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Abstract: Perineural invasion (PNI) is a well-established independent prognostic factor for poor 

outcomes in colorectal cancer (CRC). However, PNI detection in CRC is a cumbersome and time-

consuming process, with low inter-and intra-rater agreement. In this study, a deep-learning-based 

approach was proposed for detecting PNI using histopathological images. We collected 530 regions 

of histology from 77 whole-slide images (PNI, 100 regions; non-PNI, 430 regions) for training. The 

proposed hybrid model consists of two components: a segmentation network for tumor and nerve 

tissues, and a PNI classifier. Unlike a “black-box” model that is unable to account for errors, the 

proposed approach enables false predictions to be explained and addressed. We presented a high 

performance, automated PNI detector, with the area under the curve (AUC) for the receiver operat-

ing characteristic (ROC) curve of 0.92. Thus, the potential for the use of deep neural networks in 

PNI screening was proved, and a possible alternative to conventional methods for the pathologic 

diagnosis of CRC was provided. 

Keywords: colorectal cancer; perineural invasion; semantic segmentation; deep learning;  

computational pathology 

 

1. Introduction 

Perineural invasion (PNI) in colorectal cancer (CRC) is a well-established independ-

ent prognostic factor [1,2], with an incidence range from 9% to 30% [3,4]. PNI is defined 

as tumor invasion into, around, and through neural structures [5]; it is the distinct route 

through which cancer cells spread and metastasize to adjacent or distant organs [6,7]. PNI 

detection is associated with response to adjuvant chemotherapy [8]. Therefore, a meticu-

lous evaluation of PNI and prognostication on the basis of the standardized pathology 

report are mandatory in routine pathology practice [9,10]. 

Despite its importance, the histologic evaluation of PNI is a cumbersome and time-

consuming process, with a high risk of misdiagnosis [11]. Peng et al. [12] reported that 

only 7.5% of patients were PNI-positive in original pathologic reports; however, review-

ing their PNI status revealed that 24.3% of patients were PNI positive. Thorough histo-

logical inspections are necessary for reducing the misdiagnosis rate. However, pathologic 

diagnosis of PNI is tedious and increases the workload of pathologists. Given the increas-

ing workload for pathologists and their critical shortage nationally and globally [13,14], 

developing an automated screening tool for PNI is crucial. 

Deep learning (DL) methods have achieved promising results in medical image anal-

ysis [15,16], surpassing human performance [17]. In computational pathology, histology-
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based DL approaches have facilitated computer-aided diagnostics, including tumor de-

tection, classification, segmentation, and even quantification of established biomarkers, 

such as tumor-infiltrating lymphocytes [18–20]. Until now, limited studies have focused 

on PNI detection in computational pathology [21,22]. However, as with DL-based ap-

proaches, these studies exhibited the drawback of failing to interpret unpredictable fail-

ures. The lack of interpretability in “black-box” modeling limits real-world application, 

which may lead to user distrust [23,24]. 

In this study, an interpretable DL-based PNI detector was developed through CRC 

histology, demonstrating the potential of computer-aided diagnosis for PNI screening. 

The proposed approach could become an alternative to the conventional methods of path-

ologic diagnosis of CRC. 

2. Materials and Methods 

2.1. Data Acquisition 

A total of 77 whole-slide images (WSIs) of 63 patients with CRC who underwent sur-

gical resection at International St. Mary’s Hospital, Catholic Kwandong University in In-

cheon Metropolitan City, Republic of Korea, were selected for the study. The specimens 

were formalin-fixed, paraffin-embedded, and stained with hematoxylin and eosin. An 

Aperio AT2 slide scanner (Leica Biosystems, Buffalo Grove, IL, USA) was used to scan the 

WSIs at 40× magnification. From the 77 WSIs, 530 regions were selected, including PNI 

with tumor and nerve tissue, non-PNI with tumor, non-PNI with nerve tissue, and normal 

tissue excluding neural tissue, respectively, denoted as “PNI”, “tumor”, “nerve”, and 

“normal”, (Table 1). All PNIs inside the region were annotated; non-PNI with tumor tis-

sues, and non-PNI with nerve tissues were randomly extracted and annotated. Tumor, 

nerve, and normal tissues were annotated by board-certified pathologists (J.J. and S.A.) 

using the automated slide analysis platform (ASAP). All results in this study have under-

gone two rounds of reviews. Inconsistencies were discussed with another board-certified 

pathologist (S.H.L.). A total of 490 regions were used for training and validation, and the 

remaining 40 were used to test the model. 

Table 1. Composition of regions and patches. 

 No. of Regions No. of Patches 

PNI 100 362 

Non-PNI 

Nerve 204 687 

Tumor 207 7547 

Normal 19 880 

Total 530 9476 

2.2. Patch Generation 

We used a half-overlap sliding window algorithm for model input. This method can 

overcome the loss of information between adjacent areas. Moreover, the summation of the 

probability of adjacent regions, which comes from deep learning models, can increase 

overall accuracy. For the strategy of patch generation, we employed 1.0 mpp (micron per 

pixel) for resolution and 512 × 512 × 3 pixels for size. Patch prediction or extraction is 

skipped when the mean pixel value of the target patch is too high (>235) or too low (<50), 

because a high mean of the pixel value is mostly due to the background, and a low mean 

of the pixel value is mostly due to the low quality of the whole slide image. 

2.3. Image Preprocessing 

Each patch generated from the same WSI follows a similar color distribution, but 

patches from different WSIs may not. To overcome the difference of color distribution 

among WSIs, we employ color augmentation, such as HSV shift and random brightness. 
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To obtain a sufficient geometric pattern of patches, geometric augmentations, such as elas-

tic transformation, shift scale rotation, random rotation, horizontal flipping, and vertical 

flipping, were used. All Augmentations were implemented using the Albumentation 

open-source library https://github.com/albumentations-team/albumentations (accessed 

on 20 October 2021) [25]. Scaling (0–1) was employed for data normalization. 

2.4. Segmentation Network Development 

A general scheme of the proposed model is displayed in Figure 1. A hybrid model 

was proposed to detect PNI using histology, comprising a semantic segmentation net-

work and a rule-based PNI classifier. 

 

Figure 1. Proposed pipeline for PNI detection. The framework consists of a segmentation network 

and a PNI classifier. Tumor (red) and nerve masks (orange) were extracted according to the seg-

mentation model. The extracted nerve areas were classified as PNI when they were close to the 

tumor. 

A multiclass semantic segmentation network was trained to detect tumors and 

nerves. As an alternative approach, experiments were conducted using binary segmenta-

tion models for tumors and nerves. For the segmentation frameworks, we used the U-Net 

[26], Deeplabv3+ [27], and SegFormer [28] networks. U-Net, Deeplabv3+, and SegFormer 

were built on a pre-trained backbone. For an ablation study, SegFormer was trained from 

scratch, comparing the performance of a transformer-based segmentation network with 

transfer learning. To train the U-Net, three backbone models, namely Inception-Resnet-

v2, EfficientNet-B0, and SE-ResNeXt-101, were used. For the training of the Deeplabv3+, 

two models—MobileNet and Xception—were used as backbones. A pre-trained model 

using the ImageNet database was used [29]. For the training of SegFormer, MiT-B0 (Mix 

Transformer Encoder) was used. An adaptive moment estimation optimizer was used, 

with an initial learning rate of 10e−3. The batch size for training was set to 32 and the max-

imum number of epochs was set to 200. In the multi-class segmentation network, a multi-

loss function, calculated as a weighted sum of the dice loss and categorical focal loss (LMulti 

= LDice + LFocal) was used. To train the binary segmentation network, a combination of 

dice loss and binary cross-entropy loss (LBinary = LDice + LCE) was used 

2.5. PNI Classifier 

To generate tumor and nerve masks, which were input into the PNI classifier, we imple-

mented six combinations of segmentation networks for tumors and nerves, denoted as Mod-

ule1 (Md1) to Module6 (Md6). Md1 to Md4 employed binary segmentation networks for tu-

mors and nerves, whereas Md5 and Md6 used multiclass segmentation networks. In the Md1 

framework, U-Net was used for both nerve and tumor segmentation. For Md2, U-Net and 

DeepLabv3+ were used for nerve and tumor segmentation, respectively. In Md3, DeepLabv3+ 

and U-Net were utilized for nerve and tumor segmentation, respectively. In Md4, 
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DeepLabv3+ was used for both nerve and tumor segmentation. In Md5 and Md6, U-Net and 

SegFormer were employed, respectively. 

Based on the trained segmentation network, binary probability maps were inferred for 

tumors and nerves using a half-overlapped sliding window. The average probability was ap-

plied for the overlapped window. Tiny areas predicted as tumors or nerves (probability 

threshold = 0.5) were removed using morphological analysis. Nerves with PNI were extracted 

according to a rule-based approach, where the distances between the binary map of the tumor 

and the dilated nerve were calculated (Figure 2). PNI and non-PNI groups were defined as 

follows: 

PNI: ���������� ����� ∩ ��������� ≠ ∅ 

Non-PNI: ���������� ����� ∩ ��������� = ∅ 

��������� and ���������� ����� denote the binary map of the tumor and the dilated 

nerve, respectively. 

 

Figure 2. Three representative regions of extracted PNI with ground truths (a,c,e) and the corresponding 

pixel-wise predictions (b,d,f). Based on the spatial arrangement of the tumors (red) and the nerves (pur-

ple), a nerve close to a tumor was classified as PNI. 
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2.6. Evaluation Metrics 

The performance of the trained segmentation model using pixel-wise accuracy, in-

tersection over union (IoU), sensitivity, precision, and the F1-score was compared. All 

metrics are defined as follows: 

Accuracy = ∑ �| � = �, ∀� ∈ P, � ∈ G 

IoU = 
�∩�

�∪�
 

Sensitivity = ∑
∑(�|���,���,∀�∈�,�∈�)

∑(�|���,���,∀�∈�,�∈�)�∑ �|���,���,∀�∈�,�∈�)� ∀� = �, �, � 

Precision = ∑
∑(�|���,���,∀�∈�,�∈�)

∑(�|���,���,∀�∈�,�∈�)�∑ �|���,���,∀�∈�,�∈�)� ∀� = �, �, � 

F1-score: F1(���������, ������) =
�∙���������∙������

����������������
 

P and G denote predicted value and ground truth, respectively. 

To compare the performance of the PNI classifier, we used region-wise AccuracyR, 

SensitivityR, SpecificityR, PrecisionR, Negative Predictive ValueR (NPVR), F1-scoreR, and 

the area under the curve (AUC). The metrics used to evaluate the region-wise perfor-

mance are defined as follows: 

AccuracyR =  
∑(�����)

∑(�����������)
 

SensitivityR =  
∑(��)

∑(�����)
 

SpecificityR = 
∑(��)

∑(�����)
 

PrecisionR =  
∑(��)

∑(�����)
 

NPVR = 
∑(��)

∑(�����)
 

F1-scoreR: F1(precision,recall) =
�∙���������∙������

����������������
 

True positive, true negative, false positive, and false negative are denoted as TP, TN, 

FP, and FN, respectively. 

Instead of a stochastic model, a rule-based model was designed. Thus, we used a 

simple receiver operating characteristic (ROC) curve, which indicates that the classifier 

predicts PNI as positive when the distance between the tumor and the nerve is zero, and 

the classifier predicts PNI as negative when the distance is infinite. The confidence inter-

val was calculated by assuming that the distribution of the AUC is similar to that of the 

accuracy, which is a binomial distribution of sample length and probability. 

2.7. Inference Timing 

The inference times required in U-Net and SegFormer were measured by averaging 

the five execution times for a randomly selected patch. 
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3. Results 

3.1. Results of Segmentation Networks 

Table 2 details the performance of the algorithms for the trained segmentation mod-

els. For identifying nerves, the U-Net-based binary segmentation model exhibited excel-

lent performance, with an IoU of 0.887. For identifying tumors, the DeepLabv3+ binary 

segmentation model outperformed other models, with an IoU of 0.769. The overall per-

formance of the multiclass semantic segmentation models was lower than that of the bi-

nary semantic segmentation models. 

Table 2. Performance of the segmentation models. 

 Accuracy IoU Sensitivity Precision F1-score 

Nerve 

U-Net a 0.987 0.887 0.943 0.937 0.940 

DeepLabv3+ a 0.985 0.837 0.892 0.931 0.911 

U-Net (m) b 0.893 0.801 0.867 0.924 0.891 

SegFormer (m) b 0.921 0.829 0.921 0.893 0.907 

Tumor 

U-Net a 0.900 0.676 0.887 0.740 0.805 

DeepLabv3+ a 0.922 0.769 0.903 0.839 0.869 

U-Net (m) b 0.893 0.611 0.856 0.681 0.757 

SegFormer (m) b 0.838 0.686 0.838 0.791 0.814 
a Binary semantic segmentation; b Multi-class semantic segmentation. 

3.2. Region-Wise Performance 

By inputting the tumor and nerve masks into the segmentation models, we extracted 

PNIs based on the distance between tumors and nerves (Figure 2). The pipeline using the 

multiple segmentation model, Md5, exhibited excellent performance, with an AUC of 0.92 

(Table 3, Figure 3). Moreover, the standard deviation was the lowest among the models, 

indicating that the multiple segmentation model was more stable than the combined bi-

nary segmentation model. 

We found that the pipeline using the multiclass segmentation network showed better 

performance, although the binary segmentation network outperformed the simple mul-

ticlass segmentation model regarding pixel-wise performance for tumors and nerves. The 

combined networks are assumed to cause error accumulation and degrade performance. 

Table 3. Performance of PNI classifier according to the various combinations of segmentation mod-

els. 

Module a AccuracyR SensitivityR SpecificityR NPVR b PrecisionR F1-ScoreR AUC (95% CI) 

Md1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 ± 0111 

Md2 0.80 0.85 0.75 0.83 0.77 0.81 0.80 ± 0.124 

Md3 0.80 0.75 0.85 0.77 0.83 0.79 0.80 ± 0.124 

Md4 0.72 0.75 0.70 0.74 0.71 0.73 0.72 ± 0.138 

Md5 0.92 0.90 0.95 0.90 0.95 0.92 0.92 ± 0.078 

Md6 0.88 0.80 0.95 0.83 0.94 0.87 
0.88 

 ± 0.102 
a Architectures used for nerve and tumor segmentation in each sequential binary model are as fol-

lows: Md1: U-Net + U-Net; Md2: U-Net + DeepLabv3+; Md3: DeepLabv3+ + U-Net; Md4: 

DeepLabv3+ + DeepLabv3+. In Md5, U-Net is adopted for simple multiple segmentation; Md6: Seg-

Former is adopted for simple multiple segmentation. b Negative Predictive Value. 
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Figure 3. ROC curves of pipelines used for detecting PNI across various segmentation models. The 

results revealed that Md5, using a multi-class segmentation network, achieved the highest AUC of 

0.92. 

3.3. Analysis of False Results 

Falsely predicted images using to Md5 are presented in Figure 4. One of the FN re-

gions exhibited relatively small tumor clusters and neural bundles (Figure 4b). In another 

region, the surrounding inflammatory cells and nerve cells were misclassified as tumor 

cells (Figure 4d). An FP region included thick blood vessels around a tumor, which were 

misclassified as PNI. The model falsely identified the smooth muscle cells of the wall of 

vessels as nerve bundle Schwann cells because of their similar spindle shapes. All the pre-

dicted results regarding Md1 to Md6 can be accessed through the web page 

(http://pni.ssus.work/, accessed on 13 September 2022). 

In the current pipeline, falsely predicted results can be classified into six subgroups 

according to the types of tissue in error. FN prediction occurred in tumor, nerve, or both 

tissues (Figure S2a,c,e). FP originated from errors in tumor or nerve tissues (Figure S2b,d). 

The FP result was not observed in either the tumor or nerve tissues of our model. This 

classification allowed us to intuitively distinguish the tasks the model performed incor-

rectly, providing the interpretability of false results in the current model. 

3.4. Effects of Pre-Training Tasks 

We studied the impact of the pre-trained model on the performance of SegFormer 

(Table S2). The overall performance for identifying tumors increased when the pre-trained 

model weights were used. For identifying nerves, the F1 score was also improved. With 

transfer learning, improved performance was obtained. 

3.5. Inference Time Comparison 

Figure S3b reports the average inference time per patch for each architecture. Seg-

Former inference achieves the average of 126.754 ms, compared to the time of 1616.037 ms 

using the U-Net model. The number of parameters in SegFormer is about that in U-Net 

(3,714,915 vs. 6,251,759 for SegFormer and U-Net, respectively) (Figure S3a). 
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Figure 4. Examples of misclassification with ground truths (a,c,e) and the corresponding prediction 

(b,d,f). (b) In the false negative (FN) case, both tumor and nerve tissues were missed. (d) In the other 

FN case, nerve tissue surrounded by tumor tissue was predicted as tumor tissue. (f) In the FP case, 

nerve tissue was falsely predicted as a blood vessel. All the inference results from each pipeline are 

found on the webpage (http://pni.ssus.work/, accessed on 13 September 2022). 

4. Discussion 

In this study, a DL-based hybrid model was developed to detect PNI in CRC patients. 

The proposed framework exhibited excellent performance (accuracy of 0.92, sensitivity of 

0.90, AUC of 0.92), with potential for computer-aided diagnosis in PNI screening. Consid-

ering the prognostic implications of PNI and the difficulty in detecting PNI in pathology 

slide images, the automated PNI detector exhibited a high potential for utility, and can 

potentially save medical resources. 

In practice, PNI detection is a time-consuming and cumbersome task, with high intra- 

and inter-observer variation. A review of CRC slides in a study revealed that 46 of 55 PNI-

positive cases (from a total of 249 cases) were reported as PNI-negative in the original 

pathology reports [2]. In another study, Peng et al. also revealed the differences in the 

PNI-positive rate (24.3%) after review compared to the PNI-positive rate (7.5%) recorded 

in the initial reports [12]. Furthermore, considerable variation is perceived between ob-

servers in defining PNI [11,30]. Some of the variations depend on the evaluation criteria 

among pathologists in terms of the distance between the cancer source and nerve cells [6]. 
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Uncertainty in defining a nerve is another cause of poor inter-observer PNI detection re-

producibility. These difficulties in detecting PNI can be solved by standardizing the eval-

uation criteria in the algorithms and refining the pixel-wise prediction of neural bundles. 

Thus, expectedly, inter-observer reproducibility would increase, and underestimations 

could be reduced. 

Some attempts have been made to use DL-based approaches to extract PNI histolog-

ically. Ström et al. used a convolutional neural network to classify PNI in prostate biop-

sies, and achieved a discrimination AUC of 0.98 [21]. Recently, an international Medical 

Image Computing and Computer Assisted Intervention Society-Pathology Artificial Intel-

ligence Platform (MICCAI-PAIP) challenge was held to detect PNI in multiple organ can-

cers (https://paip2021.grand-challenge.org, accessed on 13 September 2022). The top-

ranked team achieved the best F1 score of 41.55% using a feature pyramid network (FPN) 

[22]. This result revealed the capacity of the multi-resolution network, FPN, to detect PNI 

in histological images. However, these algorithms, where the representative images of 

PNI itself were learned, could not provide sufficient interpretation for false prediction 

because of the “black-box” nature of the DL methods. 

An interpretable DL-based model was proposed to provide interpretability through 

semantic classification of the tissue type and the calculation of distances. This process se-

quence is similar to a diagnosis by a pathologist, enabling us to interpret the predicted 

results outputted by the proposed DL-based model, increasing model reliability. Thus, 

the method provided considerable advantages for medical image analysis and applying 

the models in practice [31,32]. 

Numerous challenges exist while using the DL algorithm for clinical applications, 

including its use in the current model to detect PNI in colon cancer. Therefore, these chal-

lenges should be resolved. First, an automated and efficient workflow using digitalized 

pathology images should be established to effectively use the DL model in practice. This 

high-cost digital pathology system does not exhibit any benefits, hindering most institu-

tions from establishing this system [33]. Therefore, definite clinical values, such as re-

duced diagnostic time and improved quality and efficiency, should be achieved in DL 

implementation to incentivize DL adoption in clinical applications. 

Second, safety should be guaranteed in the clinical application of the DL model. The 

robustness and generalizability of the trained DL model are critical for clinical application. 

Centralized digitalized data archives, which store large-scale biomedical images from var-

ious institutions, can be used to overcome this obstacle. The stored digital images can be 

used for model validation and bias optimization, allowing the algorithms to achieve gen-

eralized performance. Digital pathology guidelines for DL implementation and quality 

assessment have been established [34–37]. However, the digital pathology system is typi-

cally being established in large-scale university hospitals because the capital outlay for 

the system cannot be borne by every hospital. Schömig-Markiefka et al. investigated the 

accuracy of a deep-learning-based algorithm for datasets from various institutions digit-

ized by different scanner systems. Although a model with high overall accuracy of >98% 

was used, substantial losses occurred in accuracy because of dependence on HE-staining 

quality, brightness, and contrast [38]. Therefore, national planning and systemic support 

for developing large-scale centralized biomedical image archives or databases is crucial 

for future clinical applications. 

This study had some limitations. First, the dataset was limited in size. We used 77 

WSIs to train the semantic segmentation network for extracting tumors and nerves. How-

ever, the proposed model exhibited performance comparable to that of a prior study, 

where 80k biopsy cores were used to achieve an AUC of 0.98 [21]. Considering the dataset 

size used in this study and the performance achieved, extremely large-scale data may not 

be required for the convergence of the proposed pipeline. Second, the results obtained 

were not externally validated. External validation with additional datasets can improve 

interpretability and generalizability. Finally, the classifier using distance calculation ex-

hibits a drawback. Since the PNI classifier is a rule-based classifier, distinguishing 
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whether tumor cells actually infiltrated a nerve sheath or are just adjacent to a nerve bun-

dle is not possible. Despite these limitations, the PNI classifier can play a significant role 

as a screening tool. 

Therefore, as a trial of PNI detection, this study provides researchers with new pos-

sibilities for the development and improvement of data-driven algorithms for PNI detec-

tion. Furthermore, by enabling the detection of accurate PNI status, this study can im-

prove the clinical decisions made for individual patients, positively impacting their prog-

nosis. 

5. Conclusions 

A novel DL-based approach was proposed to detect PNI in CRC using histopatho-

logical images. The hybrid model consists of two components: a segmentation network 

for tumor and nerve tissues, and a PNI classifier. The proposed framework exhibited high 

performance (with an accuracy of 0.92, a sensitivity of 0.90, and an AUC of 0.92), as well 

as the potential for computer-aided diagnosis in PNI screening. Considering the prognos-

tic implication of PNI and the difficulty in detecting it in pathology slide images, the au-

tomated PNI detector exhibits significant potential for PNI diagnosis. 
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on pre-trained weights. 
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