commonsense reasoning. We used the AMR symbolic framework
to logically comprehend commonsense reasoning and represent the new AMR-ConceptNet
graph, which is expanded with commonsense knowledge in a Levi graph [14].

Our main contributions are as follows.

• We demonstrate how to assess pre-trained models on the understanding of the ques-
tions and demonstrate the limitations of the language models.
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• We propose a new graph representation strategy expanded with an AMR graph
and ConceptNet.

• Compared with the baselines, our method shows significant performance improve-
ment in diverse commonsense reasoning-based datasets.

2. Related Work
2.1. Abstract Meaning Representation (AMR)

Various studies in the natural language processing (NLP) fields have used AMR in
their models [5,15–22]. An AMR [13] is a graph that logically represents the meaning
of a sentence. The AMR graph captures the structure of “who is doing what to whom”
in a given sentence and represents the sentence with a directed acyclic graph including
single-rooted nodes, concept nodes, and relationships between them. Because the root
node is a representation focus, the other concepts are connected to semantic relations once
the root node is fixed. Similar to a parse tree, the AMR graph is traversable, considering
all words. However, AMR builds the same graph structure for two syntactically different
but semantically similar sentences. The concepts in an AMR graph are referred to as the
events or entities. Additionally, the relationships between the concepts are denoted in the
vocabulary of the PropBank frameset [23] and standard words. AMR represents semantic
roles using more than 100 semantic relations (for example, negation, conjunction, and
command). In PropBank, the graph form is labeled as the semantic roles of ARG0∼4 and
ARGM. Subsequently, other concept nodes are sequentially joined from the semantic relations.

2.2. ConceptNet

ConceptNet [12] is a multilingual knowledge graph that connects words and phrases
of natural language used by people in the real world. Real-world common sense is defined
in ConceptNet as two nodes and directed edges indicating concepts and their relations,
respectively. The relationships defined in a single lexical resource are not enough for a
machine to understand words in the natural language people use. For example, in WordNet,
dog and cat are defined as hyponyms for animal. However, it is not connected to a pet.
ConceptNet is constructed by collecting data from various knowledge bases, including
Wiktionary [24], WordNet [25], and DBpedia [26]. They were also defined as hierarchical
URLs to avoid ambiguity. For example, the node “/c/en/read/v” can be retrieved using
the part-of-speech data. Moreover, multiple relationships simultaneously exist between
two different nodes. Consequently, the ambiguity between two different nodes can be
handled using these multiple relations.

2.3. Commonsense Reasoning

Pre-trained-based models have performed admirably in earlier studies. The initial
approach (https://gist.github.com/commonsensepretraining/507aefddcd00f891c83ebf6
936df15e8 (accessed date in 1 May 2022), https://drive.google.com/file/d/1sGJBV38aG7
06EAR75F7LYwCqci9ocG9i/view (accessed date in 1 May 2022)) for commonsense rea-
soning was based on a fine-tuning method. This approach uses questions and answers to
limit reasoning capability. A retrieval module was also used to supplement the reasoning
ability to retrieve evidence from the questions and answers. The second approach uses
an additional encoder to embed knowledge graphs such as ConceptNet. An additional
encoder typically uses paths or nodes in the graph [9–11]. Lin et al. [9], Ma et al. [11]
extracts the graph paths using a specific search algorithm and uses them as the input for
the encoder. Lv et al. [10] embeds the node with an adjacency matrix and uses the graph
attention to compute the attention score. Various pre-trained models that used the afore-
mentioned methods achieved high performance, including BERT [27] and RoBERTa [28],
which use bidirectional transformer encoders. They also include XLNet [29], which uses
autoregressive language modeling; ALBERT [30], which uses cross-layer parameter sharing
and factorized embedding parameterization; and ELECTRA [31]. Additionally, ELECTRA

https://gist.github.com/commonsensepretraining/507aefddcd00f891c83ebf6936df15e8
https://gist.github.com/commonsensepretraining/507aefddcd00f891c83ebf6936df15e8
https://drive.google.com/file/d/1sGJBV38aG706EAR75F7LYwCqci9ocG9i/view
https://drive.google.com/file/d/1sGJBV38aG706EAR75F7LYwCqci9ocG9i/view
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was designed as a generator and discriminator, pre-trained using a replaced token detection
(RTD) task.

3. Proposed Method

Because the word in a sentence acts in a specific role, such as a predicate or argument,
the concept of the AMR graph also has semantics in the graph structure. Owing to these
graph structure benefits, we used AMR graphs to extract commonsense knowledge graphs.
We generated the question as an AMR graph using the model of Cai and Lam [32], which
has recently demonstrated excellent performance in AMR generation tasks. Although
most AMR graphs are properly generated from the model, inevitable errors in the types of
relationships or concepts may occur. After obtaining an AMR graph, our method integrates
it with the ConceptNet graph. Particularly, if the AMR concept existed in ConceptNet,
it connected the ConceptNet node with all nodes in the AMR. The proposed methods
then used ConceptNet to prune ARG0, ARG1, ARG2, ARG3, and ARG4 nodes that lacked edges.
Our proposed graph representation prunes other nodes unrelated to the argument nodes
because these argument relationships have significant meanings. This process uses ACP-
ARG graphs to train the model by repeatedly identifying excessive paths. The proposed
ACP-ARG is shown in Figure 2.

Concept 1

ARG_N CN_rel

CN_concept 3

Concept 5

Concept 2

Non_ARG

Concept 3

Concept 6

Concept 4 CN_concept 4CN_rel

Non_ARG

ARG_N

CN_rel

CN_concept 1

Non_ARG

: AMR node

: CN node

: AMR relation

: CN relation

Figure 2. Example of an ACP -ARG Graph.

The graph G = (V , E ) represents a fixed set of nodes V and relational edges E . The
ACP-ARG graph can be expressed as follows:

GACP−ARG = ({Vamr ∪ Vamrarg

cn }, {Eamr ∪ E amrarg

cn }) (1)

The union of the AMR graph and ConceptNet subgraphs containing AMR concepts
linked with argument relations results in the ACP-ARG graph denoted by Equation (1). The
AMR graph is denoted as GAMR = {Vamr, Eamr}. ConceptNet’s subgraph corresponding to
concepts linked to argument relations is denoted as GAMRarg

CN = {V amrarg
cn , E amrarg

cn }.

4. Experiments
4.1. Data Setup

SRLAttack dataset is an adversarial attack dataset to analyze whether the pre-trained
language model relies on superficial cues. Semantic role labeling (SRL) captures the
relationship between the predicate and the arguments in the question. By determining the
precise meaning of the question, the analysis results of the SRL can be used to determine
the correct answer. First, we labeled the semantic roles of each argument using a pre-
trained model (https://docs.allennlp.org/models/main/models/structured_prediction/
predictors/srl/ (accessed date in 1 April 2021)) [33]. Then, we randomly selected the

https://docs.allennlp.org/models/main/models/structured_prediction/predictors/srl/
https://docs.allennlp.org/models/main/models/structured_prediction/predictors/srl/
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predicate in the labeled question and determined the answer of the distractor from an
argument based on the position of the predicate.

CommonsenseQA dataset consists of 12,102 questions and five candidate answers pro-
vided by Talmor et al. [6]. We divided the official training set for the experimental efficiency,
and the organizer can only validate the official test set once every two weeks. The new
training, development, and test sets contained 8500, 1221, and 1242, respectively.

OpenBookQA OpenBookQA dataset consists of one question, and four candidate answers
about elementary-level science. The questions require common sense knowledge to solve
and include 4957 training sets, 500 development sets, and 500 test sets [7]. Unlike CSQA,
we used an official development set because the test set is accessible to the public; therefore,
we could monitor the performance as needed.

4.2. Experimental Details

We trained the model using Quadro RTX 8000 and used the same parameters as in
Cai and Lam [15] and Lim et al. [34]. The hyperparameters of each language model were
obtained manually.

4.3. Baselines
4.3.1. Pre-Trained Language Models

BERT [27], a bi-directional model using the transformer architecture, performs ad-
mirably in most natural language understanding tasks. BERT is pre-trained using large-
scale text data on masked language modeling (MLM) and next sentence prediction (NSP).
It effectively captures the natural language context. Despite its capability to learn context,
BERT cannot capture the overall meaning of a text using a static-masking rule based on
15% of the sentence. ELECTRA [31] proposed more efficient pre-training strategies us-
ing a generator structure and discriminator networks, similar to a generative adversarial
network (GAN).

4.3.2. AMR-CN Reasoning Model

For the AMR-CN reasoning baseline, we used Lim et al. [34]’s model, which considers
the pruned graph as an input and calculates the attention score of each path using the
graph transformer and obtaining the entire graph vector. The model is shown in Figure 3.

Question
𝑞" 		⋯		𝑞%	 𝑎" 			⋯		𝑎'	

Candidate Answer

AMR graph

ConceptNet graph

+

Node Initialization 
(GloVe)

Path Relation Encoder

Relation-Enhanced 
Global Attention

⋯

POSITIONAL 
ENCODING

Multi-head 
Self Attention

Add & Norm

Feed Forward

Add & Norm

Transformer

CONCAT

AVERAGE
FILTER

POOLING

Graph Vector

Language Vector

Softmax Layer

Language Model

: computes relational 
attention scoreUpdated Node Embedding

Graph Integration & 
Pruning Module

Language Encoder

Reasoning Module Graph Path Learning Module

Figure 3. Overview of AMR-CN reasoning model.
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4.3.3. Graph Path Learning Module

With the ACP-ARG graph from the graph integration and pruning module, the graph
path learning module initializes the concept node vector as the sum of the concept em-
bedding using GloVe [35] and absolute position embedding. A relation encoder is first
used to encode the connection between the two concepts into a distributed representation
for the model to recognize the explicit path of the ACP-ARG graph. The relation encoder
recognizes the shortest path between two concepts and expresses the sequence as a relation
vector by using a Gated Recurrent Unit (GRU) [36]. The equation representing the relation
is depicted as follows:

−→pt = GRU f (
−−→pt−1, spt),

←−pt = GRUg(
←−−pt+1, spt) (2)

where spt is the shortest path of the relation between two nodes. The final relation encoding
rij between concepts i and j is the concatenation of the final hidden states from the forward
and backward GRU networks, which are represented in the Equation (3).

rij = [−→pn ;←−p0 ] (3)

In order to inject this relation information into the conceptual representation, the
AMR-CN reasoning model follow the idea of relative position, including [37,38], which
introduces an attention scoring method based on the conceptual representation and the
relation representation.

To calculate the attention score, the model is divided the relation vector rij passed
from the linear layer into forward relation encoding ri→j and backward relation encoding
rj→i, as follows:

[ri→j; rj→i] = Wrrij (4)

where Wr is the parameter matrix. This split renders the model to consider the bi-
directionality of the path. Thereafter, the model computes the attention score considering
the concepts and their relations. Note that ci and cj are the concept embedding. The
equation is presented below:

sij = f (ci, cj, rij)

= (ci + ri→j)W>q Wk(cj + rj→i)

= ciW>q Wkcj + ciW>q Wkrj→i

+ ri→jW>q Wkcj + ri→jW>q Wkrj→i

(5)

The first term in the last line of Equation (5) is the original term in the vanilla attention
mechanism, which includes the pure content of the concept. The second and third terms
capture the bias of the relation concerning the source and target, respectively. The last
item represents universal relation bias. As a result, the computed attention score updates
the concept embedding while maintaining a fully connected communication [15]. There-
fore, the concept-relation interaction can be injected into the concept node vector. The
resulting conceptual representations are aggregated into the entire graph vector and fed
into the transformer layer to model the interaction between the AMR and ConceptNet
conceptual representations.

The major advantage of this relation-enhanced attention mechanism is that it provides
a fully connected view of input graphs using the relation multi-head attention mechanisms.
By integrating two different concept types from the AMR graph and ConceptNet into a
single graph, the model globally recognizes which path has high relevance to the question
during the interpretation.
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4.3.4. Language Encoder

The language encoder is utilized to encode text input into distributed representation,
which is a pre-trained language model with a large corpus. The language model uses the
models described in the baseline.

4.3.5. Reasoning Module

The proposed method performs commonsense reasoning on the ACP-ARG graph
and predicts the correct answer. the model takes two types of input, text and graph
representations, and transforms semantic representations into distributed representations.
After obtaining text representation vectors, the model concatenates graph and language
vectors, feeds them into the Softmax layer, and then picks the correct answer.

4.4. Experimental Results
4.4.1. Diverse Expansion Methods

In the experiments, we demonstrated the effect of our various expansion methods on
pre-trained language models and compared in-depth the ability to answer commonsense
questions. To this end, we demonstrated how the AMR graph enables pre-trained language
models to understand the semantics of a question and expands the graph with ConceptNet
for comprehensive knowledge acquisition. However, expanding the AMR graph with all
concepts in the knowledge graph wastes computational resources. Additionally, external
knowledge of a few concepts requires a proper reasoning process. We conducted a study to
determine which expansion method is the most effective for commonsense reasoning.

For ConceptNet, we expanded the graph based on all words in the question, called the
CN full graph. The ConceptNet graph is denoted by GCN = {Vcn, Ecn} and the subgraph
of ConceptNet corresponding to the question token is denoted by G token

CN = {V token
cn , E token

cn }.
The CN full graph (CF) is depicted in Figure 4a and defined as follows:

GCF = ({Vtoken ∪ V token
cn } ∪ {root}}, {E token

cn ∪ {token}}) (6)

The AMR-CN-Full (ACF) graph is an integrated graph in which all nodes of the AMR
graph connect to the ConceptNet graph. Additionally, we limited ConceptNet (CN) for
the experiments to just two methods. One method was to use the ConceptNet graph
corresponding to all question tokens separated by a space in the sentence, as shown in
Figure 4b. The graph path learning module could not use the reasoning CN graph owing
to the initial disconnection of the question token and disconnection between the concept
nodes. Therefore, we combined all tokens from the question to the root node to ensure that
our model performed effectively in commonsense reasoning. The ACF graph was identical
to the graph before pruning when creating the ACP-ARG.

root

Token

Token

Token Token

Token

CN_rel

Token

CN_concept 1

CN_rel

CN_rel

CN_rel
CN_rel CN_rel

CN_rel

CN_relCN_rel

CN_concept 2

CN_concept 3

CN_concept 4

CN_concept 5 CN_concept 6

CN_concept 7

CN_concept 8CN_concept 9

token 1

token 2

token 3 token 4

token 5

token 6

: Token node : CN node

: Token relation : CN relation

(a) ConceptNet–full

Concept 1

ARG_N CN_rel

CN_concept 3

Concept 5

Concept 2

Non_ARG

Concept 3

Concept 6

Concept 4 CN_concept 4CN_rel

Non_ARG

CN_concept 2CN_rel

ARG_N

CN_rel

CN_concept 1

CN_rel

CN_concept 6

CN_concept 5CN_rel

CN_rel

CN_concept 7

Non_ARG

(b) AMR-CN graph–full

Figure 4. ConceptNet-Full graph (a) expands ConceptNet based on all words in the question. AMR-
CN-Full graph (b) expands all the concepts in the AMR graph with ConceptNet graph.
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The ACF graph can be expressed as follows: The AMR graph is denoted as
GAMR = {Vamr, Eamr}. Additionally, the subgraph of ConceptNet matched with the ACF
graph is denoted by GAMR

CN = {V amr
cn , E amr

cn }.

GACF = ({Vamr ∪ Vamr
cn }, {Eamr ∪ E amr

cn }) (7)

We also conducted ACP-ARG-mini, which is identical to ACP-ARG except for the
types of arguments that are pruned. For ACP-ARG, we pruned the nodes that lack edges
known as ARG0, ARG1, ARG2, ARG3, and ARG4 with ConceptNet from the ACF graph. Unlike
ACP-ARG, ACP-ARG-mini prune nodes lack ARG0 and ARG1 edges, which possess more
than 50% of all other argument relations, as shown in Table 1. We expanded the graph
based on nodes unrelated to the arguments.

Table 1. Statistics of core roles from AMR graph in CommonsenseQA.

Relation Ntrain Ndev Ntest

ARG0 17,300 (22.70%) 2547 (22.73%) 2477 (23.09%)
ARG1 24,673 (32.38%) 3566 (31.83%) 3521 (32.82%)
ARG2 6001 (7.88%) 864 (7.71%) 829 (7.73%)
ARG3 286 (0.38%) 37 (0.33%) 51 (0.48%)
ARG4 587 (0.77%) 92 (0.82%) 59 (0.55%)

Total relations 76,203 11,204 10,727

The results of the experiments are shown in Table 2. ACP-ARG scored the highest in
both the new development and test sets. The performance of the model based on the ACP-
ARG graph suggests that using all the information related to the question is not always
correct. This suggests that it is efficient and effective when using the specific knowledge
graph that the question requires and that the arguments of an AMR graph can provide
significant evidence for retrieving the knowledge graph. According to ACP-ARG-mini,
the amount of knowledge should be considered even when using arguments from the
AMR graph. The model using the ACP-nonARG graph demonstrated inability in the
reasoning process.

Table 2. Experiments on diverse graph features.

Language Model Graph Type Ndev-Acc(%) Ntest-Acc(%) Avg

BERT-base-cased

- 51.81 51.59 52.70

CN-Full 53.48 53.10 53.29

AMR-CN-Full(ACF) 53.81 52.38 53.10
AMR-CN-Pruned-ARG0,1(ACP-ARG-mini) 53.89 52.54 53.22
AMR-CN-Pruned-nonARG(ACP-nonARG) 53.15 50.77 51.96
AMR-CN-Pruned-ARGN(ACP-ARG) 54.38 53.51 53.95

4.4.2. Adversarial Attack Test Using SRL

To demonstrate the analysis of whether the pre-trained language models precisely
comprehend the question, we used semantic role labeling (SRL) (https://docs.allennlp.org/
models/main/models/structured_prediction/predictors/srl/ (accessed date in 1 April
2021)). SRL [39] labels the predicate and its arguments in a sentence. This study conducted
an adversarial attack test on pre-trained language models based on SRL data. For the
analysis, we replaced one candidate option, except for the correct answer, with the randomly
selected argument related to the predicate of the question in Figure 1a. The experiment
assessed whether the model predicted the correct answer using common-sense knowledge
or relied on the argument text in the question. We selected BERT as a representative of
the pre-trained language models. We tested the model using the CSQA. We fine-tuned the
BERT model using the original training dataset for QA tasks and obtained inference results

https://docs.allennlp.org/models/main/models/structured_prediction/predictors/srl/
https://docs.allennlp.org/models/main/models/structured_prediction/predictors/srl/
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from the original and SRL-corrupted development datasets. Table 3 shows the results for
each development dataset. They indicate that the performance of BERT decreases when
one option other than the correct answer is substituted with the argument of the question.
Thus, the decrease in performance suggests that BERT merely relies on superficial cues
from the question. Our proposed model alleviated the performance of BERT, which showed
a decrease of 1.06% compared with the decrease of the fine-tuning model of 5.78%.

Table 3. Adversarial Attack test with Semantic Role Labeling. SRL-C denotes the setting where one
distractor is replaced with the random argument in the AMR graph.

Language Model Setting Odev-Acc(%)

BERT-base-cased Original 51.81
BERT-base-cased with ACP-ARG Original 54.38

BERT-base-cased SRL-C 46.03 (−5.78%p)
BERT-base-cased with ACP-ARG SRL-C 53.32 (−1.06%p)

4.4.3. Comparison on Different Language Models

Pre-trained language models based on transformer encoders have been studied since
the appearance of BERT [27]. ELECTRA [31] is a model that is trained by replaced token
detection using a discriminator. We experimented to determine whether our ACP-ARG
graph is effective for diverse pre-trained language models. Additionally, we demonstrated
that the proposed graph outperformed the graph representation method of the previous
study [34]. Unlike our method that used the model Cai and Lam [32], Lim et al. [34] used
the model Guo et al. [16] to generate the AMR graph. Table 4 shows the comparative
results based on different types of language models. The input of the language model is
“[CLS]+Question+[SEP]+candidate answer”. All language models that used our method
outperformed their own fine-tuned score and the other graph reasoning score, achieving
53.95% with BERT and 72.68% with ELECTRA-based models on the average score of
our new test set and dev set. The results suggest that the concept representations of the
ACP-ARG graph positively affect CSQA and are generalizable to any language encoder.

Table 4. Commonsense QA results on different language encoder types.

Language Model Ndev-Acc(%) Ntest-Acc(%) Avg

BERT-base 51.81 51.59 51.70
ELECTRA-base 71.25 70.19 70.72

BERT-base with ACP-ARG-mini [16,34] 53.97 53.58 53.78
ELECTRA-base with ACP-ARG-mini [16,34] 71.99 70.91 71.45

BERT-base with ACP-ARG 54.38 53.51 53.95
ELECTRA-base with ACP-ARG 73.63 71.72 72.68

4.4.4. Experiment on Official Test Set

Because the ELECTRA-based model with ACP-ARG graphs performed best on the
new test set, we evaluated our model using the official training set of ELECTRA-large
(1140 examples). For the official test set, the accuracy of our model was 75.79%, as shown in
Table 5. The average score was 79.42%, which is higher than that of Lim et al. [34] by 1.37%.

Table 5. Experiment with ELECTRA-large with full training set on the official test set.

Models Odev-Acc(%) Otest-Acc(%) Avg

ELECTRA-large with ACP-ARG-mini [16,34] 82.15 75.43 78.79
ELECTRA-large with ACP-ARG 83.04 75.79 79.42
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4.4.5. Experiment on OpenBookQA Dataset

To demonstrate the generalization ability on another reasoning task, we also experi-
mented on OpenBook QA (OBQA). The OBQA dataset consisted of four multiple-choice
questions. Elementary-level science-fact-based reasoning is required for this task. As
shown in Table 6, the models with the AMR graph or ConceptNet scored 56.00% and
60.00%, respectively, whereas BERT fine-tuning only scored 47.20% and 56.40%. Addi-
tionally, ELECTRA-based models outperformed their fine-tuning method, by 64.20% and
82.40% in the official test set.

Table 6. OpenBook QA results on BERT and ELECTRA models.

Language Model Otest-Acc(%)

BERT-base-cased 47.20
BERT-large-cased 56.40
ELECTRA-base 63.20
ELECTRA-large 77.60

BERT-base-cased with ACP-ARG 56.00
BERT-large-cased with ACP-ARG 60.00
ELECTRA-base with ACP-ARG 64.20
ELECTRA-large with ACP-ARG 82.40

5. Strengths and Limitations

We analyzed the necessity of the semantic representation of the pre-trained language
model using adversarial attacks and semantic role labeling. However, we built our data
automatically through an external model for the experiments in Table 3. Since humans do
not annotate the created data, there may be errors within the data. Additionally, our study
suggested a more effective graph representation than the previous study [34]. But, some
problems remained. One is the error propagation problem from the AMR construction.
The other is the static graph expansion, which might lead the model to learn the same
knowledge of different semantic meanings using the same words.

6. Conclusions and Future Works

This paper proposes a strategy of graph representation utilizing the AMR and Con-
ceptNet for commonsense reasoning tasks. The expansion methods of the AMR graph
and ConceptNet involved selecting the necessary concepts based on the AMR argument
relations because AMR consists of concepts connected with specific logical rules. As a
result, extending all nodes connected by argument relations shows the highest performance.
However, the proposed method statically expands the same graph information for am-
biguous words. Therefore, we plan to use end-to-end common sense inference models,
such as AMR constructs and dynamic AMR extension methods that can choose different
knowledge for the same word depending on the context of the question.
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