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Abstract: The sedimentary clays of the Douala sub-basin (Cameroon) were studied to determine
their mineralogical composition and physicochemical properties to boost their potential suitability as
materials for traditional ceramics and eventually modern ceramics. These clayey materials are not
widely used locally as building materials and little data are available on these materials in the field of
ceramics and they are relatively unknown. Three profiles from 3.9 to 7.4 m thickness were studied
on the field in order to determine their mineralogical (X-ray diffraction, infrared), chemical (X-ray
fluorescence) and physicochemical (particle size, Atterberg limits, organic matter, cation exchange ca-
pacity and hydrogen potential) properties. Globally, ten (10) clay samples were analyzed to highlight
the nature and technological properties of these clays. Mineralogically, kaolinite (48.3–69.2 wt.%)
and quartz (20.5–41.2 wt.%) were the most abundant minerals in these raw clay materials. They
were associated with a very small or moderate quantity of illite, hematite, goethite, feldspar, gibbsite
and micas. Geochemically, the clayey materials had high silica (SiO2, 22.21–58.03%) and alumina
(Al2O3, 12.84–22.94%) contents, with a significant amount of iron oxides (Fe2O3, 1.07–17.92%). Other
oxides (K2O, MgO, TiO2, Na2O, MnO, CaO and P2O5) were in a relatively lower proportion. A high
level of alumina content explains the kaolinitic nature of these clayey materials. The results of the
granulometric analysis of the clayey materials showed the following distribution: clay (26–99%)
followed by silt (1–70%) and sand (0–4%). This corresponds to silty clay soils according to the Belgian
textural classification diagram, with high plastic index (63.9%) characteristics. The studied clay
materials are good candidates for the production of ceramics and terracotta building. This study is
therefore important for any application of this type of clay in various industrial fields.

Keywords: Cameroon; clay material; Douala sub-basin; mineralogical; physicochemical

1. Introduction

The traditional use of clayey materials existed in ancient times in Africa (Egypt),
Asia (China), America (Mexico), Europe (Roman), etc. [1]. Clay is a material which has a
particle size less than 2 µm and belongs to the family of minerals with similar chemical
compositions and common crystal structural characteristics [2]. Raw clay materials are
mineral resources with major importance in industries because of their numerous uses [3,4].
Presently, more than a third of the world’s population uses clayey products, due to their
quality, weather resistance, plasticity and malleability. The behavior of clay materials is
related to their mineralogy and chemical composition, associated with certain geotechnical
characteristics (particle size, plasticity, etc.). Their chemical compositions vary depending
on both the physical and chemical changes in the environment where clay deposits are
found [5]. The use of raw clay materials has grown in several and varied applications
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(paints, plastics, cosmetics, pharmaceuticals and the production of ceramic materials of
wide distribution) [6–8]. Indeed, the fields of application of clay minerals are more and
more numerous because they are used in several industrial sectors, the most developed
of which are the ceramic industry for the manufacturing of porcelain and earthenware,
the agricultural industry to dilute pesticides and the pharmaceutical industry for the
manufacturing of medication [6–8]. Studies have been carried out on the applications of
ceramic clays in several areas around the world [9–12]. However, several researchers have
been interested in the ceramic applications of clay materials in Africa [13–15]. Several works
have focused on raw clay materials in Cameroon. Clay materials have been identified
in several geological environments in Cameroon [16–20]. Other works have been carried
out on physicochemical and mineralogical characteristics of the catalytic properties and
thermal behavior of some clay materials [21,22]. In Cameroon’s coastal basins, studies were
carried out for the physicochemical and mineralogical characterization of clay materials
in order to understand their origin and paleoenvironment [23,24] and to determine their
properties for various applications [25–27]. In the present context, the natural, technological
and mineralogical properties of the clays in the Douala sub-basin are not very well know
and few works have been conducted on the ceramic aspect.

The aim of this study is to carry out a mineralogical and physicochemical characteriza-
tion of the clay materials at the eastern part of the Douala sub-basin (Cameroon, Central
Africa) in order to determine their nature and identify their technological classification and
suitability for various ceramic applications.

2. Geographical and Geological Setting

The study area is situated at the eastern part of the Douala sub-basin between
3◦10′–4◦12′ N and 9◦50′–9◦52′ E, which forms the northern part of the Cameroonian
Douala/Kribi-Campo basin in the Gulf of Guinea (Figure 1). It is limited to the north
by the Cameroon Volcanic Line (CVL), to the south by the Rio Muni Basin (RMB) (Equa-
torial Guinea) and to the east by the Cameroon Pan-African basement [28]. The tectono-
stratigraphic history of the Douala sub-basin includes several episodes of tectonic activity,
which can be grouped in two great stages: (1) in the first stage (Early Cretaceous–upper
Oligocene), basin development and sedimentation were related primarily to rift-associated
tectonics. This first stage can be divided in two phases (late Aptian–Turonian and Senonian–
Eocene) and two erosive phases (Senonian unconformity and mid-Eocene to base Miocene);
(2) in the second stage (upper Oligocene–Recent), basin development and sedimentation
were related primarily to the development of the Cameroon Volcanic Line, particularly
to the development of the Oligocene to Recent volcanoes [29,30]. The study area is sit-
uated in the N’Kapa formation (Paleocene–Eocene), Matanda Formation (Miocene) and
Wouri Formation (Plio–Pleistocene), which are constituted of marl, clays, sands and fine
sandstone [30,31].
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Figure 1. Geological representation of Douala modified [30]: (a) geolocation map of the Douala sub-
basin, Littoral Cameroon; (b) geological representation of the Douala sub-basin containing the dif-
ferent study sites; (c) geological representation of the study area. 

3. Material and Methods 
3.1. Samples and Sampling Process 

Three holes (Y1, J1 and N1) measuring 8.7, 8.8 and 6.5 m deep, respectively, were dug 
with a spade according to the availability of the study sites and the positions at which 
some craftsmen exploit clay materials for their activities. Each profile was described and 
divided based on their texture and color (Munsell color chart) in different horizons or 
layers in the vertical sections. These profiles are essentially constituted of clayey horizons 
situated on the bottom of the profiles. All the profiles are surmounted by some sandy or 
conglomerated horizons, which may alternate with the rusty horizons and organo-min-
eral horizon. After describing the profiles, seventeen (17) samples of 5 kg each were taken 

Figure 1. Geological representation of Douala modified [30]: (a) geolocation map of the Douala
sub-basin, Littoral Cameroon; (b) geological representation of the Douala sub-basin containing the
different study sites; (c) geological representation of the study area.

3. Material and Methods
3.1. Samples and Sampling Process

Three holes (Y1, J1 and N1) measuring 8.7, 8.8 and 6.5 m deep, respectively, were dug
with a spade according to the availability of the study sites and the positions at which some
craftsmen exploit clay materials for their activities. Each profile was described and divided
based on their texture and color (Munsell color chart) in different horizons or layers in the
vertical sections. These profiles are essentially constituted of clayey horizons situated on
the bottom of the profiles. All the profiles are surmounted by some sandy or conglomerated
horizons, which may alternate with the rusty horizons and organo-mineral horizon. After
describing the profiles, seventeen (17) samples of 5 kg each were taken manually with a
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shovel in the center of the different horizons encountered (Figure 2). The choice of the
ten (10) samples for the analyses were essentially focused on the clayey levels. Thus, ten
(10) representative samples from the study area were grouped into five facies (Figure 3):
the dark gray facies (Y1C1 and N1C1); light gray facies (J1C1 and N1C2); purplish facies
(J1C2); the yellow facies (Y1C2 and N1C4); and the multicolored facies (Y1C3, J1C3 and
N1C3). Each representative sample was subjected to a mineralogical, geochemical and
physicochemical analysis.
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Figure 2. Morphology of profiles of the clayey materials of the eastern part of the Douala sub-basin.
(a) Profile Y1 of Yansoki with analyzed samples Y1C1, Y1C2, Y1C3; (b) Profile J1 of Japoma with
analyzed samples J1C1, J1C2, J1C3; (c) profile N1 of Ndogpassi with analyzed samples N1C1, N1C2,
N1C3, N1C4.
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Figure 3. Photos of the different facies analyzed in the eastern part of the Douala sub-basin: (a) dark
gray clay (Y1C1, N1C1); (b) light gray clay (J1C1, N1C2); (c) purple clay (J1C2); (d) multicolored clay
(Y1C3, J1C3, N1C3); and (e) yellow clay (Y1C2, N1C4).

3.2. Analytical Techniques

The mineralogical analyses were carried out at the laboratory AGEs of the University of
Liege, Belgium, according to the methodology of Moore Duane and Reynolds Robert [32].
The mineralogy was determined by X-ray powder diffraction on bulk samples and on
oriented clay samples at room temperature using a classical powder diffractometer Brüker
Advance 8 brand type, equipped with Cu radiation (Kα LCu 1

4 1.54056 Å) at an intensity
of 40 mA and a voltage of 40 kV. It was configured with a step size of 0.013◦ (2θ) for a
measurement time of 30 s and data were collected over the interval of 2◦–70◦ (2θ). A mineral
phase identification was performed using X’Pert HighScore Plus software associated with
PDF-2 2007 release software. Prior to analysis, the analyzed samples were ground and
sieved to 80 µm. The <2 µm fraction was taken from the suspension after a settling time
was calculated according to Stocke’s law and it was then placed on a glass slide, meaning
the XRD patterns were thus recorded between 2◦ and 30◦ 2θ using the same step size and
time per step parameters. These oriented aggregates were subjected to three successive
treatments: air drying, glycolation and heating at 500 ◦C for 4 h, in order to confirm the
type of clay mineral phases.

Qualitative and semi-quantitative estimates (±5–10%) were referred to as the measure-
ments of the maximum intensity of X-ray models according to Biscaye [33]. The infrared
spectra were carried out at the Dschang University laboratory in Cameroon. Diffuse re-
flectance infrared spectra were recorded between 4000 cm−1 and 500 cm−1 using a Thermo
Scientific Nicolet iD7 FTIR spectrophotometer. The spectrum resolution was 4 cm−1 and
the spectra were obtained by the accumulation of 200 scans.

The geochemical characterization consisted of determining the major element concen-
trations using the X-ray fluorescence spectrometer (XRF). This analysis was performed on
the raw materials using a Niton XL3t980 hXRF analyzer (X-ray tube: 50 kV; anode: silver;
silicon detector: 8 mm). The analysis provides raw data in the form of a spectrum with
the specific fluorescence energy (in keV) on the x-axis and the photon number (in CPS) on
the y-axis. The instrument was calibrated and configured in mining/mineral mode. The
materials studied were crushed and sieved to 80 µm and were then analyzed to obtain the
base oxides contained in the materials. The predominance of the oxides was determined by
using the triangular diagram SiO2-Al2O3-Fe2O3. The evaluation of the level of chemical
alterations of the analyzed clays was carried out by the ternary diagram of the evaluation of
the chemical alteration index [34]. Weakly altered materials are those with values between
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50 and 60%, moderately altered materials are those with values between 60 and 80% and
highly altered materials are those with values > 80%. The certainty of the clayey materials
in ceramics has been demonstrated using the Fiori and Fabbri diagram [35].

The Chemical Index of Alteration (CIA) was calculated as follows:

CIA = (Al2O3/(Al2O3 + CaO + Na2O + K2O)) × 100 (1)

The physicochemical properties were determined using various methods at Mission
de Promotion des Matériaux Locaux (MIPROMALO) in Yaounde, Cameroon. The particle
size distribution was determined by a wet sieving method for fractions greater than 80 µm.
Particles that were less than 80 µm were analyzed using sedimentation according to the
French standard NF P18-056 procedure. The texture of the clay materials was determined
using the Belgian textural classification diagram [36]. The porosity and permeability
were determined by the McManus triangular diagram [37]. The prediction of the ceramic
suitability of kaolinitic clays was examined using a Winkler diagram [38].

The Atterberg limits were used to define the limits of consistency between the solid
and plastic state (plasticity limit: PL) and the plastic state to the liquid state (liquid limit:
LL). The interval between the plastic limit and liquid limit defines the plastic index (plastic
index: PI). The plastic limit test was carried out according to the Casagrande method [39]
and the plasticity index (PI) was calculated by the following formula:

PI = LL − PL (2)

The binary diagram of Holtz and Kovacs [40] was used to classify the studied clay
materials according to their plasticity and the Bain diagram [41] was used as a support to
show the suitability of the studied clays in ceramics using the data of the plasticity index of
Atterberg: IP < 15% for bricks and IP > 15% for pottery.

The percentage of organic carbon was determined using the Walkley method, which
is an oxidation with potassium bicarbonate (K2Cr2O7) in an acid medium (H2SO4). The
determination was performed with calorimetry. The amount of organic matter in the clay
samples was determined using the amount of organic carbon and the Sprengel coefficient,
which is 2. The procedure consists of multiplying the Sprengel factor by the organic carbon
content. The swelling property of the clays was determined by adding 20 g of steam powder
initially dried at 105 ◦C for 24 h in a container of volume V1. Subsequently, the powder of
the same sample was introduced into a beaker of volume V2 containing 100 mL of distilled
water for 24 h at room temperature. The swelling rate (T) is given by the equation:

T = 100 × (V2 − V1)/V1 (3)

The Kjeldahl method [42] was used to determine the cation exchange capacity (CEC)
with a three-step protocol: saturation of the absorbent complex by the addition of NH4

+

ions and the extraction of exchangeable bases; washing of the clay with ethanol to remove
excess NH4

+ ions; and determination of NH4
+ by distillation. The procedure consists of

adding two drops of phenolphthalein in a 10 mL extract, then adding soda until a pink–
purple coloration appears. Distilled, the NH3 is trapped in boric acid and is titrated with
H2SO4 0.01N using a potassium chloride solution (KCl) as a developer.

4. Results and Discussion
4.1. Mineralogy

The results obtained from the analysis of the X-ray diffraction of the bulk clay ma-
terials showed the same mineralogical phases with varying concentrations (Figure 4).
The mineralogical composition of the studied samples included quartz (SiO2), kaolinite
(Al2(OH)4Si2O5), illite ((K,H3O(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)]), hematite (Fe2O3),
muscovite (KAl2(AlSi3O10)(F,OH)2), feldspar (KAlSi3O8–NaAlSi3O8–CaAl2Si2O8), goethite
(FeOOH) and gibbsite (Al(OH)3). Figure 5 presents the XRD patterns of the <2 µm frac-
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tion of the analyzed samples and Table 1 estimates the semi-quantitative mineralogical
composition of the mineral phases of the clay materials based on the peak intensities of
the XRD patterns. This revealed an important proportion of kaolinite (48.3–69.2 wt.%),
quartz (20.5–41.2 wt.%) and appreciable amounts of illite (2.4–10.2 wt.%), which are in
relation. In Ndogpassi, kaolinite was the most abundant mineral followed by quartz.
In Yansoki and Japoma, kaolinite was also the main mineral, but in lower proportions
here than in Ndogpassi. Illite remained the same in Ndogpassi. This clay mineral was
shown to be present by the less intense peaks at 10.3 Å and 3.34 Å, which indicate low
crystallinity. Illite is known for its cohesive, swelling and plastic properties as ceramic
products [43,44]. The Y1C2 and N1C4 samples stood out from other samples due to the
presence of hematite (3.5 and 3.8%, respectively), which at these proportions gave a yellow
color to these samples [19,20]. The amounts of the other mineral phases were: hematite
(0–3.8 wt.%), goethite (0–0.8 wt.%), feldspar (0–3.4 wt.%), muscovite (0–2.7 wt.%) and
gibbsite (0–1.8 wt.%), respectively. These identified minerals are characteristic of marine
deposits in Cameroon’s coastal basins [28,45]. In Figure 5, kaolinite is characterized by
diffraction peaks between 7.11 and 7.18 Å in the normal state (N) and after treatment
with ethylene glycol (EG), which then disappears after heating to 500 ◦C (CH). This clay
mineral had a sharp diffraction peak, indicating that it is crystalline. However, illite was
indicated by low peaks between 9.56 and 10.3 Å at normal (N) and did not change after
being treated with ethylene glycol (EG) and heated to 500 ◦C (CH). These minerals are
mainly accompanied by quartz. According to Hinckley [46], kaolinite and quartz peaks
on the diffractograms are well expressed, indicating that the minerals are well crystallized.
However, other similar peaks were identified in the raw clay materials with broad peaks
or were weakly expressed, which is characteristic of minerals with a lower degree of crys-
tallinity. The mineralogical composition of the samples in this study is similar to that of the
Douala clay materials [25,26]. However, the results obtained were compared with other
clay materials that were formed under the same conditions, notably the raw clay materials
of Ketou Benin [47], Lokoundje Cameroon [48] and Tamazert, Hadj Ali and Chekfa from
Algeria [49]. The same mineralogical characteristics of the mineral assemblage were ob-
served, except the rutile concentration was found in Lokoundje Kribi Cameroon [48]. The
results from the XRD analysis can be confirmed by FTIR spectra (Figure 6), indicating the
presence of kaolinite, quartz, illite and oxyhydroxide minerals. The absorption peak found
between 3700 cm−1 and 3600 cm−1 (3692.60 cm−1, 3615.23 cm−1) in all samples attests the
presence of kaolinite [28,48]. The lack of a well-defined peak at 3664 cm−1 may be due to
the existence of disordered kaolinite [50]. The peaks of quartz found between 1200 cm−1

and 900 cm−1 (1115.98 cm−1, 1006.31 cm−1, 904 cm−1) for all the samples because of the
stretching vibration of Si-O confirms the presence of this mineral and corroborates with
the results from XRD analysis [51]. However, the absorption at 3364.33 cm−1 and 740 cm−1

indicates the presence of illite [52]. These characteristics confirmed the origin of the sed-
iments of the studied samples [50]. According to [52], water molecules are revealed by
the wide band at 1632 cm−1 due to the H–O–H vibrations of the adsorbent. In this work,
the band at 1632.81 cm−1 or 1612 cm−1 in all samples is attributed to the absorption of
the water molecule (OH), i.e., the presence of hydrated phyllosilicates. This progressive
decreasing of the band is related to the removal of octahedral cations, causing the loss of
water. The presence of kaolinite, quartz and illite in the material gives it a better capacity in
the production of ceramics and terracotta due to their refractory properties at a liquidus
temperature of about 1800 ◦C [4,53]. Accordingly, the mineralogical compositions are
suitable for ceramics products.
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Table 1. Semi-quantitative estimation of the mineralogical composition (%) of clay materials of the
eastern part of the Douala sub-basin based on peak intensities of XRD patterns.

Localities Yansoki Japoma Ndogpassi

Samples Y1C1 Y1C2 Y1C3 J1C1 J1C2 J1C3 N1C1 N1C2 N1C3 N1C4

Kaolinite 50.5 52.3 49.5 50.4 48.3 51.4 54.7 69.2 50.1 49.8

Quartz 40.8 39.2 41.2 35.6 39.4 38.6 26.4 20.5 31.4 33.4

Illite 3.9 3.1 4.7 2.4 8.1 3.4 8.4 3.4 9.7 10.2

Hematite 1.4 3.5 - 2.9 - 2.7 2.5 - 3.8 2.6

Goethite - 1.9 2.4 3.5 3.2 1.4 1.7 3.6 3.3 2.3

Feldspar 2.5 1.8 - 1.6 - - 3.4 1.2 - 0.5

Muscovite 1.9 1.4 2.2 1.8 - 1.2 2.7 1 - -

Gibbsite - 0.6 - 1.8 1 1.3 1.8 1.1 1.7 1.2
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4.2. Geochemistry

The results of the XRF chemical analyses expressed as mass percentages of the oxides
of the selected samples from different sites of the study area are presented in Table 2. The
geochemical analysis of clay materials gives a precise idea of their origin and the processes
that contributed to their formation, but also provides the information necessary to under-
stand their technological properties [54]. The observation of the geochemical composition
presented shows that the studied samples mainly consisted of silica (SiO2), alumina (Al2O3),
iron oxide (Fe2O3) and traces of TiO2, CaO, MgO, Na2O, K2O and SO3. The samples from
Yansoki basically contained 38.23–51.18% of silica, 13.01–16.45% of alumina and 4.9–17.76%
of iron oxide. The samples from Japoma contained both the highest (58.03%) and lowest
(38.18%) fraction of silica. The alumina content was 19.92–22.94% and 3.86–6.43% of iron
oxide. The contents of the oxides in the samples from Ndogpassi were constituted with
22.21–55.62% of silica, 12.84–19.37% of alumina and 1.07–17.92% of iron oxide. These oxides
were in preponderant proportions in several studied samples of Cameroonian coastal
basins [25,48,55]. The occurrence of CaO, MgO, Na2O and K2O was low, which indicates
the unlikely presence of high swelling clay minerals such as montmorillonite, except for the
N1C4 sample which had 11.7% of K2O [55,56]. The high percentage of SiO2 (22.21–58.03%)
demonstrates the abundance of quartz in the samples. Al2O3 (12.84–22.94%) may be linked
to the presence of kaolinite. The iron oxide content (1.07–17.92%) explains the existence
of hematite and goethite in the clays and consequently are at the origin of the reddish
brown or reddish yellow coloring (Y1C2 and N1C4) [45,55]. In view of these analyses,
the geochemical composition is in agreement with the mineralogical data and effectively
confirms the presence of the different mineral phases that have crystallized, such as quartz
and kaolinite. The ratio of SiO2/Al2O3 varied between one and three, except for samples
such as Y1C1 (3.11), N1C3 (4.33) and N1C1 (3.22) (Table 3). According to [57,58], the low
SiO2/Al2O3 ratios close to two in the material demonstrates the predominance of type
1:1 clays. Thus, the SiO2/Al2O3 ratios of most of the samples studied were close to two,
which would indicate the presence of minerals of the kaolinite family (type 1:1). The N1C3,
N1C1 and Y1C1 samples had ratios that were greater than two, suggesting the presence
of free forms of silica and clay minerals type 2/1, such as illite in the materials as well as
a chemical maturity of the studied clay materials [57,58]. Low levels of the exchangeable
cations CaO, Na2O and K2O observed in all the samples confirm the low content of the 2:1
type mineral [56]. Therefore, the clay materials in the study area had significant proportions
of type 1:1 clay minerals compared to type 2:1 clay minerals. A representation of the SiO2-
Al2O3-Fe2O3 triangular diagram (Figure 7) showed that all samples were located towards
the SiO2 pole and along the SiO2-Al2O3 axis, which is in agreement with a SiO2/Al2O3
ratio. This indicates excesses of SiO2 and Al2O3 and effectively confirms the presence
of quartz and kaolinite in the studied samples [57,58]. For most selected samples from
different studied sites, the variation of LOI (between 8.19 and 16.11%) reveals the presence
of mainly hydrated minerals such as clay and goethite [59]. These results would indicate
the presence of minerals as halloysite with a high hydration capacity. The Chemical Index
of Alteration (CIA) varied from 61.59–97.76%, suggesting that the studied clays underwent
an intense alteration (Table 2). This result is in perfect harmony with the morphological
and climatic conditions prevailing in the coastal region [24,60]. The geochemical analyses
were projected in the ternary diagram of Nesbitt and Young [34] (Figure 8). The positions
of the samples in the diagram showed that the materials had a high degree of chemical
alteration except for the N1C4 sample, which was in the moderate weathering range. The
higher values of the chemical weathering indices in the materials reflect further weathering
due to the climatic conditions of the study sites [24,26,60]. The suitability of the raw clay
materials for the use in ceramic industries is demonstrated by the application of ternary
diagram [35] (Figure 9). The projection of the samples in this diagram presents a suitable
composition for ceramic production and terracotta building materials. These clay materials
can be used in the production of sandstone tiles and stoneware.
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Table 2. Geochemical composition (wt.%) of clay materials of the eastern part of the Douala sub-basin
determined by XRF.

Localities Yansoki Japoma Ndogpassi

Samples Y1C1 Y1C2 Y1C3 J1C1 J1C2 J1C3 N1C1 N1C2 N1C3 N1C4

SiO2 51.18 38.97 38.23 58.03 38.18 49.97 50.07 22.21 55.62 48.23

TiO2 1.09 0.06 0.75 1.68 1.47 1.43 1.13 0.98 1.16 2

Al2O3 16.45 15.27 13.01 19.92 21.85 22.94 15.54 17.32 12.84 19.37

Fe2O3 4.9 17.76 5.42 3.88 3.86 6.43 4.22 1.07 17.92 6.06

MnO 0.41 0.12 0.13 0.33 0.07 0.09 0.14 0.82 1.02 0.62

MgO 0.95 0.32 0.43 0.3 0.1 0.2 0.74 0.15 0.32 0.53

CaO 0.72 0.08 0.23 0.04 0.06 0.21 0.15 0.15 0.38 0.27

K2O 1.7 0.51 0.48 0.85 0.41 0.42 2.24 0.34 1.62 11.7

Na2O 0.06 0.02 0.34 0.37 0.03 0.2 0.08 0.01 0.19 0.11

SO3 0.08 0.68 0.13 0.09 0.15 0.27 0.32 0.34 0.51 0.02

P2O5 0.13 0.11 0.05 0.05 0.06 0.07 0.02 0.16 0.02 0.17

LOI 13.2 12.77 11.21 8.37 11.23 10.06 16.11 15.4 8.19 8.58

Total 90.87 86.67 70.41 93.91 77.47 92.29 90.76 58.95 99.79 97.75

SiO2/Al2O3 3.11 2.55 2.94 2.91 1.75 2.18 3.22 1.28 4.33 2.49

TiO2 + Fe2O3
+ CaO + MgO
+ Na2O + K2O

9.42 18.75 7.65 7.12 5.93 8.89 8.56 2.7 21.59 20.76

CIA 86.89 96.16 92.53 94.05 97.76 96.51 86.28 97.19 85.43 61.59

Table 3. Physicochemical parameters of the studied clays of the eastern part of the Douala sub-basin.

YANSOKI JAPOMA NDOGPASSI

Samples Codes Y1C1 Y1C2 Y1C3 J1C1 J1C2 J1C3 N1C1 N1C2 N1C3 N1C4

Texture Silty clay Silty clay Silty clay
Very

heavy
clay

Very
heavy
clay

Very
heavy
clay

Heavy
clay

Very
heavy
clay

Silty clay Very
heavy clay

Color Dark gray Yellow Multicolored Light
gray Purple Multicolored Dark gray Light

gray Yellow Multi-
colored

Thickness (m) 1.7 0.7 0.9 3.7 2.7 2.7 2 2.3 0.8 0.8

Sand (200 > Φ > 20 µm) % 0.9 1 0 1 0.8 1.5 0.9 0 4 0,2

Silt (20 > Φ > 2 µm) % 68.1 68.5 71.5 41.5 40 30.5 65.1 1 70 43.3

Clay (Φ < 2 µm) % 31 30.5 39.5 65.5 59.2 68 34 99 26 56.5

Liquid limit (LL) 73.3 72.2 70.6 36.5 50.5 38.8 73.7 109.2 46.7 62.6

Plastic limit (PL) 50.4 53 49.5 22.5 27.1 27.7 47.3 45.3 36.5 43.8

Plasticity index (PI) 21.9 19.2 21.1 14 23.4 11.1 26.4 63.9 10.2 18.8

Organic matter (%) 4 1.19 1.07 2.3 2.04 1.02 6.29 2.06 0.19 2.53

Sweling rate (T) 13.6 11.4 9.1 5 10 5 11.4 13 7.5 11.4

CEC (meq/100 g) 27.12 23.18 17.09 21.30 19.74 16.59 27.45 26 26.5 38.12

pH
pH-H2O 3.4 4.8 4.7 5 5 4.9 2.8 4.7 5.3 4.5

pH-KCl 2.9 4.2 3.8 4.1 4.2 3.9 2.6 3.9 4.7 4
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4.3. Physicochemical Properties
4.3.1. Particle Size Fractions

Knowledge of the particle size distribution of clay materials is an important factor to
determine its suitability for various applications [1]. Table 3 presents the physicochemical
characteristics of the different samples. Generally, the different granulometric proportions
of the analyzed samples showed that the clay fraction (<2 µm) ranged from 26% (N1C3) to
99% (N1C2), silt (2 < Ø > 20 µm) and sand (20 < Ø > 200 µm) varied from 1% (N1C2) to
70% (N1C3) and 0 (Y1C3, N1C2) to 4% (N1C3), respectively. The proportions of the clay
fraction (<2 µm) varied from 30.5% to 39.5% for Yansoki, 59.2–68% for Japoma and 34–99%
for Ndogpassi. The clay fraction had the most quantities in all the studied samples (50.9%,
average amount). The proportions of the silt fraction (2 < Ø > 20 µm) ranged between
68.1% to 71.5% for Yansoki, 30.5% to 41.5% for Japoma and 1% to 70% for Ndogpassi.
Except for the N1C1 sample, the studied samples from Yansoki and Ndogpassi had higher
quantities of the silt fraction. Silt was the second most important fraction of the studied
samples. However, the quantities of the sand fraction were 0% to 1% in Yansoki, 0.8–1.5%
in Japoma and 0–4% in Ndogpassi. The sand fraction had the lowest quantities in the
selected samples from different sites of the study area. These samples were therefore richer
in clay fractions (<2 µm) than the clay materials of the Lake Chad basin, which ranged from
16.54 to 21.54% [1]. The higher content of fine fraction (clay and silt) observed in the clay
materials is favored by morphoclimatic and hydrological conditions in the Littoral region
of Cameroon. The hot and humid tropical climate of the Littoral region favors the intense
alteration of the materials compared to the clay materials of the Lake Chad basin, which are
subjected to the sahelo-sudanian and sahelo-saharan climates. The particle size distribution
of clay plays an essential role in defining the properties of suspensions (plasticity and
viscosity) and green pastes during drying and firing [19,61].

The particle size analysis of the studied samples was plotted in the Belgian diagram
of textural classifications of clayey materials [36]. This diagram indicates that the clay
materials are very heavy clays and silty clays (Figure 10). This is in perfect correlation with
the most amount of fine particle sizes found in the areas corresponding to very heavy clays
and silty clays.
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The ternary diagram of McManus [37] was used to classify clay materials according to
their porosity and permeability. According to this diagram [37], all the studied samples
may be classified as weakly porous and permeable with the exception of the N1C2 sample
from Ndogpassi, which was found in the range of high porosity and very low permeability
(Figure 11). The permeability therefore depends largely on the shape, size and sorting of
the particles. This observation agrees with the distribution of the constitutive particles of
the studied clayey materials.
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The particle size was projected in the Winkler diagram [38] (Figure 12). The use of
the Winkler diagram made it possible to predict the ceramic suitability of clay materials.
However, neither the firing conditions nor the properties of ceramic magnitudes can be
known. The particle size distribution of the eastern part of the Douala sub-basin showed
that they are made up of fine particles. In the Winkler diagram, the results showed that
the studied clayey materials are good candidates and can be used for the production of
different bricks and tiles if they are mixed with 10% of coarse size particles such as sand in
the manufacturing process [38].
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4.3.2. Plastic Properties

Plasticity is a very important parameter for manufacturing clayey products [15]. The
Atterberg limits are presented on Table 3 and are plotted on the Holtz and Kovacs diagram
(Figure 13). The limits of plasticity ranged between 49.5 (Y1C3) and 53 (Y1C2) for Yansoki,
22.5 (J1C1) and 27.7 (J1C3) for Japoma and 36.5 (N1C3) to 47.3 (N1C1) for Ndogpassi. The
plasticity index varied from 19.3 (Y1C2) to 21.9 (Y1C1), 11.1 (J1C3) to 23.4 (J1C2) and 10.2
(N1C3) to 63.9 (N1C2), respectively, for Yansoki, Japoma and Ndogpassi sites. Globally,
the plasticity of the studied samples was mostly influenced by the clay fraction. Hence,
the N1C2 sample had a high clay amount and high plasticity index value (63.9), but the
N1C3 sample had the lowest plastic index (10.2) with less clay proportion. The Holtz and
Kovacs diagram [40] was used to classify the clay soils on a scale of four plasticity domains
(Figure 13): non-plastic clay soils, low plasticity, medium plasticity and high plasticity. It
was also used to account for the mineralogical nature that was predominant in the clay
materials. On the diagram, the samples fall within the zone of high plastic clays (Y1C1,
Y1C2, Y1C3, N1C2, N1C1 and N1C4) and medium plastic clay (J1C1, J1C2, J1C3 and N1C3).
The liquidity limits of these materials are high and while those of an average plasticity
are around 40.31%. This suggests the hygroscopic nature of the materials. Plasticity is
favorable for extrusion and manual processing due to the proportion of clays and silts. It is
consistent with the classification from the Winkler diagram and confirms the clay and silt
content of the studied samples (Figure 12). Based on the Holtz and Kovacs diagram [40],
the observations are in agreement with the results of the granulometric tests. According
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to Bukalo [55], the plasticity of the samples from the eastern part of the Douala sub-basin
corresponds to that of the coastal basins of Cameroon.
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Numerous studies have shown that particle size distribution and clay content have
an influence on the plasticity of clay raw materials and therefore influence rheological
properties [40,62]. The Atterberg limits of the samples are reported in the Bain diagram [41]
presented in Figure 14. The use of this diagram makes it possible to predict the suitability
of clay materials for ceramic production. Therefore, the Bain diagram [41] shows that these
clay samples can be used to manufacture bricks (N1C3, J1C3 and J1C1) or pottery for the
rest of the studied samples (Y1C1, Y1C2, Y1C3, J1C2, N1C2, N1C1 and N2C3). Generally,
the samples of the study area may be more improved if they are mixed with coarse particles
such as sand. The plasticity index (PI) values of the studied samples are higher than 10%,
which implies that these samples are appropriate for building ceramic products due to the
appropriate extrusion process [41].
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4.3.3. Organic Matters

The amount of organic matter (OM) in the studied samples ranged from 0.19% (N1C3)
to 6.29% (N1C1) and these results are presented in Table 3. The average of the amount of
organic matter was 2.27% and it was moderate. However, the organic matter has no effect
on the final ceramic product when particles sizes are fine, but when the particle sizes are
large, they show wide pores and carbon marks on the product after firing [63]. According
to Wilding [64], the dark coloration of some clayey layers observed on the described and
exploited profiles can come from the appreciable content of organic matter which forms
with the clay, the clay–humic complex. Thus, the samples Y1C1 and N1C1 are the witnesses
of the presence of organic matter in the clayey materials.

4.3.4. Rate of Swelling

The swelling index is an essential property of clays to understand their swelling or non-
swelling character and to give indications on the nature of the clay materials. According
to Bukalo [40], fine particle materials need a large amount of water to become a paste and
subsequently become liquid. Thus, the material tends to retain more water, which leads to
the elevation of the swelling rate and plasticity index. The results showed that the swelling
rate in the analyzed samples ranged from 5 to 13.6 (Table 1). This rate therefore remains
low to medium. This is in line with the non-hygroscopic character of the type 1/1 clayey
minerals, indicated by the XRD showing the kaolinitic nature.

4.3.5. Cation Exchange Capacity (CEC) and the Hydrogen Potential (pH)

The cation exchange capacity (CEC) values of the studied clayey materials ranged
between 16.59 and 38.12 meq/100 g (Table 3). These values resulted from the kaolinite
phase and are coherent with the mineralogical and chemical composition of the studied
samples [42]. The presence of clay minerals such as illite and mica accounted for these
cation exchange capacity values [65]. In addition, the cationic exchange capacity did not
exceed 28 meq/100 g. This justifies the presence of non-swelling minerals such as kaolinite,
illite and muscovite identified by XRD.

The clay samples had acidic pH values (Table 3). These values ranged between 2.8 and
5.3 for pH-H2O and 2.6 and 4.7 for pH-KCl. This result confirms the absent of clay minerals
such as calcite, as already revealed by XRD.

5. Conclusions

In the eastern part of the Douala sub-basin, the exploratory field trip (Yansoki, Japoma
and Ndogpassi) exhibited good indices of clay materials for ceramics, with a thickness
of more than 7 m over an area of the sub-basin. The geochemical, mineralogical and
physicochemical characterizations were the investigated methods on clay materials. The
morphological description of the raw clay deposit is made up of various clay facies (dark
gray, light gray, purple, yellow and multicolored). Mineralogically, the main clay minerals
of the studied samples consisted of kaolinite (48.3–69.2 wt.%) and quartz (20.5–41.2 wt.%),
with lesser amounts of illite content (2.4 to 10.2 wt.%). Other minerals were also observed,
such as hematite, goethite, feldspar, gibbsite and micas, but in small to moderate amounts.
This mineralogical result suggested that monosiallitization is the main crystallochemical
process acting in the study area. Geochemical results showed that SiO2 (22.21–58.03%)
and Al2O3 (12.84–22.94%) are the main oxides with lesser to higher amounts of Fe2O3
content (1.07–17.92%). The significant amount of these oxides are reflects of aluminosil-
icates and the presence of hematite and goethite. All clay materials consisted of a low
amount of alkali and alkaline earth oxides: K2O, Na2O, MgO and CaO. The results of the
physicochemical properties revealed that the clay materials were mostly constituted of a
clay fraction (26–99%), followed by a silt fraction (1–70%) and sand fraction (0–4%). The
textural classification corresponds to very heavy clays and silty clays. The studied samples
were mostly plastic clays, with plasticity limit characteristics varying between 22.5% and
53% and a plasticity index ranging between 10.2% and 63.9%, which could be attributed to
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the high organic matter content and the important proportion of clays. In the application,
the studied clayey materials are promoted for the production of ceramics and terracotta
building materials; in particular, pottery, bricks, tiles and stoneware. This study is therefore
essential before any application of this type of clay in various industrial fields, specifically
in fine ceramics.
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