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Abstract: Metal corrosion in high-risk areas, such as high-altitude cables and chemical factories, is
very complex and inaccessible to people, which can be a hazard and compromise people’s safety.
Embedding deep learning models into edge computing devices is urgently needed to conduct
corrosion inspections. However, the parameters of current state-of-the-art models are too large
to meet the computation and storage requirements of mobile devices, while lightweight models
perform poorly in complex corrosion environments. To address these issues, a lightweight residual
deep-learning model based on an encoder–decoder structure is proposed in this paper. We designed
small and large kernels to extract local detailed information and capture distant dependencies at
all stages of the encoder. A sequential operation consisting of a channel split, depthwise separable
convolution, and channel shuffling were implemented to reduce the size of the model. We proposed a
simple, efficient decoder structure by fusing multi-scale features to augment feature representation. In
extensive experiments, our proposed model, with only 2.41 MB of parameters, demonstrated superior
performance over state-of-the-art segmentation methods: 75.64% mean intersection over union (IoU),
86.07% mean pixel accuracy and a 0.838 F1-score. Moreover, a larger version was designed by
increasing the number of output channels, and model accuracy improved further: 79.06% mean
IoU, 88.07% mean pixel accuracy, and 0.891 F1-score. The size of the model remained competitive at
8.25 MB. Comparison work with other networks and visualized results were used for validation and
to determine the accuracy of metal corrosion surface segmentation with limited resources.

Keywords: corrosion segmentation; lightweight residual model; large convolution kernels;
contextual feature

1. Introduction

Research has shown that losses due to metal corrosion account for approximately 3.4%
of the world’s annual Gross Domestic Product (GDP) [1], which causes huge economic
losses and severely threatens people’s safety. Solving this problem is considered to be one of
the major challenges of modern industrialized countries. Therefore, timely determination
of the extent of corrosion is significant for equipment maintenance and prevention of
property damage.

The vast majority of corrosion occurs on high-altitude cables and in chemical areas that
are inaccessible. Therefore, embedding efficient image processing into mobile devices will
significantly improve detection efficiency and range [2]. In recent years, image processing
based on deep-learning has clearly improved detection accuracy and has wide application
in industrial inspections [3].

Because corrosion occurs randomly and irregularly on metal surfaces, deep semantic
segmentation is better suited to detecting corrosion compared to target detection and classi-
fication. However, deep-learning algorithms tend to have a large number of parameters
and require huge computational resources, especially for semantic segmentation. Currently,
there in some research into lightweight deep-learning models [4–6] and real-time semantic
segmentation [7], the algorithms of which follow the framework of fully convolutional
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networks (FCNs) for the most part [8]. However, the traditional FCN [8] framework
follows the idea of classification and ignores contextual features. Some central moment
(CM) [9–11] models (CM–FCN) capture the long-range dependencies of semantic features
well by performing a contextual module after the encoding stage but overlooking the detail
dependencies among pixels. Based on the above analysis, a new, light, deep-learning model
is proposed in this paper that captures contextual information at all stages for corrosion
segmentation as shown in Figure 1. The novelty of this study and its superiority over other
studies comes from three aspects:

(1) We present a mixture of large and small kernels to acquire spatial and semantic contextual
information and perform superior corrosion segmentation.

(2) We follow the ShuffleNetv2 to alleviate the computational overhead caused by large
kernels and to embed high-precision models into mobile devices more appropriately.

(3) The creation of a fused multi-scale feature promotes information acquisition under
limited resources.

Input Output

(a) FCN

Input OutputCM

(b) CM–FCN

Input Output

CF CF CF CF

(c) Ours

Figure 1. Common architectures for semantic segmentation. CM: contextual modules, CF: contextual
features. (a) The FCN framework follows the guidelines of classification, which ignore contextual
information. (b) CM–FCN model uses CM to extract contextual features of semantic information only
in the last stage of the network. (c) The proposed model extracts the contextual features at all stages
of the network.

To summarize, our main contributions are

• The design of large and small convolution kernels at all stages in the encoder to
capture the long-distance dependencies between pixels and local detailed information
and the design of a novel, simple decoder structure to fuse multi-scale information to
improve model accuracy in an end-to-end residual deep-learning framework.

• The reduction of the model size by borrowing the core idea of ShuffleNetv2. The
depthwise separable convolution and channel split operations reduce the computa-
tional overhead from large kernels, and the channel shuffle further improves feature
representation capability.

• The design of two differently sized models to accommodate a variety of application
scenarios. Extensive experimental results on a benchmark dataset showed that both
models outperformed the state-of-the-art methods in model size and in accuracy
trade-off for corrosion segmentation and degree evaluation.
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2. Related Works

In this section, we introduce related works including corrosion segmentation methods
as well as typical and popular semantic segmentation deep models. Some corrosion
area detection methods include segmentation post-processing, but these methods don’t
distinguish between detection and segmentation strictly, so they are discussed in the
corrosion segmentation section.

2.1. Corrosion Segmentation

To detect corrosion and segmentation, traditional image-processing and machine-
learning methods are widely used: wavelet domain analysis combined with support vector
machine (SVM) [12], threshold segmentation methods [13], color space-based analysis [14]
and texture analysis [15]. These are simple and customized for specific applications, but
they rely heavily on manual feature extraction and are difficult to generalize.

Because of its rapid development in recent years, deep learning performs prominently
in many classical vision tasks. Its great advantage is that it learns features automatically.

Ortiz et al. [16] used a three-layered feedforward neural network for corrosion de-
tection on ships. Zhang et al. [17] proposed a channel attention-based metallic corrosion
detection (CAMCD) method. Squeeze-and-Excitation (SE) [18] attention improved corro-
sion detection performance in ResNet [19] networks. Xu et al. [20] proposed a method
based on Faster R-CNN, which accurately found the corrosion area on a coated metal plate.
Hou et al. [21] used a cascading Mask R-CNN network combined with transfer learning
and a cable inspection robot to solve automatically the accuracy and location problems in
a stay-cable surface inspection. The proposed method reached the best IoU (0.743) and
F1-Score (85.1%) among the classic canny algorithm and mainstream segmentation net-
works. Fondevik et al. [22] built a corrosion dataset for the segmentation and performance
evaluation of the pyramid scene parsing network (PSPNet) [11] and Mask R-CNN [23] for
semantic segmentation and instant segmentation on this dataset, respectively. The authors
also developed a two-stage data augmentation scheme that has been empirically shown
to reduce overfitting significantly and improve, for instance, segmentation performance.
The above two papers both used the Mask R-CNN framework [23], which combines Faster
R-CNN [24] with FCN [8] to be an effective framework for corrosion segmentation. These
methods confirmed the great potential of deep-learning models for corrosion segmentation.
However, most of them are focused on specific applications and ignore the essential char-
acteristics of general corrosion images, which makes implementing an algorithm for all
corrosion image segmentation difficult. Because a corrosion image has no fixed pattern due
to its randomness, its main features are distributed at different depths of the network. Thus,
both spatial and semantic levels of contextual information need to be learned to reflect
better the corrosion and multi-scale features that need to be incorporated so that the feature
representation capability can be augmented.

2.2. Image Semantic Segmentation

As we know, large models perform better according to common sense, such as
Deeplabv3+ [10] using Xception [25] as the backbone of 208.70 MB, and DenseASPP [26]
using ResNet50 [19] as backbone of 103.79 MB. However, these high-accuracy large models
are unsuitable for mobile devices. Meanwhile, some real-time semantic segmentation ap-
proaches are proposed to solve the trade-off between model volume and accuracy. ENet [27]
removes the last layer of pooling indexes so that the final number of output feature maps
is equal to the number of categories. ICNet [28] uses a cascade of feature fusion units
with a low-resolution image to capture semantic information, and medium-resolution and
high-resolution images to capture details. ESPNet [29] is an efficient semantic segmentation
network for high-resolution images under limited computational resources. LinkNet [30]
adds high-resolution residuals in the decoder to recover lost details. ERFNet [31] uses
asymmetric convolution to further reduce the number of parameters. These networks have
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fewer parameters and seek better real-time performance, but the limited receptive fields
restrict them to discover rich contextual information for high precise segmentation.

To solve the above problems, CGNet [32] proposed that a CG block extract local
and surrounding contextual features. ContextNet [33] proposed a two-branch network to
extract global contextual information and retain detailed information. EDANet [34] uses
dense connected asymmetric convolution to obtain information at different scales. Most of
these networks carry out extensive dilation convolution to expand the receptive field and
aggregate contextual information. However, discontinuous convolution kernels may lead
to raster-like segmentation regions. Furthermore, it was the first time that RepLKNet [35]
used very large convolution kernels to capture contextual information.

To apply a combination of traditional machine-learning methods and deep-learning
models to segmentation is another way to establish long-range dependencies. Condition
Random Field (CRF) as Recurrent Neural Network (RNN), CRFasRNN [36], combines
CNN and CRF to build an end-to-end network. EMANet [37] uses the classical EM
algorithm to maintain interclass differences and reduce intraclass differences, effectively
reducing the complexity of non-local blocks [9,38–40]. Furthermore, DANet [9] proposes
dual self-attention to model long-range dependencies. CCNet [38] captures long-range
dependencies only in the horizontal and vertical directions, effectively reducing the amount
of self-attentive computation. There are also some semantic segmentation studies based on
ViT [39,41,42]. These networks are effective in obtaining global contextual information, but
they introduce a large computational overhead. Based on the above analysis, contextual
information is very important for improving segmentation accuracy. Current semantic
segmentation methods, which use dilated convolution or a global block to extract contextual
information, are unable to balance accuracy and computational overhead for corrosion
segmentation. To solve this problem, a new lightweight model has been proposed that uses
large convolution kernels inspired by RepLKNet together with ShuffleNetv2 [6] to satisfy
the high precision and light-weight requirements simultaneously.

3. Method

In this section, we introduce the most significant module in our network architecture,
the local contextual block, and then present the details of the proposed model.

3.1. Local Contextual Block

Long-distance dependency is very important for image semantic segmentation, and
it is always a topical issue. Here, the local contextual block was proposed for expanding
the receptive field and building a long-distance attachment. The overall architecture of the
local contextual block is shown in Figure 2.

The local contextual block mainly consists of convolution kernels of different size and
point convolution. Large convolution kernels are used to capture a larger area of corrosion
and to establish long-range dependencies between pixels. The small convolution kernels
are used to capture detailed local information. Depthwise separable convolution is used to
mitigate the problem of huge parameters when using large convolution kernels. Inspired
by ShuffleNetv2 [6], only half of the channels were involved in convolution at a time; the
others are directly connected to the output. A channel shuffle operation is used to facilitate
channel communication [6]. In this way, our approach not only reduced the number of
parameters, but also improved the generalization performance.
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Figure 2. Details of the local contextual block. DWConv stands for DepthWise Convolution.

To improve the real-time performance of the algorithm, the input and output channels
of the local contextual block were the same. Suppose the input channel is C. The sizes
of the large and small convolution kernels are Klarge (Klarge > 9) and Ksmall (Ksmall < 5),
respectively. The model parameters with a normal large kernel and DepthWise Convolution
(DWConv) are as follows:

Normal : C2(Klarge
2 + Ksmall

2) (1)

and

DWConv :
C2

2
+

C
2
(Klarge

2 + Ksmall
2). (2)

Supposing C = 256, Klarge = 31 and Ksmall = 3, our parameter volume is greatly reduced
to 0.247% of that of the original, traditional convolution model, which also provides the
possibility of applying large convolution kernels in a lightweight network. Meanwhile,
the residual structure [19] is a good way to solve the problem of gradient disappearance
when the network goes deeper. The residual allows the input to be directly connected to
the output, thus forming a constant mapping that facilitates fast forward propagation of
the signal. It prevents network degradation problems well and accelerates the network
convergence. We followed this design and introduced the residual structure to the left part
of the local contextual block as shown in (3).

Out = CS(Concat(right,F (le f t) + le f t)), (3)

where le f t and right mean the two branches after splitting; F (x) represents the convolution
operation for the target; CS represents the channel shuffle operation; and Out represents
the final output.

3.2. Encoder–Decoder Architecture

To improve preservation of original pixel position information, we removed all pooling
layers and changed the downsampling factor to 8× in the encoder. The image was down-
sampled at the beginning to filter out irrelevant information to alleviate the computational
effort of the subsequent process. In stage 1, small convolution kernels were used to extract
local information, and then a downsampling module from ShuffleNetv2 was employed, as
shown in Figure 3. After each downsampling step, feature maps at different scales were
extracted by stacking the local contextual block. The detailed parameter settings are shown
in Table 1.

We implemented a simple decoder architecture to fuse multi-scale features. The four
feature scales are first compressed to the same number of channels C, and then upsampled
to recover to the same resolution H ×W. Subsequently, concatenation was performed in
the channel dimension, and then the final result was obtained through two layers of point
convolution as shown in (4). The overall architecture of the proposed network is shown
in Figure 3.



Appl. Sci. 2022, 12, 9095 6 of 13

F̂i = Conv(Ci, C)(Fi), ∀i

F̂i = Upsample(H ×W)(F̂i), ∀i

F = Conv(4C, C)(Concat(F̂i)), ∀i

M = Conv(C, nclass)(F)

(4)

where M refers to the predicted output; nclass represents the number of classes; Fi stands
for the feature; Conv(Cin, Cout) refers to the input channel Cin and the output channel
Cout after point convolution; and Upsample(H ×W) represents up-sampling to the size
of H ×W. Unlike the huge decoder structure of Unet [43] and SegNet [44], our decoder
achieved high accuracy with a small number of parameters.
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Figure 3. The overall architecture of the proposed network, which consists of two main modules.
The CNN encoder extractd details and semantic features, and the decoder fuses the multi-scale
features. The specific module parameters of the encoder are shown in Table 1.

To explore the most suitable kernel size, we tested the changing accuracy with the
kernel size variation as shown in Figure 4. The corresponding model parameters can also be
seen. We finally choose 17 × 17 for the large kernal size to make a good trade-off between
model size and segmentation accuracy.

Figure 4. The accuracy and model size vs. the kernel size. A good trade-off was obtained when the
kernel size was 17 × 17.

We designed two different sizes of models, small and large, for devices that had
different computing power. Large models had relatively more channels compared to small
models and thus a larger model size. The large model was more suitable for sensitive
equipment or applications that require high accuracy in corrosion segmentation of metal
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surfaces, such as aerospace equipment, hydride tanks, automotive wheels, or the metal
links of bridges. The small model requires daily inspections. By embedding the corrosion
segmentation model in drones, mobile robots and edge computation chips, the corrosion
area and degree of corrosion were obtained online and transmitted to the upper computer
to help engineers make further decisions.

Table 1. The detailed parameter settings of the encoder. The large and small models had different
output channels and model sizes.

Layer Kernel Size Stride Repeat
Output Channels

Small Large

Image 3 3

Stage 1
3 × 3 2 1 32 72

3 × 3 (DW) 1 1 32 72
1 × 1 1 1 32 72

Stage 2 2 1 32 72
1 3 64 144

Stage 3 2 1 64 144
1 7 128 288

Stage 4 1 1 128 288
1 3 256 576

Params 2.41 MB 8.25 MB

4. Experiment

In this section, we evaluated the performance of our algorithm on a public corrosion
image dataset [45] and then compared it with existing semantic segmentation algorithms
and conducted ablation studies to demonstrate the effectiveness of our approach.

4.1. Experiment Settings

Data Acquirement and Augmentation. We used a corrosion image dataset produced
by University Libraries Virginia Tech [45], which was collected from Virginia Department
of Transportation bridge inspection reports. These were annotated semantically according
to the corrosion condition status guidelines reported by the American Association of State
Highway and Transportation Officials (AASHTO) and the Bridge Inspector’s Reference
Manual (BIRM). The entire dataset was divided into four categories: Background, Fair,
Poor, and Severe. We expanded the number of images from 440 to 3850 through data
enhancement, such as random cropping and contrast or saturation enhancement. The size
of the image was adjusted to 512 × 512.

Implementation Protocol. All experiments were performed on the PyTorch 1.10.1
with 1× V100GPU and 4× 2080Ti. The network was trained using the SGD optimizer with
an initial learning rate of 0.007, which declined to 0.00007 by the cosine curve method.
The loss function as shown in (7) was defined as the sum of Dice loss (5) and Focal loss (6).
The αt was used to regulate the ratio between the two losses. The Dice loss [46] is a metric
function used to calculate the similarity between set X and set Y. |X| and |Y| stand for
the number of pixels in X and Y, respectively, and |X ⋂

Y| represents the intersection pixel
numbers between X and Y. The Focal loss [47] is an improved cross-entropy loss function
to solve the sample imbalance, where γ is the modulation factor guiding the algorithm
focus on the difficult samples and pt is the proportion of pixel numbers of four categories
to the total numbers in image. Based on experience, we set γ = 2 and αt = 0.5:

DL = 1− 2|X ⋂
Y|

|X|+ |Y| (5)

FL(pt) = −(1− pt)
γlog(pt) (6)
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Totalloss = (1− αt)DL + αtFL(pt) (7)

Evaluation Metrics. Five indicators were employed to evaluate performance through
all experiments: mean Pixel Accuracy (mPA), mean Intersection over Union (mIoU), F1-
score, Frames Per Second (FPS) and the volume of the model. We used 2080Ti uniformly to
test the FPS of all models with the same image. The model with high evaluation metrics
and a small number of parameters is what we expected.

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(8)

mPA =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij

(9)

where pij denotes the number of true values of i that are predicted to be j; K + 1 is the
number of categories (including the background); pii is the True Positive(TP); and pij and
pji denote false positive (FP) and false negative (FN), respectively.

4.2. Comparison with Similar Methods

We mainly compared the proposed method with mainstream lightweight and classical
semantic segmentation models. The results of the experiment are shown in Table 2. As it
shows, our proposed small model performed the best, achieving the highest scores on mPA,
mIoU, F1-score among the lightweight models. The volume of the model came third behind
ENet [27] and CGNet [32]. The large model achieved an mIoU of 79.06 and a volume of the
model of only 8.25 MB. Metal corrosion images were characterized by both continuity and
localization. Continuity was reflected in the fact that corrosion areas tended to appear in
patches; therefore, we directly used a large convolution kernel with higher accuracy than
that used for dilated convolution. The local nature reflected in the corrosion image did not
take global constraints as corrosion occurred locally and randomly. Therefore, when we
kept increasing its size, the larger convolution kernel lost the localization feature, leading to
a dramatic drop in segmentation accuracy. Therefore, designing a large convolution kernel
that did not lose localization features is key to improving the accuracy of the metal corrosion
image segmentation method. This was also demonstrated in the ablation study section,
where there was an approximate parabolic relationship between algorithm accuracy and
convolution kernel size.

Table 2. Comparison between our model and other SOTA image segmentation methods.

Model Params (MB) mIoU(%) mPA(%) F1-Score FPS

ENet [27] 1.36 67.79 80.64 0.766 43.55
CGNet [32] 1.88 73.32 85.09 0.820 12.77

EDANet [34] 2.60 67.49 80.49 0.761 21.79
DABNet [48] 2.87 68.89 79.95 0.779 46.30

ContextNet [33] 3.34 69.17 81.35 0.828 104.78
ESPNetv2 [29] 4.75 72.13 83.34 0.798 38.61
ERFNet [31] 7.87 69.10 81.12 0.794 41.43
Ours–small 2.41 75.64 86.07 0.838 16.87

Deeplabv3+ [10] 22.18 77.67 88.96 0.879 25.58
LinkNet [30] 44.00 67.58 77.82 0.820 48.22
SegNet [44] 112.32 58.37 70.89 0.778 12.89
CCNet [38] 200.69 78.47 86.58 0.899 7.42
Ours–large 8.25 79.06 88.07 0.891 11.60

As for training, all the models converged within 300 epochs without pre-training
in cases where other configurations were all the same. We found that CCNet [38] and
Deeplabv3+ [10], also performed better, which proved the importance of contextual fea-
tures for corrosion segmentation. SegNet [44] had a large number of parameters, but the
final performance was the worst. The reason may be that SegNet [44] performed 32-fold
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downsampling, resulting in a large information loss. In contrast, models like CGNet [32],
DABNet [48], ContextNet [33], ENet [27], ERFNet [31] performed 8-fold downsampling.
Their final performances were also better compared to SegNet [44], which confirmed our
conjecture. EDANet [34] performed poorly, probably because the dense, connected ap-
proach introduced redundant information. Regarding the FPS evaluation, our small model
scored 16.87 while the large model scored 11.60, which met the real-time requirements of
daily testing. The model capacity of both the large and small models did not exceed 10 MB,
which can easily be embedded on mobile devices for corrosion segmentation. Compared
with the small model, the large model required more computing power and higher accuracy.

After that, we used the above models to make predictions, and the visualization results
are shown in Figure 5. CGNet [32] and ContextNet [33] appeared to have discontinuous
segmentation regions due to the use of dilated convolution. EDANet [34] and ENet [27]
could not accurately identify the degree of corrosion area because of their weak fitting ability.
The final segmentation effect of Deeplabv3+ [10] was better than that of the lightweight
network, but it was not accurate enough to grasp the boundary of the corrosion region. Our
method was more precise and closer to the ground truth from the detected corrosion areas
and their corrosion degree. However, the effect of our model was not very good for part of
the small area corrosion segmentation. It will be the focus of our subsequent research.

CGNet

ContextNet

EDANet

ENet

Deeplabv3+

Ours

GroundTruth

 Background

Fair

Poor

Severe
Original Image

Figure 5. Visualization comparison results between our model and other SOTA methods, where
Background, Fair, Poor and Severe represented the four degrees of corrosion. Best viewed in color.

4.3. Ablation Study

We evaluated the various design decisions for our method as well as its components.
Ablation Study for the Mixture of Small and Large Kernel. Since both the small and

large kernels are meant to capture different types of corrosion features, we ran an ablation
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by removing each of these kernels. The results are presented in Table 3. We found that both
large and small kernels had improved accuracy, which confirmed that precise segmentation
results need not only a larger range of receptive fields but also local detailed information. It
should be noted that the large kernel brings a larger computational overhead but improves
accuracy over the small kernel. The best performance was achieved when a mixture of
small and large kernels was used.

Table 3. Ablation study results for the mixture of small and large kernels.

Small
Kernel

Large
Kernel Params mIoU mPA F1-Score

w/o w 2.36 MB 75.30% 85.64% 0.824
w w/o 1.38 MB 71.38% 82.95% 0.793
w w 2.41 MB 75.64% 86.07% 0.838

Ablation Study for Residual Connection. Inspired by ResNet [19], we used residual
learning in the local contextual blocks to improve feature representation ability (Table 4).
We found that the residual connection improved the mIoU from 74.67 to 75.61% without
adding extra parameters. One possible reason is that the residual connection had a stronger
ability to facilitate the flow of information in the network.

Table 4. Ablation study results for residual connection.

Residual Params mIoU mPA F1-Score

w/o 2.41 MB 74.67% 85.55% 0.821
w 2.41 MB 75.64% 86.07% 0.838

Ablation Study for Local Contextual Block. To verify the effect of local contextual
information, We replace the local contextual block with an inverted residual block, and
the ablation study result is shown in Table 5. For convenience, we referred to the inverted
residual and local contextual blocks as IRB and LCB, respectively. The IRB was a classical
lightweight block from MobileNetV2 [4]. It first used 1 × 1 convolution to expand the
dimension of the input feature map, then performed the convolution operation with 3 × 3
depthwise convolution. Finally, it used 1 × 1 convolution to reduce its dimension. We
set the expansion rate to 1 to ensure our model had the same settings. We found that the
parameters of the model with the IRB was 2.04 MB, which was slightly lighter than our
model caused by the large kernel, but the other evaluation metrics were inferior to ours. The
results indicated that the local contextual feature was efficient for corrosion segmentation.

Table 5. The ablation study results for local contextual block.

IRB LCB Params mIoU mPA F1-Score

w w/o 2.04 MB 74.53% 85.31% 0.813
w/o w 2.41 MB 75.64% 86.07% 0.838

5. Conclusions

In this work, we proposed a lightweight deep encoder–decoder network to learn
contextual features at all stages to solve the corrosion segmentation task. Our proposed
encoder part consists of a local contextual block and a downsample block that used a mix-
ture of large and small convolution kernels to establish long-range dependencies between
pixels and local detailed information. Moreover, we used the core idea of ShuffleNetv2 and
a residual connection to reduce the model size and further improve model accuracy. An
efficient and simple decoder was proposed to fuse multi-scale features at different stages to
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augment feature representation capability. With the proposed architecture, we designed
two differently sized models and consistently showed excellent corrosion segmentation
with a better trade-off between segmentation accuracy and model size. Our proposed
small model achieved the best performance for mIoU (75.61%), mPA (86.07%) and F1-score
(0.838) with parameters of only 2.41 MB, while the large model remained competitive with
8.25 MB and achieved the best mIoU (79.06%). In future work, we may focus on dataset
collection. Through training with larger and more complex datasets, the performance
of our model is expected to improve, and a wide range of applications will be covered.
Meanwhile, embedding the proposed model into the edge computing chip on site and
further optimizing the model constitutes our current work.
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