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Abstract: Over the past few decades, most cities worldwide have experienced a rapid expansion with
unprecedented population growth and industrialization. Currently, half of the world’s population
is living in urban areas, which only account for less than 1% of the Earth. A rapid and unplanned
urban expansion, however, has also resulted in serious challenges to sustainable development of the
cities, such as traffic congestion and loss of natural environment and open spaces. This study aims at
modeling and predicting the expansion of urban areas in South Korea by utilizing an explainable
artificial intelligence (XAI) model. To this end, the study utilized the land-cover maps in 2007 and
2019, as well as several socioeconomic, physical, and environmental attributes. The findings of
this study suggest that the urban expansion tends to be promoted when a certain area is close to
economically developed area with gentle topography. In addition, the existence of mountainous
area and legislative regulations on land use were found to significantly reduce the possibility of
urban expansion. Compared to previous studies, this study is novel in that it captures the relative
importance of various influencing factors in predicting the urban expansion by integrating the
XGBoost model and SHAP values.
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1. Introduction

Over the past few decades, most cities worldwide have experienced a rapid expansion
with unprecedented population growth and industrialization [1,2]. Cities can be attractive
to people as they guarantee a convenient and stable quality of life, with various oppor-
tunities including employment, education, and culture [3]. As a result, about 55% of the
world’s population is currently living in urban areas, which only account for less than 1%
of the Earth’s land area [4,5].

A rapid and unplanned urban expansion, however, has also resulted in serious chal-
lenges to sustainable development of the cities. Urban sprawl and suburbanization has
increased the burden of infrastructure and traffic congestion [6,7], and a loss of natural envi-
ronment and open spaces within the cities has reduced carbon sinks and biodiversity [8,9],
while intensifying air pollution and global warming [10,11].

In order to maximize the benefits of urbanization while supplementing its adverse
effects, it is essential to predict and control the expansion of urban areas. Accordingly,
scholars and practitioners in the urban planning field have developed various methods for
modeling the urban growth. Remote sensing data, including satellite images, are utilized
in a majority of urban growth models, as they contain a wide range of land use/land cover
(LULC) information at the same time [12].

In early studies, the mathematical models, including land-use transportation (LUT)
models [13,14], agent-based models (ABMs) [15,16], and cellular automata (CA)-based
models [17], were widely used in predicting urban expansion. However, as they assumed
that urban areas are spatially homogeneous, those models have difficulties in reflecting the
socioeconomic and physical variations within the city [18].
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To overcome the limitations of the conventional approach, the machine learning (ML)
and artificial intelligence (AI)-based techniques have recently been adopted for urban
expansion modeling [19]. The decision tree [20], random forest [21,22], support vector
machine [23,24], and artificial neural networks [5,25] are some of the most widely used
models in existing research. Although the implementing mechanisms and algorithm
structures of each model are different, they have a common strength in developing highly
accurate urban growth models by collecting and training large amounts of LULC and
physical/social characteristics in the city [26]. However, as prediction accuracy increases,
the difficulties in understanding the relationships among variables has been pointed out as
one of the limitations of these black-box urban growth models [27].

More recently, an explainable artificial intelligence (XAI) framework has been high-
lighted among researchers to overcome the weakness of the aforementioned ML and AI
models [28]. While there is no clear definition of the concept yet, the XAI aims to increase
interpretability and explainability of AI models [29]. In this regard, XAI models require
an additional explainable algorithm, such as Shapley Additive exPlanations (SHAP), to
explain how and why an AI model achieves a specific result [30].

The purpose of the study lies in modeling and predicting the expansion of urban areas
in South Korea by utilizing an XAI model. In addition, we aimed at examining the relative
importance of several built-environment factors on the urbanization. To this end, the study
utilized the land-cover maps in 2007 and 2019, as well as several socioeconomic, physical,
and environmental attributes. The following section describes the materials and methods
used in the study; then, we summarize and discuss the findings of the study, and conclude
with several recommendations for future studies.

2. Materials and Methods
2.1. Study Area

The spatial extent of the study was the entire land area covered by the South Korea
territory, including Jeju Island. As of 2019, the study area consists of 1 special, 1 self-
governing, 6 metropolitan cities, and 8 provinces, with a total area of approximately
118,118.94 km2 (Figure 1). The temporal extent of the study was the expansion of urban
areas from 2007 to 2019. For each year, the medium-classified land-cover maps were
utilized provided by Ministry of Environment (https://egis.me.go.kr/ (accessed on 1
August 2022)).

South Korea has been one of the fastest-growing countries in the world over the past
few decades. From 1980 to 2020, the country’s population and gross domestic product
(GDP) has increased by 39% and 2393%, respectively, while the land area increased by
only 1.3% (https://kosis.kr/ (accessed on 1 August 2022)). As a result, the proportion
of urban areas in Korea has dramatically increased from 2.1% in 1980 to 16.7% in 2020,
and the population living in urban areas has also doubled during the same period. As of
2020, more than 90% of the nation’s population lives in urban areas, and a half of them are
concentrated in the capital city, Seoul, and the nearby metropolitan areas [31].

https://egis.me.go.kr/
https://kosis.kr/
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Figure 1. Spatial extent of the study.

2.2. Data

To analyze and predict the urban expansion in Korea, we constructed national-wide
land-cover, topographic, environmental, and socioeconomic feature data for 2007 and 2019,
respectively. Table 1 describes the dependent and independent variables used in the study
and their sources. For the analysis, all variables were adjusted to a raster grid with a
resolution of 10 m.
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Table 1. Description of variables used in the study.

Data Source (Year)

Dependent
Variable

Dummy variables for urbanization from 2007 to 2019
(0: non-urbanized area, 1: urbanized area) Land Cover Map (2007 and 2019)

Independent
Variable

Socioeconomic features
Population density SGIS and KOSIS

(2007 and 2019)GRDP per capita

Topographic features
Elevation

Digital Elevation Map (2007 and 2019)
Slope

Land-cover features
(distance to:)

Residential area

Land Cover Map (2007 and 2019)

Commercial area

Industrial area

Transportation area

Agricultural area

Forest area

Grassland area

Wetland area

Bare land area

Water area

Environmental features
Ecological ECVAM grade ECVAM

(2007 and 2019)Legislative ECVAM grade

2.2.1. Dependent Variable

In this study, the dependent variable was composed of dummy variables that indicate
whether a certain region had been urbanized or not from 2007 to 2019. To this end, we first
classified residential, commercial, and industrial areas on the land-cover map as urban
areas, otherwise as non-urban areas. We then defined a raster cell which changed from a
non-urban area in 2007 to an urban area in 2019 as an ‘urbanized area’. A raster cell that
remained as a non-urban area in both 2007 and 2019, on the other hand, was defined as a
‘non-urbanized area’. Raster cells that had already been classified as urban areas in 2007
were excluded from this study, since they do not correspond with the urban expansion.
Table 2 summarizes the classification of urbanized and non-urbanized area in the study.

Table 2. Classification of urbanized and non-urbanized area.

2019

Urban Area
(Residential, Commercial,

Industrial Area)
Non-Urban Area

2007

Urban Area
(Residential, Commercial,

Industrial Area)
- -

Non-Urban Area 1 (Urbanized) 0 (Non-urbanized)

2.2.2. Independent Variable

Independent variables of the study consist of (1) socioeconomic, (2) topographic,
(3) land-cover, and (4) environmental features. Socioeconomic and environmental features
were constructed based on national statistics, and topographic, land-cover features were
derived from remotely sensed data (Figure 2).
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First, socioeconomic features include population density and gross regional domestic
product (GRDP) per capita. Each feature was derived from Statistical Geographic Infor-
mation Service (SGIS, https://sgis.kostat.go.kr/ (accessed on 1 August 2022)) and Korean
Statistical Information Service (KOSIS, https://kosis.kr/ (accessed on 1 August 2022)),
respectively. The spatial unit of population density was the census block group level, while
that of GRDP per capita was the county level. In this study, raster cells that were located
within each census boundary were assigned to corresponding values in 2007 and 2019.

Second, this study adopted the elevation and slope of each raster cell as topographic
features. To calculate those, we utilized 10 m digital elevation model (DEM) data provided
by the National Spatial Data Infrastructure Portal (http://www.nsdi.go.kr/ (accessed on
1 August 2022)) and the Surface tool in ArcGIS software. As a land-cover feature, we
calculated the closest distance from a certain raster cell to other land-cover types. To
this end, the Euclidean distance tool in ArcGIS was applied to residential, commercial,
industrial, transportation, agricultural, forest, grassland, wetland, bare land, and water
area on land-cover maps in 2007 and 2019.
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Last, the Environmental Conservation Value Assessment Map (ECVAM) provided by
the Ministry of Environment (https://ecvam.neins.go.kr/ (accessed on 1 August 2022)) was
utilized to measure environmental conservation value in South Korea. The ECVAM evalu-
ates the legislative and ecological grade from 1 to 5, by synthesizing various environmental
aspects of the entire national territory. The legislative ECVAM consists of 62 conservative
areas including green belt, while the ecological ECVAM evaluates the potential values for
preservation [32]. When the ECVAM grade of a certain raster cell is close to 1, it indicates
that an area has higher environmental preservation value and thus lower development
possibility [33].

2.3. Methods
2.3.1. Research Procedure

Figure 3 illustrates the overall research procedure of the study. It can be largely divided
into two parts: (1) development of urban expansion model, and (2) prediction of future
urban expansion in South Korea.

First, this study adopted the XAI approach by integrating the XGBoost–SHAP model to
predict the urban expansion in Korea. As described in Table 1, the dependent variable was a
dummy variable that includes urbanized and non-urbanized area from 2007 to 2019, and the
independent variables include socioeconomic, topographic, land-cover, and environmental
features. In order to evenly extract samples of urbanized and non-urbanized area across
the study area, we rescaled the 10 m × 10 m raster to 50 m and 500 m, respectively, and
choose centroid of each raster as study samples. Then, study samples were divided into
training and validation dataset for XGBoost–SHAP modeling, which account for 80% and
20% of total samples.

Second, we predicted the future urban expansion of South Korea in 2031 using the
constructed XGBoost model. As predictors, a land-cover map in 2019 and corresponding
socioeconomic, topographic, land-cover, and environmental features were utilized. Output
raster includes the probability of urbanization, from 0 to 1, for all 10 m × 10 m raster cells
in the study area.

https://ecvam.neins.go.kr/
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Figure 3. Research procedure.

2.3.2. XGBoost–SHAP Model

To develop an urban expansion model, this study combines the eXtreme Gradient
Boosting (XGBoost) algorithm and Shapley Additive ExPlanations (SHAP).

The eXtreme Gradient Boosting (XGBoost) algorithm is an open-source library that
supports an efficient implementation of gradient-boosted decision trees [34]. Since the
package includes efficient linear model solver and tree learning algorithms, users can
compute much faster than other existing gradient boosting tools. For the analysis, we used
the version 1.5.2.1 of “xgboost” package in R, which was released in February 2022.

The gradient boosting decision tree (GBDT) is an ensemble learning technique that
combines a series of weak decision trees to build a strong learner [35]. In this algorithm, each
decision tree is trained from the residuals of the previous one, and iteratively constructs
a more accurate model until the loss function is minimized. Due to its high predictive
precision and ability to deal with both categorical and continuous variables, GBDT has
been widely used in various fields of research [36].

For a given training dataset {(xi, yi)}
N

i = 1
, the initialized model with constant value

is defined as below:
f0(x) = argminγ ∑N

i=1 L(yi , γ) (1)

where γ denotes the constant, L(y, F(x)) denotes a differentiable loss function of γ, and
argminγ indicates the value γ that minimizes the function.

For m number of iterations, the negative gradient of the loss function is calculated as

gm(xi) = −
[

∂L(yi, f (xi))

∂f(xi)

]
f= fm−1

(2)

Here, gm(xi) is calculated by taking a derivative of previous loss function fm−1(x).
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Then, a base learner (or weak learner) solves the optimization problem, as follows:

θm = argminθ ∑N
i=1 L(yi, Fm−1(xi) + θt(x; µm)) (3)

where L(yi, Fm−1(xi) + θt(x; µm)) indicates the loss function on each node i.
Lastly, the model is updated as

fm(x) = fm−1(x) + θmt(x; µm) (4)

Here, t(x; µm) denotes the selected node and θm denotes the learning rate.
In the XGBoost model, there are several parameters that require to be designated to

maximize performance of the model, while preventing overfitting problems [37]. More
specifically, the model needs to select the suitable number of iterations, maximum depth,
the fraction of observations, and learning rate. In addition, the parameters including
‘colsample_bytree’, ‘alpha’, and ‘lambda’ determine the weights and fitness of the model.

The Shapley Additive exPlanations (SHAP) was first proposed by Lundberg and
Lee [38], and has been used to evaluate the relative importance of features in machine
learning models. In SHAP, the importance of each independent variable on the model
outcome is calculated based on its marginal contribution [39]. For an XGBoost model of
group N with n features, the SHAP value φi assigned to each feature i is represented as

φi = ∑S∈N
|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)] (5)

where S represents feature subsets derived from n, and v represents the input features
within the set S.

3. Results
3.1. Comparison between Urbanized and Non-Urbanized Area

Table 3 summarizes the descriptive statistics of urbanized and non-urbanized area
from 2007 to 2019 in South Korea. The number of samples for urbanized and non-urbanized
area used in the study were 190,977 and 353,788, respectively. There were significant differ-
ences between urbanized and non-urbanized area in terms of socioeconomic, topographic,
land-cover, and environmental features.

Regarding the socioeconomic features, the average population density and GRDP
per capita were relatively high in urbanized area compared to non-urbanized area. It is
not surprising that urban areas tend to expand from densely populated and economically
developed metropolitan areas [40–42]. In addition, it implies that urban sprawl is one of
the most prevalent types of urban expansion in South Korea.

For topographic features, on the other hand, non-urbanized area showed higher
elevation and slope than urbanized area. This is line with the previous studies’ findings
that the high altitude and slope of a certain land are two of the main influencing factors
that hinder development into urban areas [5,43].

In terms of land-cover features, the nearest distance to the majority of land-cover
types were shorter in urbanized area, except for forest area. Since residential, commercial,
industrial, and transportation areas are largely classified as built-up areas, the probability of
new development of a specific area increases as it approaches those land-cover types [44,45].

With regard to environmental features, urbanized area tended to be evaluated as
having higher ecological and legislative ECVAM grade, compared to non-urbanized area.
Since ECVAM grade indicates the level of conservation of a certain land, a certain raster
cell that has higher ECVAM level would be more actively developed [46].
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Table 3. Comparison between urbanized and non-urbanized area.

Total Urbanized Non-Urbanized

Number of samples 544,765 190,977 353,788

Socioeconomic
features

Population density
(person/km2) 505.99 1176.58 144.00

GRDP per capita
(KRW 1,000,000/person) 23.28 27.30 21.11

Topographic
features

Elevation (m) 200.51 82.55 264.19

Slope (◦C) 13.79 5.90 18.05

Land-cover features
(distance to nearest:)

Residential area (m) 528.44 269.65 668.14

Commercial area (m) 1881.78 1268.82 2212.67

Industrial area (m) 2335.20 1263.24 2913.85

Transportation area (m) 687.68 340.89 874.87

Agricultural area (m) 229.90 123.97 287.09

Forest area (m) 118.06 197.20 75.34

Grassland area (m) 74.14 51.07 86.59

Wetland area (m) 79.61 48.85 96.21

Bare land area (m) 166.56 130.73 185.91

Water area (m) 807.71 602.59 918.43

Environmental
features

Ecological ECVAM grade 2.81 3.84 2.25

Legislative ECVAM grade 2.13 2.46 1.96

3.2. Model Results
3.2.1. XGBoost Model Results

The optimal XGBoost hyperparameter values chosen for the study are summarized in
Table 4. The number of iterations was 100, and the maximum number of tree splits was 6.
Of the total, 80% of the samples were used for training, with learning rate of 0.3. To prevent
overfitting of the model, ‘colsample_bytree’, ‘alpha’, and ‘lambda’ value were tuned as 1, 0,
and 1, respectively, based on the cross-validation.

Table 4. Hyperparameter tuning of XGBoost model.

Parameters Values

Number of iterations 100

Max depth 6

Subsample ratio 0.8

Learning rate 0.3

Colsample_bytree 1

Alpha 0

Lambda 1

Overall accuracy of the XGBoost model developed in the study was 82.54%, where
89,930 raster cells among 108,953 cells were correctly modeled (Table 5). In detail, the
ratio that predicted urbanized cell as urbanized, and non-urbanized cell as non-urbanized
were 76.99% and 85.53%, respectively. The model better predicts the non-urbanized area
compared to the urbanized area.
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Table 5. Accuracy of XGBoost model.

Predicted
Total

Non-Urbanized Urbanized

Actual
Non-urbanized 60,524 10,241 70,765

Urbanized 8786 29,402 38,188

Total 69,310 39,643 108,953

Accuracy (%) 85.53% 76.99% 82.54%

3.2.2. Factor Importance

Figure 4 illustrates the estimated SHAP values of the study’s XGBoost model. It
indicates the importance and direction of independent variables in determining if a certain
area is likely to be urbanized or not.

Figure 4. Factor importance (SHAP value).

First of all, the distance to nearest forest area was found to be the most influencing
factor. The XGBoost model of this study showed that the probability of urbanization
increases as the distance to nearest forest area increases. Second, the topographic features,
including slope and elevation, also showed relatively high significance to urban expansion.
Both factors were negatively associated with the urbanization of a certain area. Those
findings suggest that the physical availability of development is the most influencing factor
on urban expansion [5,43].

Socioeconomic features were also found to be relatively significant predictors of urban
expansion. The GRDP per capita and population density of a certain region tend to
accelerate the development of the nearest urban area. It is notable that the economic vitality
is a more important factor of urbanization, compared to the population number.

On the other hand, the distance from existing urbanized areas did not significantly
affect the level of urban expansion, particularly for residential and commercial areas.
Instead, the distance from the nearest industrial and transportation areas was found to be
negatively associated with the possibility of urbanization.

In terms of environmental features, the legislative ECVAM grade was a more sig-
nificant predictor of urban expansion than the ecological ECVAM grade. This outcome
makes sense in that the legislative ECVAM grade is based on several legal restrictions of the
land development, while the ecological ECVAM grade only recommends consideration for
development without coercion [47,48]. As both legislative and ecological ECVAM grades
increased, the possibility of urban expansion also increased.

3.3. Urban Expansion Prediction

Figure 5 shows the probability map of urban expansion in 2031, based on the land-
cover maps of 2019 and XGBoost model developed in the study. The output raster cells
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were calculated as 10 m × 10 m units. As a result, the predicted areas of urban expansion
at 80%, 90%, and 95% level of probability were 2245.36 km2, 501.74 km2, and 131.31 km2,
respectively, which account for 0.57%, 0.12%, and 0.03% of the whole country.

Figure 5. Probability map of urban expansion in South Korea (2031).

One of the most noticeable points in this map is that raster grids with a relatively high
probability of urban expansion were found to be concentrated in the northwestern part of
the country. This seems mainly due to the existence of the Seoul Metropolitan Area (SMA)
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within this region, which comprises the city of Seoul, Incheon, and Gyeonggi-do provinces.
Those areas account for almost half of the national population and GDP [49,50]. For a
similar reason, the raster grids that are adjacent to other metropolitan areas in South Korea,
including Busan, Daegu, and Daejeon, showed high probability of being urbanized area.

In addition, the spatial boundaries of expanding urban areas seem to be highly de-
pendent on the geographical and topographical characteristics of the country. The vast
majority of raster grids with less than 10% probability of urban expansion are currently
covered by the country’s mountainous areas with high elevations and slopes. Instead, flat
and wide agricultural areas such as paddy fields showed relatively high probability of
being urbanized.

4. Discussion

In traditional approaches, urbanization was often understood as a linear and phys-
ical process, including top-down land-use planning [51]. Recently, however, researchers
have examined the nonlinear and socioeconomic properties of urban expansion with ad-
vanced modeling algorithms such as machine learning (ML) and artificial intelligence
(AI) models [19,52]. While these techniques greatly improved the accuracy of predicting
urban expansion, their black-box nature has been pointed out as a major limitation in
understanding the relative importance of influencing factors of urbanization [53,54].

From this point of view, our study is novel in the existing literature from several
perspectives. First, the study adopted the XAI approach by integrating the XGBoost–
SHAP model in predicting the urban expansion in South Korea. It enabled the interpreta-
tion of magnitude and direction of influencing factors in predicting the urban expansion,
which has not been thoroughly investigated in previous studies using the ML and AI
techniques [27,30]. As a result, the vicinity to green area and the existence of harsh topo-
graphic environments, such as slope and elevation, were found to be the most influencing
factors that prevent the expansion of urbanized areas.

In addition, the study takes a theoretical step forward from previous studies, in
that it examines the relative effects of social and economic factors in predicting the urban
expansion. More specifically, the study shows that the level of economic development tends
to more promote urbanization compared to the density of populations. It complements
the existing studies’ findings that the urban expansion has been mainly dependent on
population growth [55,56]. It is also noteworthy that the legislative ECVAM grade was
found to have more significant impact on urban expansion than the ecological grade. This
suggests that the environmental regulations on land use can affect the spatial pattern of
urban expansion.

Based on the study’s findings, we suggest several policy implications for the cities’
sustainable development. First, planners and practitioners in the urban planning field
need to narrow down the spatial extent of urban expansion based on the geographical and
topographical features of the target regions. In other words, scientific judgement on whether
a certain area will be urbanized or not should be determined prior to developing strategies
for the urban expansion control. Second, the designation of appropriate legal restrictions on
development can be effective tools in managing the level of urban expansion. Based on our
findings, the authorities can establish site-specific conservative zones to control excessive
urbanization. Last, urban planners should be aware that the economic level of a certain city
can be an important predictor of urban expansion. In order to prevent the spatial imbalance
of urbanization across the country, it is necessary to prepare appropriate measures for
economically underdeveloped regions, such as attracting companies or promoting the
tourism industry.

5. Conclusions

Analyzing and predicting the expansion of urban areas has long been an area of
interest in remote sensing and urban study sectors. By adopting XAI modeling, this study
developed the urban expansion model and predicted the possibility of urbanization in the
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near future. The study’s results suggest that the urban expansion tends to be promoted
when a certain area is close to economically developed area with gentle topography. In
addition, the existence of mountainous area and legislative regulations on land use were
found to significantly reduce the possibility of urban expansion. Our findings can contribute
to develop cities’ effective strategies in managing sustainable urban expansion in the future.

Despite the study’s contribution in predicting urban expansion, there is still some
room for improvement in future research. First, the XGBoost model has resulted in rela-
tively high accuracy in recent urban studies, particularly for transportation sectors [37,57];
however, the prediction accuracy of urban expansion derived in this study’s model was
not significantly higher than previous studies that used other methods, including logistic
regression and machine learning techniques [7,24]. It seems to reflect the complex nature of
urban expansion processes, which is determined by not only socioeconomic and physical
environment, but also political and cultural factors [58,59]. To increase the accuracy of
predicting urban expansion, researchers are required to consider various aspects of the
target areas.

In addition, the study’s urban expansion model did not take into account the effects
of urban decline, which is currently occurring in many developed countries around the
world. In South Korea, for example, the population number has been decreasing in the late
2010s, and small cities are declining in terms of demographic and economic aspects [60].
However, the study predicted that the urban areas tend to continuously expand in 2031, as
we developed the urban expansion model using urbanization data from between 2007 and
2019. Future studies need to consider not only factors influencing urban expansion, but
also those for urban declines through widening of temporal extent of analysis.
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