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Abstract: Perineural invasion (PNI) is a well-established independent prognostic factor for poor
outcomes in colorectal cancer (CRC). However, PNI detection in CRC is a cumbersome and time-
consuming process, with low inter-and intra-rater agreement. In this study, a deep-learning-based
approach was proposed for detecting PNI using histopathological images. We collected 530 regions
of histology from 77 whole-slide images (PNI, 100 regions; non-PNI, 430 regions) for training. The
proposed hybrid model consists of two components: a segmentation network for tumor and nerve
tissues, and a PNI classifier. Unlike a “black-box” model that is unable to account for errors, the
proposed approach enables false predictions to be explained and addressed. We presented a high
performance, automated PNI detector, with the area under the curve (AUC) for the receiver operating
characteristic (ROC) curve of 0.92. Thus, the potential for the use of deep neural networks in PNI
screening was proved, and a possible alternative to conventional methods for the pathologic diagnosis
of CRC was provided.

Keywords: colorectal cancer; perineural invasion; semantic segmentation; deep learning; computational
pathology

1. Introduction

Perineural invasion (PNI) in colorectal cancer (CRC) is a well-established independent
prognostic factor [1,2], with an incidence range from 9% to 30% [3,4]. PNI is defined as
tumor invasion into, around, and through neural structures [5]; it is the distinct route
through which cancer cells spread and metastasize to adjacent or distant organs [6,7]. PNI
detection is associated with response to adjuvant chemotherapy [8]. Therefore, a meticulous
evaluation of PNI and prognostication on the basis of the standardized pathology report
are mandatory in routine pathology practice [9,10].

Despite its importance, the histologic evaluation of PNI is a cumbersome and time-
consuming process, with a high risk of misdiagnosis [11]. Peng et al. [12] reported that only
7.5% of patients were PNI-positive in original pathologic reports; however, reviewing their
PNI status revealed that 24.3% of patients were PNI positive. Thorough histological inspec-
tions are necessary for reducing the misdiagnosis rate. However, pathologic diagnosis of
PNI is tedious and increases the workload of pathologists. Given the increasing workload
for pathologists and their critical shortage nationally and globally [13,14], developing an
automated screening tool for PNI is crucial.

Deep learning (DL) methods have achieved promising results in medical image anal-
ysis [15,16], surpassing human performance [17]. In computational pathology, histology-
based DL approaches have facilitated computer-aided diagnostics, including tumor de-
tection, classification, segmentation, and even quantification of established biomarkers,
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such as tumor-infiltrating lymphocytes [18–20]. Until now, limited studies have focused on
PNI detection in computational pathology [21,22]. However, as with DL-based approaches,
these studies exhibited the drawback of failing to interpret unpredictable failures. The lack
of interpretability in “black-box” modeling limits real-world application, which may lead
to user distrust [23,24].

In this study, an interpretable DL-based PNI detector was developed through CRC
histology, demonstrating the potential of computer-aided diagnosis for PNI screening. The
proposed approach could become an alternative to the conventional methods of pathologic
diagnosis of CRC.

2. Materials and Methods
2.1. Data Acquisition

A total of 77 whole-slide images (WSIs) of 63 patients with CRC who underwent
surgical resection at International St. Mary’s Hospital, Catholic Kwandong University in
Incheon Metropolitan City, Republic of Korea, were selected for the study. The specimens
were formalin-fixed, paraffin-embedded, and stained with hematoxylin and eosin. An
Aperio AT2 slide scanner (Leica Biosystems, Buffalo Grove, IL, USA) was used to scan the
WSIs at 40× magnification. From the 77 WSIs, 530 regions were selected, including PNI
with tumor and nerve tissue, non-PNI with tumor, non-PNI with nerve tissue, and normal
tissue excluding neural tissue, respectively, denoted as “PNI”, “tumor”, “nerve”, and
“normal”, (Table 1). All PNIs inside the region were annotated; non-PNI with tumor tissues,
and non-PNI with nerve tissues were randomly extracted and annotated. Tumor, nerve,
and normal tissues were annotated by board-certified pathologists (J.J. and S.A.) using the
automated slide analysis platform (ASAP). All results in this study have undergone two
rounds of reviews. Inconsistencies were discussed with another board-certified pathologist
(S.H.L.). A total of 490 regions were used for training and validation, and the remaining 40
were used to test the model.

Table 1. Composition of regions and patches.

No. of Regions No. of Patches

PNI 100 362

Non-PNI
Nerve 204 687
Tumor 207 7547
Normal 19 880

Total 530 9476

2.2. Patch Generation

We used a half-overlap sliding window algorithm for model input. This method can
overcome the loss of information between adjacent areas. Moreover, the summation of
the probability of adjacent regions, which comes from deep learning models, can increase
overall accuracy. For the strategy of patch generation, we employed 1.0 mpp (micron per
pixel) for resolution and 512 × 512 × 3 pixels for size. Patch prediction or extraction is
skipped when the mean pixel value of the target patch is too high (>235) or too low (<50),
because a high mean of the pixel value is mostly due to the background, and a low mean of
the pixel value is mostly due to the low quality of the whole slide image.

2.3. Image Preprocessing

Each patch generated from the same WSI follows a similar color distribution, but
patches from different WSIs may not. To overcome the difference of color distribution
among WSIs, we employ color augmentation, such as HSV shift and random brightness. To
obtain a sufficient geometric pattern of patches, geometric augmentations, such as elastic
transformation, shift scale rotation, random rotation, horizontal flipping, and vertical
flipping, were used. All Augmentations were implemented using the Albumentation
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open-source library https://github.com/albumentations-team/albumentations (accessed
on 20 October 2021) [25]. Scaling (0–1) was employed for data normalization.

2.4. Segmentation Network Development

A general scheme of the proposed model is displayed in Figure 1. A hybrid model
was proposed to detect PNI using histology, comprising a semantic segmentation network
and a rule-based PNI classifier.

Figure 1. Proposed pipeline for PNI detection. The framework consists of a segmentation network and
a PNI classifier. Tumor (red) and nerve masks (orange) were extracted according to the segmentation
model. The extracted nerve areas were classified as PNI when they were close to the tumor.

A multiclass semantic segmentation network was trained to detect tumors and nerves.
As an alternative approach, experiments were conducted using binary segmentation mod-
els for tumors and nerves. For the segmentation frameworks, we used the U-Net [26],
Deeplabv3+ [27], and SegFormer [28] networks. U-Net, Deeplabv3+, and SegFormer were
built on a pre-trained backbone. For an ablation study, SegFormer was trained from
scratch, comparing the performance of a transformer-based segmentation network with
transfer learning. To train the U-Net, three backbone models, namely Inception-Resnet-v2,
EfficientNet-B0, and SE-ResNeXt-101, were used. For the training of the Deeplabv3+,
two models—MobileNet and Xception—were used as backbones. A pre-trained model
using the ImageNet database was used [29]. For the training of SegFormer, MiT-B0 (Mix
Transformer Encoder) was used. An adaptive moment estimation optimizer was used,
with an initial learning rate of 10 × 10−3. The batch size for training was set to 32 and the
maximum number of epochs was set to 200. In the multi-class segmentation network, a
multi-loss function, calculated as a weighted sum of the dice loss and categorical focal loss
(LMulti = LDice + LFocal) was used. To train the binary segmentation network, a combination
of dice loss and binary cross-entropy loss (LBinary = LDice + LCE) was used.

2.5. PNI Classifier

To generate tumor and nerve masks, which were input into the PNI classifier, we
implemented six combinations of segmentation networks for tumors and nerves, denoted as
Module1 (Md1) to Module6 (Md6). Md1 to Md4 employed binary segmentation networks
for tumors and nerves, whereas Md5 and Md6 used multiclass segmentation networks. In
the Md1 framework, U-Net was used for both nerve and tumor segmentation. For Md2,
U-Net and DeepLabv3+ were used for nerve and tumor segmentation, respectively. In Md3,
DeepLabv3+ and U-Net were utilized for nerve and tumor segmentation, respectively. In
Md4, DeepLabv3+ was used for both nerve and tumor segmentation. In Md5 and Md6,
U-Net and SegFormer were employed, respectively.

Based on the trained segmentation network, binary probability maps were inferred for
tumors and nerves using a half-overlapped sliding window. The average probability was
applied for the overlapped window. Tiny areas predicted as tumors or nerves (probability
threshold = 0.5) were removed using morphological analysis. Nerves with PNI were
extracted according to a rule-based approach, where the distances between the binary map
of the tumor and the dilated nerve were calculated (Figure 2). PNI and non-PNI groups
were defined as follows:

https://github.com/albumentations-team/albumentations
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Figure 2. Three representative regions of extracted PNI with ground truths (a,c,e) and the corre-
sponding pixel-wise predictions (b,d,f). Based on the spatial arrangement of the tumors (red) and the
nerves (purple), a nerve close to a tumor was classified as PNI.

PNI: Areadilate nerve∩ Areatumor 6= ∅
Non-PNI: Areadilate nerve ∩ Areatumor = ∅
Areatumor and Areadilate nerve denote the binary map of the tumor and the dilated

nerve, respectively.

2.6. Evaluation Metrics

The performance of the trained segmentation model using pixel-wise accuracy, inter-
section over union (IoU), sensitivity, precision, and the F1-score was compared. All metrics
are defined as follows:

Accuracy = ∑ p
∣∣p = g, ∀p ∈ P, g ∈ G

IoU =
G∩ P
G∪ P

Sensitivity = ∑i
∑(p|p=i,g=i,∀p∈P, g∈G)

∑(p|p=i,g=i,∀p∈P, g∈G)+∑p|p 6=i,g=i,∀p∈P, g∈G)
∀i=0,1,2

Precision = ∑i
∑(p|p=i,g=i,∀p∈P, g∈G)

∑(p|p=i,g=i,∀p∈P, g∈G)+∑p|p=i,g 6=i,∀p∈P, g∈G)
∀i=0,1,2

F1− score : F1(precision, recall) =
2 precision recall
precision + recall

P and G denote predicted value and ground truth, respectively.
To compare the performance of the PNI classifier, we used region-wise AccuracyR,

SensitivityR, SpecificityR, PrecisionR, Negative Predictive ValueR (NPVR), F1-scoreR, and
the area under the curve (AUC). The metrics used to evaluate the region-wise performance
are defined as follows:

AccuracyR =
∑(TP + TN)

∑(TP + FN + FP + TN)
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SensitivityR =
∑(TP)

∑(TP + FN)

SpecificityR =
∑(TN)

∑(FP + TN)

PrecisionR =
∑(TP)

∑(TP + FP)

NPVR =
∑(TN)

∑(FN + TN)

F1− scoreR : F1(precision, recall) =
2 precision recall
precision + recall

True positive, true negative, false positive, and false negative are denoted as TP, TN,
FP, and FN, respectively.

Instead of a stochastic model, a rule-based model was designed. Thus, we used a
simple receiver operating characteristic (ROC) curve, which indicates that the classifier
predicts PNI as positive when the distance between the tumor and the nerve is zero, and the
classifier predicts PNI as negative when the distance is infinite. The confidence interval was
calculated by assuming that the distribution of the AUC is similar to that of the accuracy,
which is a binomial distribution of sample length and probability.

2.7. Inference Timing

The inference times required in U-Net and SegFormer were measured by averaging
the five execution times for a randomly selected patch.

3. Results
3.1. Results of Segmentation Networks

Table 2 details the performance of the algorithms for the trained segmentation models.
For identifying nerves, the U-Net-based binary segmentation model exhibited excellent
performance, with an IoU of 0.887. For identifying tumors, the DeepLabv3+ binary segmen-
tation model outperformed other models, with an IoU of 0.769. The overall performance of
the multiclass semantic segmentation models was lower than that of the binary semantic
segmentation models.

Table 2. Performance of the segmentation models.

Accuracy IoU Sensitivity Precision F1-Score

Nerve

U-Net a 0.987 0.887 0.943 0.937 0.940

DeepLabv3+ a 0.985 0.837 0.892 0.931 0.911

U-Net (m) b 0.893 0.801 0.867 0.924 0.891

SegFormer (m) b 0.921 0.829 0.921 0.893 0.907

Tumor

U-Net a 0.900 0.676 0.887 0.740 0.805

DeepLabv3+ a 0.922 0.769 0.903 0.839 0.869

U-Net (m) b 0.893 0.611 0.856 0.681 0.757

SegFormer (m) b 0.838 0.686 0.838 0.791 0.814
a Binary semantic segmentation; b Multi-class semantic segmentation.

3.2. Region-Wise Performance

By inputting the tumor and nerve masks into the segmentation models, we extracted
PNIs based on the distance between tumors and nerves (Figure 2). The pipeline using the
multiple segmentation model, Md5, exhibited excellent performance, with an AUC of 0.92
(Table 3, Figure 3). Moreover, the standard deviation was the lowest among the models,
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indicating that the multiple segmentation model was more stable than the combined binary
segmentation model.

Table 3. Performance of PNI classifier according to the various combinations of segmentation models.

Module a AccuracyR SensitivityR SpecificityR NPVR
b PrecisionR F1-ScoreR AUC (95% CI)

Md1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 ± 0111
Md2 0.80 0.85 0.75 0.83 0.77 0.81 0.80 ± 0.124
Md3 0.80 0.75 0.85 0.77 0.83 0.79 0.80 ± 0.124
Md4 0.72 0.75 0.70 0.74 0.71 0.73 0.72 ± 0.138
Md5 0.92 0.90 0.95 0.90 0.95 0.92 0.92 ± 0.078
Md6 0.88 0.80 0.95 0.83 0.94 0.87 0.88 ± 0.102

a Architectures used for nerve and tumor segmentation in each sequential binary model are as follows: Md1:
U-Net + U-Net; Md2: U-Net + DeepLabv3+; Md3: DeepLabv3+ + U-Net; Md4: DeepLabv3+ + DeepLabv3+.
In Md5, U-Net is adopted for simple multiple segmentation; Md6: SegFormer is adopted for simple multiple
segmentation. b Negative Predictive Value.

Figure 3. ROC curves of pipelines used for detecting PNI across various segmentation models. The results
revealed that Md5, using a multi-class segmentation network, achieved the highest AUC of 0.92.

We found that the pipeline using the multiclass segmentation network showed better
performance, although the binary segmentation network outperformed the simple multi-
class segmentation model regarding pixel-wise performance for tumors and nerves. The
combined networks are assumed to cause error accumulation and degrade performance.

3.3. Analysis of False Results

Falsely predicted images using to Md5 are presented in Figure 4. One of the FN
regions exhibited relatively small tumor clusters and neural bundles (Figure 4b). In another
region, the surrounding inflammatory cells and nerve cells were misclassified as tumor
cells (Figure 4d). An FP region included thick blood vessels around a tumor, which
were misclassified as PNI. The model falsely identified the smooth muscle cells of the
wall of vessels as nerve bundle Schwann cells because of their similar spindle shapes.
All the predicted results regarding Md1 to Md6 can be accessed through the web page
(http://pni.ssus.work/, accessed on 13 September 2022).

In the current pipeline, falsely predicted results can be classified into six subgroups
according to the types of tissue in error. FN prediction occurred in tumor, nerve, or both
tissues (Figure S2a,c,e). FP originated from errors in tumor or nerve tissues (Figure S2b,d).
The FP result was not observed in either the tumor or nerve tissues of our model. This
classification allowed us to intuitively distinguish the tasks the model performed incorrectly,
providing the interpretability of false results in the current model.

http://pni.ssus.work/
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Figure 4. Examples of misclassification with ground truths (a,c,e) and the corresponding prediction
(b,d,f). (b) In the false negative (FN) case, both tumor and nerve tissues were missed. (d) In the other
FN case, nerve tissue surrounded by tumor tissue was predicted as tumor tissue. (f) In the FP case,
nerve tissue was falsely predicted as a blood vessel. All the inference results from each pipeline are
found on the webpage (http://pni.ssus.work/, accessed on 13 September 2022).

3.4. Effects of Pre-Training Tasks

We studied the impact of the pre-trained model on the performance of SegFormer
(Table S2). The overall performance for identifying tumors increased when the pre-trained
model weights were used. For identifying nerves, the F1 score was also improved. With
transfer learning, improved performance was obtained.

3.5. Inference Time Comparison

Figure S3b reports the average inference time per patch for each architecture. Seg-
Former inference achieves the average of 126.754 ms, compared to the time of 1616.037 ms
using the U-Net model. The number of parameters in SegFormer is about that in U-Net
(3,714,915 vs. 6,251,759 for SegFormer and U-Net, respectively) (Figure S3a).

4. Discussion

In this study, a DL-based hybrid model was developed to detect PNI in CRC patients.
The proposed framework exhibited excellent performance (accuracy of 0.92, sensitivity of
0.90, AUC of 0.92), with potential for computer-aided diagnosis in PNI screening. Consid-
ering the prognostic implications of PNI and the difficulty in detecting PNI in pathology
slide images, the automated PNI detector exhibited a high potential for utility, and can
potentially save medical resources.

In practice, PNI detection is a time-consuming and cumbersome task, with high
intra- and inter-observer variation. A review of CRC slides in a study revealed that
46 of 55 PNI-positive cases (from a total of 249 cases) were reported as PNI-negative
in the original pathology reports [2]. In another study, Peng et al. also revealed the
differences in the PNI-positive rate (24.3%) after review compared to the PNI-positive
rate (7.5%) recorded in the initial reports [12]. Furthermore, considerable variation is
perceived between observers in defining PNI [11,30]. Some of the variations depend on
the evaluation criteria among pathologists in terms of the distance between the cancer
source and nerve cells [6]. Uncertainty in defining a nerve is another cause of poor inter-
observer PNI detection reproducibility. These difficulties in detecting PNI can be solved by
standardizing the evaluation criteria in the algorithms and refining the pixel-wise prediction

http://pni.ssus.work/
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of neural bundles. Thus, expectedly, inter-observer reproducibility would increase, and
underestimations could be reduced.

Some attempts have been made to use DL-based approaches to extract PNI histologi-
cally. Ström et al. used a convolutional neural network to classify PNI in prostate biopsies,
and achieved a discrimination AUC of 0.98 [21]. Recently, an international Medical Image
Computing and Computer Assisted Intervention Society-Pathology Artificial Intelligence
Platform (MICCAI-PAIP) challenge was held to detect PNI in multiple organ cancers
(https://paip2021.grand-challenge.org, accessed on 13 September 2022). The top-ranked
team achieved the best F1 score of 41.55% using a feature pyramid network (FPN) [22].
This result revealed the capacity of the multi-resolution network, FPN, to detect PNI in
histological images. However, these algorithms, where the representative images of PNI
itself were learned, could not provide sufficient interpretation for false prediction because
of the “black-box” nature of the DL methods.

An interpretable DL-based model was proposed to provide interpretability through
semantic classification of the tissue type and the calculation of distances. This process
sequence is similar to a diagnosis by a pathologist, enabling us to interpret the predicted
results outputted by the proposed DL-based model, increasing model reliability. Thus, the
method provided considerable advantages for medical image analysis and applying the
models in practice [31,32].

Numerous challenges exist while using the DL algorithm for clinical applications,
including its use in the current model to detect PNI in colon cancer. Therefore, these
challenges should be resolved. First, an automated and efficient workflow using digital-
ized pathology images should be established to effectively use the DL model in practice.
This high-cost digital pathology system does not exhibit any benefits, hindering most
institutions from establishing this system [33]. Therefore, definite clinical values, such as
reduced diagnostic time and improved quality and efficiency, should be achieved in DL
implementation to incentivize DL adoption in clinical applications.

Second, safety should be guaranteed in the clinical application of the DL model. The
robustness and generalizability of the trained DL model are critical for clinical application.
Centralized digitalized data archives, which store large-scale biomedical images from
various institutions, can be used to overcome this obstacle. The stored digital images can
be used for model validation and bias optimization, allowing the algorithms to achieve
generalized performance. Digital pathology guidelines for DL implementation and quality
assessment have been established [34–37]. However, the digital pathology system is
typically being established in large-scale university hospitals because the capital outlay
for the system cannot be borne by every hospital. Schömig-Markiefka et al. investigated
the accuracy of a deep-learning-based algorithm for datasets from various institutions
digitized by different scanner systems. Although a model with high overall accuracy of
>98% was used, substantial losses occurred in accuracy because of dependence on HE-
staining quality, brightness, and contrast [38]. Therefore, national planning and systemic
support for developing large-scale centralized biomedical image archives or databases is
crucial for future clinical applications.

This study had some limitations. First, the dataset was limited in size. We used
77 WSIs to train the semantic segmentation network for extracting tumors and nerves.
However, the proposed model exhibited performance comparable to that of a prior study,
where 80k biopsy cores were used to achieve an AUC of 0.98 [21]. Considering the dataset
size used in this study and the performance achieved, extremely large-scale data may not
be required for the convergence of the proposed pipeline. Second, the results obtained
were not externally validated. External validation with additional datasets can improve
interpretability and generalizability. Finally, the classifier using distance calculation exhibits
a drawback. Since the PNI classifier is a rule-based classifier, distinguishing whether tumor
cells actually infiltrated a nerve sheath or are just adjacent to a nerve bundle is not possible.
Despite these limitations, the PNI classifier can play a significant role as a screening tool.

https://paip2021.grand-challenge.org
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Therefore, as a trial of PNI detection, this study provides researchers with new possi-
bilities for the development and improvement of data-driven algorithms for PNI detection.
Furthermore, by enabling the detection of accurate PNI status, this study can improve the
clinical decisions made for individual patients, positively impacting their prognosis.

5. Conclusions

A novel DL-based approach was proposed to detect PNI in CRC using histopatho-
logical images. The hybrid model consists of two components: a segmentation network
for tumor and nerve tissues, and a PNI classifier. The proposed framework exhibited
high performance (with an accuracy of 0.92, a sensitivity of 0.90, and an AUC of 0.92),
as well as the potential for computer-aided diagnosis in PNI screening. Considering the
prognostic implication of PNI and the difficulty in detecting it in pathology slide images,
the automated PNI detector exhibits significant potential for PNI diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app12189159/s1, Figure S1: Confusion matrix for the five proposed
models; Figure S2: Representative FN and FP cases; Figure S3: Comparision of the number of
parameters and inference time for SegFormer and U-Net; Table S1: Clinicopathological characteristics
of colorectal cancer patients; Table S2: Performance for SegFormer trained on scratch and on pre-
trained weights.
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