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Abstract: Following recent advancements in deep learning and artificial intelligence, spoken lan-
guage identification applications are playing an increasingly significant role in our day-to-day lives,
especially in the domain of multi-lingual speech recognition. In this article, we propose a spoken
language identification system that depends on the sequence of feature vectors. The proposed system
uses a hybrid Convolutional Recurrent Neural Network (CRNN), which combines a Convolutional
Neural Network (CNN) with a Recurrent Neural Network (RNN) network, for spoken language
identification on seven languages, including Arabic, chosen from subsets of the Mozilla Common
Voice (MCV) corpus. The proposed system exploits the advantages of both CNN and RNN architec-
tures to construct the CRNN architecture. At the feature extraction stage, it compares the Gammatone
Cepstral Coefficient (GTCC) feature and Mel Frequency Cepstral Coefficient (MFCC) feature, as well
as a combination of both. Finally, the speech signals were represented as frames and used as the
input for the CRNN architecture. After conducting experiments, the results of the proposed system
indicate higher performance with combined GTCC and MFCC features compared to GTCC or MFCC
features used individually. The average accuracy of the proposed system was 92.81% in the best
experiment for spoken language identification. Furthermore, the system can learn language-specific
patterns in various filter size representations of speech files.

Keywords: Arabic; CNN; CRNN; classification; language identification; LSTM; Mozilla speech
corpus; multi-lingual speech; RNN

1. Introduction

Several issues have impeded the development of Automatic Speech Recognition (ASR)
systems. The most important of these is spoken Language Identification (LID) in multi-
lingual ASR systems [1]. The purpose of spoken LID systems is to classify spoken language
from a given audio sample. As such, in the absence of automatic language detection, speech
utterances cannot be correctly processed, and grammatical rules cannot be applied [2]. Lan-
guage has no geographical boundaries in the contemporary era. More than five thousand
languages are spoken worldwide, and each has distinct properties at different levels, from
acoustics to semantics [3–5]. Western countries have made significant progress in using
applications based on spoken language recognition. However, these applications have not
gained much traction in multi-lingual and multi-dialectal Arabic countries, including Saudi
Arabia, due to the complexity of the native Arabic language [6,7]. Spoken LID systems seek
to determine and classify the language that is spoken within a speech utterance [8]. The
problem of identifying the spoken language of a given audio file is of considerable interest
to a range of multi-lingual speech processing applications, including speech translation [9],
multi-lingual speech recognition [10–12], spoken document retrieval [13], and defense and
surveillance applications [14]. This article’s main contribution lies in considering seven
spoken language identification, including Arabic, using public audio speech corpus, and
the joint use of the MFCC and GTCC under the CRNN framework. The contribution can be
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summarized as follows: (1) We present a hybrid CRNN that combines a CNN’s descriptive
capabilities with an LSTM architecture’s capacity to capture sequence data; (2) We compare
the effect of fine-tuning the features; (3) We conduct comprehensive tests and experiments
with the proposed architecture, demonstrating its applicability in a variety of contexts, as
well as its extension to new languages; and (4) We use system errors to infer the degree of
similarities in considered languages.

The article is structured as follows: in Section 2, we provide a literature review in
the field of spoken LID systems; in Section 3, the chosen speech corpora are presented;
Section 4 showcases the proposed system; in Section 5, we evaluate the proposed system
using extensive experiments; in Section 6, we present and discuss the results; and finally, in
Section 7, we present concluding remarks and recommendations for future research.

2. Literature Review

A comprehensive survey of the literature on state-of-the-art spoken LID, focusing
especially on speech features and architectures, was conducted by Shen et al. [15]. Most
of the architectures used spectral and acoustic features for spoken LID [16–18]. However,
there are few reported attempts for spoken Arabic language identification among the set
of languages. In 1999, Nofal et al. [19] proposed a spoken LID system for identifying just
two languages: Arabic and English. Zazo et al. [20] presented an LSTM-Recurrent Neural
Network (LSTM-RNN) architecture for the spoken LID system. The system outperformed
a reference I-vector system by 26.00% on a subset of the National Institute of Standards
and Technology (NIST) Language Recognition Evaluation (LRE) 2009 corpus for eight
languages. Furthermore, the results demonstrated that an LSTM-RNN architecture could
identify languages with an accuracy of 70.90%. Kumar [16] proposed Fourier Parameter
(FP) features for the spoken LID system. The performance of the FP features was analyzed
and compared with the legacy Mel Frequency Cepstral Coefficient (MFCC) features. They
used the Indian Institute of Technology Kharagpur Multi-lingual Indian Language Speech
Corpus (IITKGP-MLILSC) and the Oriental Language Recognition Speech Corpus (AP18-
OR) to identify the spoken language. Finally, they developed three architectures with the
extracted FP and MFCC features: Support Vector Machine (SVM), feed-forward Artificial
Neural Network (ANN), and Deep Neural Network (DNN). The results demonstrated that
the proposed FP features effectively recognize different spoken languages from speech
signals. A performance improvement was also observed when combining FP and MFCC.

Draghici et al. [21] investigated the previous architectures for spoken LID systems,
which utilize the CNN and CRNN architectures. Additionally, they used a set of seven
languages. Despite the increasing complexity of the architectures, it was successful, achiev-
ing an accuracy of 71.00% for the CNN architecture and 83.00% for the CRNN architecture.
Kim and Park [11] proposed a spoken LID system and investigated another feature that
characterizes language-specific properties: speech rhythm. They evaluated two corpora
published by different organizations. The first corpus is the Speech Information Technology
and Industry Promotion Center (SiTEC). The second corpus is the Mozilla Common Voice
(MCV) corpus. Despite the low computational complexity of the system, the results were
either poorer than or similar to the performance of traditional approaches, with an error rate
of up to 65.66%. Guha et al. [22] developed a hybrid Feature Selection (FS) algorithm using
the versatile Harmony Search (HS) algorithm and the Naked Mole-Rat (NMR) algorithm for
Human-Computer Interaction (HCI)-based applications by attempting to classify various
languages from the three corpora: the Collection of Single Speaker Speech corpus (CSS10)
for ten languages, the VoxForge corpus for six languages, and the Madras (IIT-M) speech
corpus for ten languages. This study involved extracting their Mel spectrogram features
and Relative Spectral Transform-Perceptual Linear Prediction (RASTA-PLP) features, and
these features were used as input for five classifiers: SVM, k-Nearest Neighbor (k-NN),
Multi-layer Perceptron (MLP), Naïve Bayes (NB), and RF. Accuracies of 99.89% on CSS10,
98.22% on VoxForge, and 99.75% on the IIT-Madras speech corpus databases were achieved
using RF. Sangwan et al. [23] presented a system that used hybrid features and ANN
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learning architectures for spoken LID of four languages. First, they used RASTA-PLP
and MFCC features with RASTA-PLP features. The classifier selected for the spoken LID
system was a Feed-Forward Back Propagation Neural Network (FFBPNN). The results
indicate better performance with combined MFCC and RASTA-PLP features compared to
the individual use of RASTA-PLP features. The proposed classification yielded an accuracy
of 95.30%. Garain et al. [24] suggested a deep learning-based system called FuzzyGCP
for spoken LID. This system integrates the classification principles of Deep Convolutional
Neural Networks (DCNN), a Deep Dumb Multi-Layer Perceptron (DDMLP), and Semi-
Supervised Generative Adversarial Networks (SSGAN). They tested the system in four
corpora containing two Indic and two foreign language corpora. As a result, the system
achieved an accuracy of 98.00% on the Multi-lingual Corpus of Sentence-Aligned Spoken
Utterances (MaSS) corpus. Moreover, it achieved the worst performance of 67.00% on
the VoxForge corpus. Shen et al. [25] proposed an RNN Transducer (RNN-T) architecture
for the spoken LID system. The system exploits phonetically-aware acoustic features and
explicit linguistic features for LID tasks. Experiments were conducted on eight languages
from the Multi-lingual LibriSpeech (MLS) corpus. The results showed that the proposed
system significantly improved the performance on spoken LID tasks, with relative im-
provements of 12.00% to 59.00% and 16.00% to 24.00% on in-domain and cross-domain
corpora, respectively.

Spoken LID systems have been widely investigated using multiple architectures in
terms of feature extraction and classifier learning. However, they are limited to most
human languages [26,27]. Additionally, while many researchers have successfully used
deep learning techniques to solve spoken LID problems, as presented in [22–24], the central
problem remains that the Arabic language has only received limited attention in the spoken
LID research community among the set of languages [19,28,29]. Therefore, this article
seeks to improve the performance of spoken LID tasks for six spoken languages from
industrial countries in conjunction with Arabic [30]. These are seven languages of the ten
most in-demand foreign languages across the globe [31]. A summary of the literature on
spoken LID systems is presented in Table 1.

Table 1. Review of previous literature on spoken language identification with results.

Reference Year Features Classifiers Corpus Classes Languages Results (%)

Zazo et al.
[20] 2016 MFCC-SDC LSTM-RNN NIST LRE 8

Dari, English, French,
Chinese, Pashto, Russian,

Spanish, and Urdu
Accuracy = 70.90

Bartz et al.
[2] 2017 Spectrogram CRNN

European
Parliament

Statements and
News Channels

on YouTube

6
English, French, German,

Chinese, Russian,
and Spanish

Accuracy = 91.00

Ma and Yu.
[27]

2018 DNN-BN LSTM AP17-OLR 10

Tibetan, Japanese, Kazakh,
Korean, Indonesian,

Mandarin, Cantonese,
Vietnamese, Uyghur,

and Russian

ER = 50.00

Kumar. [16] 2019 FP-MFCC ANN IITKGP-MLILSC
and AP18-OLR 10

Russian, Vietnamese,
Indonesian, Cantonese,

Japanese, Kazakh, Korean,
Tibetan, Uyghur,
and Mandarin

Accuracy = 70.80

Kim and
Park [11] 2020 Rhythm R-Vector with

I-Vector

SiTEC 2 English and Korean ER = 4.73

Mozilla 3 Chinese, English,
and Spanish ER = 47.38
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Table 1. Cont.

Reference Year Features Classifiers Corpus Classes Languages Results (%)

Guha et al.
[22] 2020

Mel
spectrogram-RASTA-PLP RF

CSS10 10

French, Chinese, German,
Dutch, Spanish, Greek,

Finnish, Japanese,
Russian, and Hungarian

Accuracy = 99.89

VoxForge 6
English, French, German,

Italian, Russian,
and Spanish

Accuracy = 98.22

IIT-Madras 10

Assamese, English,
Bangla, Gujarati, Tamil,

Hindi, Telugu, Kannada,
Marathi, and Malayalam

Accuracy = 99.75

Draghici et al.
[21] 2020 Mel spectrogram CRNN EU Repo 6

English, French, German,
Greek, Italian,
and Spanish

Accuracy = 83.00

Sisodia et al.
[32] 2020 MFCC-DFCC Extra Trees VoxForge 5 Dutch, English, French,

German, and Portuguese Accuracy = 85.71

Garain et al.
[24]

2021

MFCC-Spectral Bandwidth-
Spectral Contrast- Spectral
Roll-Off- Spectral Flatness-

Spectral Centroid-
Polynomial-Tonnetz

FuzzyGCP
MaSS 8

Basque, English, Finnish,
French, Hungarian,
Romanian, Russian,

and Spanish

Accuracy = 98.00

VoxForge 5 French, German, Italian,
Portuguese, and Spanish Accuracy = 67.00

Sangwan et al.
[23] 2021 MFCC-RASTA-PLP FFBPNN New Corpus 4 English, Hindi,

Malayalam, and Tamil Accuracy = 95.30

Singh et al.
[33] 2021 Log-Mel spectrograms CNN Mozilla 4 Estonian, Tamil, Turkish,

and Mandarin Accuracy = 80.21

Shen et al.
[25] 2022 Acoustic-Linguistic RNN-T MLS 8

Dutch, English, French,
German, Polish,

Portuguese, Italian,
and Spanish

ER = 5.44

3. Selected Speech Corpus

The corpus selected for this article is from the Mozilla Common Voice (MCV) corpora.
MCV is a multi-lingual corpus of speech intended for speech technology research and
development. It is designed for ASR purposes and is also well known for being useful in
other domains; e.g., LID and gender classification [34]. Each input in the corpora consists
of an individual MP3 file and a corresponding text file [35]. The most recent release
includes 87 languages, but the publishers periodically add more voices and languages.
Over 200,000 male and female speakers have participated, resulting in 18,243 h of collected
audio.

To achieve scale and sustainability, the MCV project uses crowdsourcing for data
collection and validation [36]. As an example use case for MCV, we present our spoken LID
experiments using subsets of MCV for seven target languages: Arabic, German, English,
Spanish, French, Russian, and Chinese. These are the first experiments undertaken on most
of these languages for spoken LID. The aim was to compare the spoken LID performance
and outcomes of Arabic with other languages. Table 2 presents the characteristics of the
MCV corpus. Table 3 summarizes the experimental corpus.

Table 2. Mozilla corpus characteristics.

Parameter Value

Sampling Rate 48 kHz
Date 19 January 2022

Validated Hours 14,122
Recorded Hours 18,243

Languages 87
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Table 3. Selected Mozilla corpus description.

Language Number of
Speech Files

Training/Validation 80%, Testing 20%

Training (90%)
from 80%

Validation
(10%) from 80% Testing (20%)

Arabic 2000 1440 Arabic 2000
German 2000 1440 German 2000
English 2000 1440 English 2000
Spanish 2000 1440 Spanish 2000
French 2000 1440 French 2000
Russian 2000 1440 Russian 2000
Chinese 2000 1440 Chinese 2000

Total 14,000 10,080 Total 14,000

4. Proposed Spoken Language Identification System

This section outlines the motivation for the article and describes the proposed spoken
LID system presented in Figure 1.
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Figure 1. Spoken LID system.

4.1. Motivation

The motivation for this article is to present a novel spoken LID system for seven
languages, including Arabic, that investigates and analyzes spoken LID problems with the
most cutting-edge systems available.

4.2. Preprocessing

Data preprocessing is critical for the success of deep learning systems [37,38]. In this
article, data processing was done by detecting the boundaries of speech. In particular,
speech signals were segmented and silent parts removed depending on speech bound-
aries using R2020b-MATLAB’s detect speech function [39]. This was done to prevent the
silent parts from influencing the classification task. Figure 2 shows plots of the detected
speech boundaries.

4.3. Selected Features

To reduce signal redundancy and improve accuracy in the spoken LID system, we
propose combining MFCC and GFCC features [40].

4.3.1. MFCC

Mel Frequency Cepstral Coefficient (MFCC) is the most popular feature extraction
method in speech processing [41] and the best feature extraction technique [42]. The process
for elaborating a character vector of MFCC is given as follows.

First, a pre-emphasis filter is applied to the signal. It is then divided into frames, with
the windowing function subsequently applied to the frames. When obtaining the Discrete
Fourier Transform (DFT) of each frame, the amplitude of the spectrum is used, and this
information is passed to a Mel domain through the Filter Bank (Mel scale); this scale is
a simulated human listener. After the logarithm of the signal is obtained, the Discrete
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Cosine Transform (DCT) is applied from the obtained vector. In turn, the number of desired
coefficients per frame is taken [43].
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4.3.2. GTCC

Gammatone Cepstral Coefficient (GTCC) is often referred to as Frequency Cepstrum
Coefficient (GFCC) or Gammatone Cepstrum Coefficient (GTCC). The Gammatone filter is
inspired by biological life, in which the representation of the human auditory filter response
in the cochlea is very similar to the magnitude response of a Gammatone filter [44]. The
method of extracting GTCC is similar to MFCC, with two main differences. The first is
the frequency scale used, where GTCC provides greater resolution at low frequencies than
MFCC. This is because it is based on the equivalent rectangular bandwidth scale, while
MFCC is based on Mel-scale. The GTCC uses the cubic root, whereas the MFCC employs
the log.

Due to its high accuracy and low complexity, MFCC is frequently used for sound pro-
cessing systems. However, it does not have high resistance to noise. Recent investigations
have revealed that the properties of GTCC, by contrast, are that it is particularly resistant
to noise and acoustic change [45]. With these considerations in mind, the primary goal is to
combine the characteristics of GTCC and MFCC to improve the overall testing accuracy of
the system.

4.4. Proposed CRNN Architecture

CNN has been used widely in various application areas, including image classification
and speech recognition. In these domains, A CNN has achieved state-of-the-art levels
of performance. The convolutional layer in a CNN facilitates feature extraction, which
is performed using convolutional processing and filtering. A sliding window (filter) is
applied to the inputs to perform this filtering operation. By calculating the convolution
product between the window and the considered input portion, the applied filter will
represent the characteristic extracted by the network, with its parameters estimated during
network training. The objective of subsampling layers is to reduce the dimensionality of
the characteristics that result from the convolution without significant loss of information.
Standard methods are max-pooling and average-pooling.

In the RNN family, the LSTM network is a unique subclass [46]. This network has
been shown to yield remarkable results for learning long-time dependencies. Recursion
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is the critical feature of recurrent networks. In particular, this network creates loops in
the network diagram that can preserve information. As a result, they can essentially
“remember” previous states and use that knowledge to determine what will happen next.
This property makes them ideal for working with time series data. LSTM units are used
for the construction of recurrent networks. Each LSTM unit is a cell with four gates: the
input gate, the external input gate, the forget gate, and the output gate. The most important
aspect of the cell is its internal state, which enables it to store and preserve values over time.

This article proposes a CRNN architecture that combines CNN with LSTM, as demon-
strated above. CNN is an excellent network for feature extractions, while the LSTM has
proved its ability to identify the language in sequence-to-sequence series. Figure 3 shows
the architecture of the proposed CRNN.
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The proposed CRNN architecture, as shown in Figure 3, contains CNN layers for
feature extraction on the input data, as well as LSTM to support long-term temporal
dynamics. The novelty of the proposed CRNN architecture is in using three layers to
convert the type of input data depending on the networks used in CRNN: a sequence
folding layer, a sequence unfolding layer, and a flatten layer.

The sequence folding layer converts the sequences of images to an array of images [47]
for CNN to be able to extract spatial features from the input array. The sequence unfolding
layer converts this array of images back to image sequences [48], and the flatten layer
converts image sequences to feature vectors [49] for input to the LSTM layer. Finally, to
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carry out the final prediction, the results are provided as input, fully connected layers, and
output layers in the prediction block [50].

4.5. Layers Description

(1) The Sequence Input Layer for 2-D image sequence input contains the vector of three
elements. Depending on the used parameters, this article includes 26 dimensions:
13 for GTCC and 13 for MFCC; there are 50 feature vectors per sequence (Because the
features that were extracted from segments have different feature vectors depending
on speech file length, we need the framing to buffer the feature vectors into fixed
sequences of size 50 frames with 47 overlaps); hence the input size is [26 50 1], where
26, 50, and 1 correspond to the height, width, and the number of channels of the
image, respectively.

(2) To use Convolutional Layers to extract features (that is, to apply convolutional opera-
tions to each speech frame independently), we use a Sequence Folding Layer followed
by convolutional layers.

(3) The Batch Normalization Layer follows the Convolution Layer, where Batch Nor-
malization is responsible for the convergence of learned representations. Then the
ELU Layer.

(4) Average Pooling 2 d = 1 × 1 with stride [10 10] and padding [0 0 0 0]. A 2-D average
pooling layer performs downsampling by dividing the input into rectangular pooling
regions and computing the average values of each region.

(5) We use a Sequence Unfolding Layer and a Flatten Layer to restore the sequence
structure and reshape the output to vector sequences.

(6) We include the LSTM Layers to classify the resulting vector sequences.
(7) The Dropout Layer, with a dropout possibility of 40%, always follows every LSTM layer.
(8) The Fully Connected Layer contains seven neurons.
(9) The Softmax Layer applies a softmax function to the input.
(10) The Classification Output Layer acts as an output layer for the proposed system.

5. Experiments

This section provides detail regarding performance metrics and the different
proposed experiments.

5.1. Performance Evaluation

Two options are presented in this article for evaluating the system’s performance. The
first is the evaluation adopted on the sequence level, and the second is the evaluation based
on the file level. Each speech file contained different numbers of sequences. Therefore, to
compute the complete speech file accuracy, as in [51], the accuracy of each sequence was
calculated. Choosing the right metrics is crucial for accurately measuring the performance
of trained architectures using a testing corpus. It is always desirable to ensure the exactness
of the system by computing various metrics. This article used four performance metrics:
accuracy (A), precision (P), recall (R), and F-measure (F1) [26] to determine the effectiveness
of the CRNN architecture for the spoken LID problem. For all metrics, TP represents all true
positives, TN denotes all true negatives, FP shows all false positives, and FN represents all
false negatives [32].

5.1.1. Accuracy (A)

As shown in Equation (1), accuracy is the ratio of truly predicted levels to total levels.

A = TP+TN
TP+TN+FP+FN × 100

(1)
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5.1.2. Precision (P)

As shown in Equation (2), precision is the fraction of truly positive predicted levels to
overall positive predicted levels. A low precision value indicates a high false-positive rate
and vice versa.

P =
TP

TP + FP
× 100 (2)

5.1.3. Recall (R)

As shown in Equation (3), recall (also known as sensitivity) is the fraction of truly
positive projected levels to overall positive actual levels. A low recall value suggests a high
false-negative rate and vice versa.

R =
TP

TP + FN
× 100 (3)

5.1.4. F-Measure (F1)

As shown in Equation (4), a weighted average of recall and precision is known as
the F-measure.

F1 = 2 × P × R
P + R

(4)

The variables P and R represent precision and recall in this equation.

5.2. Experimental Setup

The proposed system contains adjustable parameters, including filter size, the number
of filters, the number of layers, and the number of hidden units (for LSTM), which may be
tuned optimally to reduce the prediction error. In contrast, these differences in parameters
achieved complexity in the proposed CRNN architecture. We performed 12 experiments
with different parameters to study what combination of variables would achieve the highest
accuracy for the system. Table 4 provides a snapshot of the configurations and results of a
selection of the experiments undertaken. GTCC and MFCC were generated with MATLAB
for each audio file in the database using Hamming windows with a window length of
30 msec and a window step of 20 msec. This resulted in [26 50 1] matrices, which were
fed into the architecture as inputs. An NVIDIA GeForce RTX 2080 Ti graphics processing
unit with 11 GB RAM was employed for training, with a batch size of 128 samples for
15 epochs and a learning rate of 0.0009, using Adam’s adaptive gradient descent method as
the optimizer.

Table 4. Snapshot of selected experiment configurations and results.

# Experiment # Convolution
Layers Parameters # Hidden Units

in LSTM Layer
Training

Accuracy (%)
Validation

Accuracy (%)
Testing

Accuracy (%) Time Taken

1 5
Filter Size = 5

128 99.74 94.46 92.21 162 min 40 s
# Filters = 12

2 5
Filter Size = 10

128 97.99 93.12 92.00 251 min 37 s
# Filters = 32

3 3

Filter Size1 = 10

128 99.42 93.83 92.14 170 min 4 s

# Filters1 = 32

Filter Size2 = 5

# Filters2 = 12

Filter Size3 = 15

# Filters3 = 64

4 5

Filter Size1 = 4

128 98.94 94.29 92.57 236 min 41 s

# Filters1 = 32

Filter Size2 = 6

# Filters2 = 12

Filter Size3 = 8



Appl. Sci. 2022, 12, 9181 10 of 17

Table 4. Cont.

# Experiment # Convolution
Layers Parameters # Hidden Units

in LSTM Layer
Training

Accuracy (%)
Validation

Accuracy (%)
Testing

Accuracy (%) Time Taken

4 5

# Filters3 = 64

128 98.94 94.29 92.57 236 min 41 s

Filter Size4 = 10

# Filters4 = 32

Filter Size5 = 12

# Filters5 = 12

5 5
Filter Size = 10

64 98.69 93.57 92.71 253 min 12 s
# Filters = 32

6 5

Filter Size1 = 5

128 98.90 92.05 91.42 196 min 39 s

# Filters1 = 4

Filter Size2 = 6

# Filters2 = 8

Filter Size3 = 7

# Filters3 = 16

Filter Size4 = 8

# Filters4 = 32

Filter Size5 = 7

# Filters5 = 64

7 3

Filter Size1 = 12

128 98.44 90.98 90.18 142 min 14 s

# Filters1 = 16

Filter Size2 = 8

# Filters2 = 24

Filter Size3 = 5

# Filters3 = 32

8 5
Filter Size = 5

64 97.54 92.5 90.89 195 min 33 s
# Filters = 32

9 3

Filter Size1 = 10

128 97.92 92.86 92.14 355 min 34 s

# Filters1 = 32

Filter Size2 = 10

# Filters2 = 64

Filter Size3 = 10

# Filters3 = 128

10 5
Filter Size = 10

32 98.57 93.03 92.32 862 min 51 s
# Filters = 32

11 5

Filter Size1 = 10

128 98.96 94.01 93.00 221 min 29 s

# Filters1 = 32

Filter Size2 = 5

# Filters2 = 12

Filter Size3 = 15

# Filters3 = 64

Filter Size4 = 5

# Filters4 = 12

Filter Size5 = 10

# Filters5 = 32

12 5
Filter Size = 5

128 97.78 91.42 92.57 195 min 2 s
# Filters = 32

In contrast, the # symbol means number, and min and s abbreviations mean minute and second.
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6. Results and Discussion
6.1. Feature Comparison Results

In this article, a comparison of the accuracy of GTCC and MFCC was undertaken for
spoken LID in the proposed system. The accuracy of GTCC compared with MFCC was
evaluated in Experiment 1 of Table 4 for all files using a considered MCV corpus with the
execution of five runs. Table 5 shows the experimental results for GTCC and MFCC, as
well as combined features.

Table 5. Comparison of GTCC and MFCC for spoken LID in the proposed system.

Features: GTCC MFCC GTCC-MFCC

Per Files (%) Testing
Accuracy (%) Time Taken

Testing
Accuracy (%) Time Taken

Testing
Accuracy (%) Time Taken

Experiment 1

Run # 1 89.07 142 min 49 s 89.21 137 min 48 s 92.21 162 min 40 s
Run # 2 90.00 145 min 31 s 89.93 139 min 2 s 91.79 161 min 36 s
Run # 3 88.68 145 min 43 s 90.11 139 min 52 s 91.25 163 min 11 s
Run # 4 89.21 145 min 54 s 90.82 140 min 52 s 91.86 164 min 57 s
Run # 5 88.64 147 min 3 s 90.57 141 min 15 s 91.68 153 min 46 s
Average 89.12 145 min 36 s 90.13 138 min 34 s 91.76 160 min 38 s

The highest average testing accuracy was achieved when concatenating GTCC and
MFCC as system features. The average precision of GTCC for spoken LID in Arabic was
94.88%, Chinese 94.20%, English 91.30%, French 90.58%, German 74.84%, Russian 92.98%,
and Spanish 89.86%. In contrast, the average precision of MFCC for spoken LID in Arabic
was 94.82%, Chinese 94.88%, English 89.76%, French 92.14%, German 76.78%, Russian
95.32%, and Spanish 91.72%. The results indicate that GTCC outperformed MFCC in Arabic
and English spoken LID. However, the most effective results were obtained when GTCC
was combined with MFCC. These results are illustrated in Figure 4. However, Table 5
shows that consumption time is a major issue in spoken LID systems when using more
than one feature, especially in the real-time setting.
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Figure 4. The average precision of each feature.

The average precision when combining GTCC with MFCC in Experiment 1 for spoken
LID in Arabic is 95.78%, Chinese 94.47%, English 92.35%, French 92.49%, German 80.95%,
Russian 95.25%, and Spanish 93.49%. Depending on the testing accuracies and experiment
consumption time, the systems in Experiments 1 and 11 achieved the highest accuracy and
the lowest execution time, as shown in Table 4. The proposed architecture’s accuracy in
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Experiment 1 reached 92.21% in around 163 min, while in Experiment 11 it reached 93.00%
in 221 min. Each experiment was performed for five runs per sequence and per whole file.

6.2. Spoken Language Identification Results

Table 6 summarizes the results for Experiments 1 and 11, as listed in Table 4. Table 6
shows that the overall testing accuracy per file was better than per sequence, suggesting a
level of similarity between the languages in the file sequences. The average per-file accuracy
of five runs was 91.76% in Experiment 1 and 92.81% in Experiment 11. The highest accuracy
per sequence was 83.73% in Experiment 1 and 84.08% in Experiment 11, while the worst
accuracy was 82.18% in Experiment 1 and 83.58% in Experiment 11. On the other hand, the
highest per-file accuracy was 92.21% in Experiment 1 and 93.11% in Experiment 11, while
the lowest accuracy was 91.25% in Experiment 1 and 92.46% in Experiment 11. As shown
in Table 6, the standard deviation is low, especially in Experiment 11, which means that
the accuracies of all runs are too close to the average accuracy. In addition, the system is
yielding more stability regarding classification robustness.

Table 6. Summary results for selected experiments.

Testing Accuracy Per Sequences (%) Per Files (%)

GTCC and MFCC Experiment 1 Experiment 11 Experiment 1 Experiment 11

Run # 1 83.73 83.77 92.21 93.00
Run # 2 82.31 83.61 91.79 92.61
Run # 3 82.18 83.93 91.25 92.86
Run # 4 82.28 84.08 91.86 93.11
Run # 5 82.44 83.58 91.68 92.46
Average 82.59 83.79 91.76 92.81

Standard Deviation 0.64 0.21 0.35 0.27
The Best Accuracy 83.73 84.08 92.21 93.11

The Worst Accuracy 82.18 83.58 91.25 92.46

The choice between accuracy or time is a well-known dilemma, and many studies
have dealt with the discussion of the interpretability vs. performance trade-off. It is not
always true that more complex models produce more accurate results. However, this can
be incorrect when the given data is structured and has meaningful features. The statement
“models that are more complicated are more accurate” can be valid in cases when the func-
tion being approximated is complex, the given data is widely distributed among suitable
values for each variable, and the given data is adequate to build a complex model. The
trade-off between interpretability and performance is evident in this circumstance [52,53].

In our work, the Experiment 11 results were favorable compared to the Experiment 1
results regarding the proposed system’s accuracy, while Experiment 1 outperformed Exper-
iment 11 regarding the speed of execution. That means Experiment 1 is around 0.9% less
accurate ((93 − 92.21)/92.21) but 27% faster ((221 − 162)/221) than Experiment 11. Figure 5
illustrates the language-identified accuracy results for the two experiments per sequence
and file. The best language-identified accuracy was the Russian language, followed by
Arabic. The worst language-identified accuracy was Spanish.

In particular, two conventional architectures also revealed difficulties in discriminat-
ing between English and Spanish due to their similarity [11]. The Spanish language is
also similar to the German language [54]. In contrast, the French language is similar to
Spanish [21]. German and English are more likely to be confused, but English has a slightly
stronger bias toward French [2]. All in all, the learned representations of the architecture are
pretty distinctive for each language. For more details, Tables 7 and 8 present the confusion
matrices of the average five runs per file for Experiments 1 and 11. In addition, the average
accuracy, precision, recall, and F-measure results are presented.
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Table 7. The average five-run confusion matrices per file in Experiment 1.

Predicted

Arabic Chinese English French German Russian Spanish

Actual

Arabic 377 5 3 4 8 2 1
Chinese 4.6 345 14 9.8 15.6 5 6
English 4 4.2 366.8 2 16 1 6
French 2 3 1 364.8 21.2 3 5

German 2 1 2.2 3 385.8 2 4
Russaian 3 1 1.6 3 4 385.4 2
Spanish 1 6 8.6 7.8 26 6.2 344.4

P(%) 95.78 94.47 92.35 92.49 80.95 95.25 93.49
R(%) 94.25 86.25 91.70 91.20 96.45 96.35 86.10
F1(%) 95.01 90.17 92.02 91.84 88.02 95.80 89.64

Accuracy(%) 91.76

Table 8. The average five-run confusion matrices per file in Experiment 11.

Predicted

Arabic Chinese English French German Russian Spanish

Actual

Arabic 378.2 4 3.6 4 7 1 2.2
Chinese 4.4 353.4 10.6 8.8 14.4 4.4 4
English 3.8 3.2 369 2 16 1 5
French 3 1.6 2 367.8 21.8 1.2 2.6

German 1.8 0 1 2 390.2 1 4
Russian 3.4 1 0 4.2 3 385.4 3
Spanish 0 1.8 7 8.2 24.2 4.2 354.6

P(%) 95.84 96.82 93.85 92.64 81.87 96.79 94.46
R(%) 94.55 88.35 92.25 91.95 97.55 96.35 88.65
F1(%) 95.19 92.39 93.04 92.29 89.02 96.57 91.46

Accuracy(%) 92.81

6.3. Discussion

From the Experiment 1 results in Table 7, five Arabic test files were identified as
Chinese and eight as German. Fourteen Chinese test files were identified as English, nine
as French, fifteen as German, five as Russian, and six as Spanish. Sixteen English test files
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were identified as German and six as Spanish. Moreover, twenty-one French test files were
identified as German and five as Spanish. In addition, six Spanish test files were identified
as Chinese, eight as English, seven as French, twenty-six as German, and six as Russian.
This experiment confuses Chinese and Spanish, English and Spanish, and Spanish and
French. As mentioned previously, these are similar languages. Additionally, based on the
results of the confusion matrices in Table 7, we can conclude that the German language is
confused with Arabic, Chinese, English, French, and Spanish, as in the predicted German
column. This implies a considerable similarity between German and these languages. We
can also conclude that German is the only language that serves as a source of confusion
for Arabic, as in the actual Arabic row. However, Arabic causes minimal confusion for all
other languages, as in the predicted Arabic column.

From the Experiment 11 results in Table 8, seven Arabic test files were identified as
German. Ten Chinese test files were identified as English, eight as French, and fourteen as
German. Sixteen English test files were identified as German and five as Spanish. Twenty-
one French test files were identified as German. Seven Spanish test files were identified
as English, eight as French, and twenty-four as German. As the results indicate, this
experiment still confuses English and Spanish. In contrast, the system was effective at
distinguishing between Spanish and Chinese, as well as between French and Spanish. We
can draw the same conclusions from Experiment 11 as from Experiment 1. In particular,
German was the main source of confusion for all six other languages, as seen in Table 8. In
addition, Arabic was not a source of confusion for any of the other six languages.

From Tables 7 and 8, German achieved the lowest P values (80.95% and 81.87%
in Experiments 1 and 11, respectively) and the highest R values (96.45% and 97.55%,
respectively), as well as the lowest F1 values: (88.02% and 89.02%, respectively). The
impact of the German language is clear from the confusion matrices in these tables, where
most spoken LID error files of any language, and Spanish in particular, were linked to
German. Interpreting the relationships between these languages requires further linguistic
research. Nevertheless, Tables 7 and 8 indicate that the proposed system is ideal for
identifying Arabic spoken language and distinguishing it from the other six languages.
Moreover, the system can discriminate among similar languages with the best accuracy.
Table 9 presents the studies that used CRNN, CNN, LSTM architectures, or Mozilla corpus
to compare with our proposed system.

Table 9. Comparison of proposed CRNN language identification architecture with other studies
using different corpora with varying numbers of classes.

Study and Ref. Features Classifiers Corpus Classes Languages Results (%)

Bartz et al. [2] Spectrogram CRNN

European
Parliament

Statements and
News Channels

on YouTube

6
English, French, German,

Chinese, Russian,
and Spanish

Accuracy = 91.00

Kim and Park. [11] Rhythm R-vector with SVM

SiTEC 2 English and Korean ER = 2.26

Mozilla 3 Chinese, English,
and Spanish ER = 53.27

Zazo et al. [20] MFCC-SDC LSTM-RNN NIST LRE 8
Dari, English, French,

Chinese, Pashto, Russian,
Spanish, and Urdu

Accuracy = 70.90

Ma and Yu [27] DNN-BN LSTM AP17-OLR 10

Tibetan, Japanese, Kazakh,
Korean, Indonesian,

Mandarin, Cantonese,
Vietnamese, Uyghur,

and Russian

ER = 50.00

Draghici et al. [21] Mel-spectrograms CRNN EU Repo 6 English, French, German,
Greek, Italian, and Spanish Accuracy = 83.00

Singh et al. [33] Log-Mel
spectrograms CNN Mozilla 4 Estonian, Tamil, Turkish,

and Mandarin Accuracy = 80.21

Proposed System GTCC-MFCC CRNN Mozilla 7
Arabic, German, English,
Spanish, French, Russian,

and Chinese
Accuracy = 92.81
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As shown in Table 9, we clarified the features, corpus, languages, the proposed
classifiers used in each study, and the number of classes to make a general comparison of
the available studies in the spoken LID field. Compared to these studies, we found that our
proposed system applied to languages of industrial countries, including Arabic, obtained
the best results.

7. Conclusions

In this article, we proposed a spoken LID system using a CRNN architecture that
works on combined GTCC and MFCC features of speech signals. At the feature extraction
stage, the GTCC and MFCC features were compared, as well as a combination of both.
The average precision of GTCC for spoken LID in Arabic was 94.88%, Chinese 94.20%,
English 91.30%, French 90.58%, German 74.84%, Russian 92.98%, and Spanish 89.86%. In
Experiment 1, by contrast, the average precision of MFCC for spoken LID in Arabic was
94.82%, Chinese 94.88%, English 89.76%, French 92.14%, German 76.78%, Russian 95.32%,
and Spanish 91.72%. The results indicate that GTCC outperformed MFCC in Arabic and
English spoken LID. We performed extensive experiments with different parameters and
reported a state-of-the-art result in that the system in Experiment 11 achieved the highest
overall average accuracy of 92.81% for identifying the seven spoken languages considered
in the selected corpus.

The average precision when combining GTCC and MFCC in Experiment 11 for spoken
LID in Arabic was 95.84%, Chinese 96.82%, English 93.85%, French 92.64%, German 81.87%,
Russian 96.79%, and Spanish 94.46%. Furthermore, our experiments indicate that the
proposed system gives the best results for identifying Arabic and Russian, discriminates
among similar languages, and is extensible to new languages. Additionally, this article
provides a good reference for people interested in developing Arabic-related ASR systems.

In future research, we can extend the number of languages and compare our CRNN
architecture with other variations of deep learning architectures. Many other speech
corpora can also be used for evaluation. The immediate benefit of an effective multi-lingual
spoken LID system is that it can be developed based on the system’s output for different
purposes, including multi-lingual automatic translation.
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