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Abstract: In this paper, a robust control technique is developed to achieve the quadrotor stabilization
against unmodeled matching vanishing dynamics. The synthesis of the proposed robust control is
based on the Lyapunov approach and the backstepping method allowing to construct an iterative
control algorithm. To compare the performance of the proposed controller, a Proportional Derivative
(PD) controller is used to obtain experimental results in an outdoor environment. To compare the
closed-loop system responses with both controllers, the Integral Absolute Error is computed and
several tests are conducted to calculate the error standard deviation. Ultimately, employing the robust
backstepping control approach in pest recognition in maize crops, which is a specific task of precision
agriculture, demonstrates its effectiveness in improving the trajectory tracking of the vehicle while it
captures images of the crops.

Keywords: outdoor environment; quadrotor; robust backstepping control; vanishing unstructured
dynamics; precision agriculture

1. Introduction

Today, the use of Unmanned Aerial Vehicles (UAVs) is growing, and multirotor
systems are expected to replace manned aircraft in a variety of activities [1]. Examples of
such activities include search and rescue missions, data collection, precision agriculture,
and payload delivery [2–5]. Quadcopters can rapidly change direction and perform vertical
takeoffs and landings, thus making them increasingly popular.

Small-scale UAVs typically suffer from the effects of outside wind gusts and un-
modeled dynamics, effects that involve changes in mass and inertial moments causing
parametric uncertainties. These effects also result from the coupling effect between the
forces and moments produced by their actuators, which are commonly neglected in the
practical designs [6]. Since an advanced control system is based on the nominal model, the
uncertain parameters and unmodeled dynamics adversely affect its performance. Develop-
ing robust controllers to guarantee UAV stabilization has been a key topic that some authors
have handled in different ways. For instance, on the basis of sliding mode algorithms and
backstepping methods, [7] offers a robust backstepping sliding mode controller for attitude
and position control; accordingly, smooth bounded disturbances and non-vanishing pertur-
bations were considered for a quadrotor vehicle, and simulation results were presented. In
[8], the attitude control of an eight-rotor UAV in the presence of model uncertainties and
external disturbances was suggested; hence, a robust backstepping sliding mode controller
with adaptive radial basis function neural network was employed, and simulation results
were reported. According to [9], the adaptive backstepping sliding mode tracking control
method for underactuated unmanned surface vehicle was employed to compensate for its
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model uncertainty, time-varying disturbances and input saturation, and a simulation study
was introduced. Attitude and position tracking were performed using the backstepping
technique and sliding mode control in [10]; in this case, the controller adapts to the mass
changes to control the UAV, and the controller performance was evaluated through simula-
tions. Furthermore, attitude regulation and translational movement of an aircraft using a
backstepping approach was done in [11], and altitude control was performed with sliding
mode control considering uncertainties. As a result of the presence of sinusoidal functions
in the roll and pitch subsystems, the virtual input is always bounded, allowing the control
input produced with backstepping to be smoother than the input provided by the sliding
mode controller, exhibiting no implementation issues such as chattering; however, the
controller robustness problem was not addressed. In [12], a backstepping control strategy
was employed to decrease the wind disturbances that can impact the accuracy of image
acquisition in the course of drone flight in an outdoor environment; in particular, the
specific task involved estimating nitrogen in a rice crop using the aerial imagery.

As a result of adaptive backstepping control, several estimations of the non-vanishing
external disturbance were employed for the proposed controller in [13]; in this case, the
experimental results were obtained in an indoor environment using a VICON Bonita
motion capture system and MATLAB software. Similarly, in [14], the same motion capture
system was used to implement feedback linearization and an integral-backstepping-like
controller to address the perturbation problems that appear in a quadrotor; in this sense,
simulations and indoor environment experimental results were presented with slowly-
varying wind conditions. To regulate quadrotors in the presence of constant and time-
varying disturbances, a nonlinear controller based on backstepping was designed, and
simulation results were presented in [15]; the non-vanishing disturbances were estimated
by a nonlinear observer. A nonlinear robust and adaptive backstepping control strategy was
proposed in [16] to solve the trajectory tracking problem of hexacopter UAVs. The nominal
backstepping control approach was designed as the main controller, and simulations
were performed considering non-vanishing bounded disturbances. In [17], the robust
position and attitude tracking control problem of a quadrotor subject to nonlinearities,
input coupling, aerodynamic uncertainties and external wind disturbances was presented,
the control scheme was validated through simulations and experimental validation on
a Quanser’s 3–DOF Hover setup. In [18], a robust landing algorithm onto a heaving
platform, using an autonomous quadcopter DJI-F450, was presented. This algorithm
addressed the altitude flight under the ground effect and external disturbances. In [19],
a nonlinear robust Fast Terminal Sliding Mode Controller was designed to control and
to stabilize a reconfigurable UAV in the presence of uncertain and variable parameters.
The proposed controller was evaluated through a flight scenario. In [20], a hybrid control
architecture that combines Deep Reinforcement Learning and Robust Linear Quadratic
Regulator for vision-based lateral control of an autonomous vehicle was presented. The
proposal was validated via simulation results. The robust control Lyapunov function
approach is another control approach that has been used to tackle the rejecting bounded-
matched disturbance problems in a Planar Vertical Take-Off and Landing (PVTOL) [21],
presenting experimental results. Furthermore, using the command filtered backstepping
approach with a parameter scheduling algorithm, an experimental flying test of a quadrotor
with a nonlinear controller in an indoor environment was described in [22]; however, the
robust design was not included in the controller synthesis. Simulation routines of a robust
control based on a backstepping method was presented in [23] to drive the position and
attitude of a unmanned mini aerial rotorcraft vehicle subjected to bounded uncertainties
and bounded disturbances.

According to the specialized literature cited above, most of the robust backstepping or
robust control algorithms were tested in simulations: [7–10,15,16,19,20,23]; advanced con-
trol in an outdoor environment: for nitrogen estimation with relative high-cost equipment
was presented in [12], and robust landing algorithm onto a heaving platform in [18]; in
an indoor environment in UAVs [13,14,17] and in a PVTOL [21]. In our opinion, a robust
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backstepping control algorithm has to be sufficiently simple to implement it on an autopilot
for flying tests in a more realistic environment (outdoors and trajectory tracking in precision
agriculture). In this sense, the embedded computing resources required by autonomous
unmanned aircraft systems represented a challenge [24]. The backstepping algorithm
allows to synthesize a recursive stabilizing controllers for nonlinear systems and it could
be modified to obtain robust controllers. Moreover, unmodeled dynamics, external distur-
bances, actuators, and signal conditioner nonlinearities are latent in the real-time control
loop. Under all these conditions, it is essential to assess the controller’s performance [25] by
experimental evaluation of the control algorithms in meaningful environments to validate
their robustness in a closed loop with a real plant.

In this contribution, based on the Lyapunov approach, a robust nonlinear controller
solves the trajectory tracking problem for a quadrotor. Our proposal uses the backstepping
method [26], allowing to construct an iterative control algorithm that rejects the effects
of the unstructured dynamics in the quadrotor nonlinear model. For this purpose, the
quadrotor model is divided into four subsystems related to the altitude, the yaw angle, the
pitch-x and the roll-y, as in [11], and it considers the coupled nonlinear dynamics in the
actuators. While these disturbances are unknown, they are assumed as bounded matched
vanishing dynamics. The robustness is incorporated in the proposed controller to stabilize
the drone in the presence of non-modeled dynamics, which improve the image capture
system on board of the UAV as it flies over corn crops to detect dry leaves, providing clues
to identify fungus such as Phyllachora maydis, Monographella maydis, and Coniothyrium
phyllachorae on the corn leaves. These fungi are the cause of the tar spot in the corn [27],
which causes crop losses.

Regarding the proposal mission in this paper, growing loss owing to disease is one
of the most representative problem in agriculture. Crop growth inspecting and early
identification of pest in the crops is still an important issue. In this regard, farmers are
investing great efforts to conserve crops; however, they are mostly failing because they are
not correctly monitoring the crops when they have been infested. Additionally, plagues in
the crops are also difficult to detect due to it is not uniformly distributed. Hence, UAVs have
a key role in crop disease surveillance and early detection [28–30]. This research attempts
to provide experimental evidence of the implementation feasibility of the developed robust
backstepping control in a PixHawk autopilot used in a pest detection task. An RGB GoPro
Hero8 Black camera is mounted on the vehicle, and the video is processed off-line in the
MATLAB software. This image processing provides the approximated location of the
possibly affected crops. The overall system (UAV and camera) represents a relative low-cost
(less than USD 450) alternative in precision agriculture.

The contributions of the article are as follows:

• A new robust backstepping approach-based control algorithm that considers matched
vanishing disturbances is proposed. The proposed controller uses a virtual bounded in-
put: the function sin(.), which produces bounded control signals, and it is appropriate
to the physical constrains of the UAV.

• Experimental results in trajectory tracking using a UAV in an outdoor environment
are reported. A specific precision agriculture task is involved using a commercial
camera system and MATLAB software.

• The robustness provided to the proposed controller allows to reduce the capture of
distorted crop images and it represents better performance when our proposal is
compared to a PD controller, although a gimbal or additional software are not used.

• This article tries to fill the gap between the technological development with advanced
control theory.

Accordingly, the paper is organized as follows: In Section 2, the problem formulation
and the main result are presented. The quadrotor model is shown in Section 3, and the appli-
cation of the control strategy is developed in Section 4. The description of the experimental
platform and the experimental results are given in Section 5. Section 6 demonstrates how
pests are detected in the field. Finally, concluding comments are enunciated in Section 7.
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2. Problem Formulation and Main Results

In this part, the problem is stated and the theoretical main result is presented.

2.1. System Description

The following perturbed nonlinear system is addressed:

ϑ̇ = f0(ϑ) + f1(ϑ)ζ (1)

ζ̇ = u + δ(t, ϑ), (2)

where
[
ϑT , ζ

]T ∈ Rn+1 is the state, and u ∈ R is the control input. It is considered that the
next assumptions are fulfilled:

1. The known functions f0 : D → Rn and f1 : D → Rn are continuously differentiable in
a domain D ⊂ Rn that contains the origin ϑ = 0 and f0(0) = 0.

2. The Equation (1) of the system can be stabilized with a state feedback ζ = µ(ϑ), with
µ(0) = 0, then, there is a Lyapunov function that satisfies the following equation:

∂V(ϑ)

∂ϑ
[ f0(ϑ) + f1(ϑ)µ(ϑ)] ≤ −W(ϑ),

where W(ϑ) is a positive definite function, ∀ϑ ∈ D.
3. Function δ(t, ϑ) is a bounded matched vanishing perturbation, i.e.,

δ(t, 0) = 0, |δ(t, ϑ)| ≤ ∆, and ∆ > 0. (3)

Problem statement: Design a control u that guarantees the closed-loop robust stability
of the origin (ϑ = 0, ζ = 0) of system (1) and (2) in the presence of unstructured matched
disturbance δ(t, ϑ). Then, compute the control laws for every subsystem of the quadrotor,
guaranteeing its robust stabilization.

2.2. Main Result

The synthesis of the proposed control algorithm is stated as follows.

Theorem 1. Consider the system (1) and (2), under the Assumptions 1–3, for k > 0, and for a
Lyapunov function of the form V1(ϑ, z̄) = V(ϑ) + 1

2 z̄2, with z̄ = ζ − µ(ϑ), then, the control law

u =
∂µ(ϑ)

∂ϑ
[ f0(ϑ) + f1(ϑ)ζ]−

∂V(ϑ)

∂ϑ
f1(ϑ)− kz̄− sgn(z̄)∆ (4)

robustly stabilizes the system.

Proof of Theorem 1. The proof is inspired on the methodology given in [26]. Adding and
subtracting f1(ϑ)µ(ϑ) on the right-hand side of Equation (1), it yields to

ϑ̇ = [ f0(ϑ) + f1(ϑ)µ(ϑ)] + f1(ϑ)[ζ − µ(ϑ)] (5)

ζ̇ = u + δ(t, ϑ).

Define f0(ϑ) = f0(ϑ) + f1(ϑ)µ(ϑ), z̄ = ζ − µ(ϑ), then its derivative is given by
�
z̄ = ζ̇ − µ̇(ϑ) = (u + δ(t, ϑ))− µ̇(ϑ), and consider the change of variable

v̄ = u− µ̇(ϑ), (6)

where

µ̇(ϑ) =
∂µ(ϑ)

∂ϑ
ϑ̇ =

∂µ(ϑ)

∂ϑ
[ f0(ϑ) + f1(ϑ)ζ]. (7)
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Now, the system (5) is expressed in the classical backstepping form

ϑ̇ = f0(ϑ) + f1(ϑ)z̄ (8)
�
z̄ = v̄ + δ(t, ϑ),

when z̄ = 0, it guarantees that the system (8) has an equilibrium point at the origin
(according to Assumption 2).

A positive definite Lyapunov candidate function of the form V1(ϑ, z̄) = V(ϑ) + 1
2 z̄2 is

proposed, and its derivative along the trajectories of system (8), according to Assumption 2,
is given by

V̇1(ϑ, z̄)
∣∣
(8) =

∂V(ϑ)

∂ϑ
f0(ϑ) +

∂V(ϑ)

∂ϑ
f1(ϑ)z̄ + z̄

�
z̄

≤ −W(ϑ) +
∂V(ϑ)

∂ϑ
f1(ϑ)z̄ + z̄

�
z̄,

where
�
z̄ = v̄ + δ(t, ϑ), set

v̄ = −kz̄− ∂V(ϑ)

∂ϑ
f1(ϑ)− sgn(z̄)∆, (9)

with k > 0; substituting into the previous equation, it yields

V̇1(ϑ, z̄)
∣∣
(8) ≤ −W(ϑ)− kz̄2 + z̄δ(t, ϑ)− z̄sgn(z̄)∆. (10)

Majorizing the term
z̄δ(t, ϑ) ≤ |z̄δ(t, ϑ)| ≤ |z̄||δ(t, ϑ)| ≤ |z̄|∆,

and |z̄| , z̄sgn(z̄); so, |z̄|∆ = z̄sgn(z̄)∆; substituting into Equation (10), it yields

V̇1(ϑ, z̄)
∣∣
(8) ≤ −W(ϑ)− kz̄2 < 0,

so, the origin of the system (8) is robustly stable; since µ(0) = 0, the origin of system (1)
and (2) is robustly stable too. The input u = v̄ + µ̇(ϑ) is obtained from Equation (6), and
replacing Equations (7) and (9) into u, the result follows in Equation (4).

The control action (4) is used to solve the trajectory tracking problem of a quadrotor
whose model is shown in the following section.

3. Quadrotor Model

The quadrotor model (see Figure 1) is obtained by representing a solid body moving
in 3D space and being subjected to one force and three moments [31]. The generalized
coordinates of the four rotor helicopter q = (γ, λ), where γ = (x, y, z) ∈ R3 represents the
relative position of the center of mass of the quadrotor with respect to an inertial reference,
and λ = (φ, θ, ψ) ∈ R3 are the Euler angles representing the orientation of the quadrotor,
known as roll-pitch-yaw, respectively. The inertial moments in the flying robot are defined
by Ix, Iy, Iz ordered with respect to x, y and z axes, while m denotes its mass, l is the arm
length, and τφ, τθ and τψ are the input signals to be applied to the motors.
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Figure 1. Quadcopter diagram.

The following equations describe the movement of the quadcopter affected by collec-
tive throttle us and torques τφ, τθ and τψ [32]

ẍ = − 1
m sin θus

ÿ = us
m cos θ sin φ

z̈ = cos θ cos φ
m us − g

φ̈ = θ̇ψ̇
Iy−Iz

Ix
+ l

Ix
τφ

θ̈ = φ̇ψ̇ Ix−Iz
Iy

+ l
Iy

τθ

ψ̈ = φ̇θ̇
Iy−Ix

Iz
+ l

Iz
τψ.

(11)

The following assumptions, proposed in [11], are considered:

1. The UAV is considered as a rigid and symmetrical body.
2. The center of gravity (CoG) of the quadrotor is in its origin.
3. The blades are rigid bodies with fixed angle pitch.
4. In the nominal model of the quadrotor, the aerodynamics effects have not been

considered.
5. The motor dynamic could be modeled as a first-order transfer function, and it is

sufficient to reproduce the dynamics between the propeller’s speed set-point and its
true speed. As the time constant of this transfer function is small, we can consider
that the rotor dynamic is approximately equal to one [33]. This assumption is used
to suppose additional dynamics (or uncertain parameters) that represent matched
vanishing perturbations in the actuators.

6. The attitude angles, pitch, roll and yaw are restricted in the interval [−π
4 , π

4 ].

Remark 1. Additionally to Assumption 5, the effects of the propellers are neglected [34]. However,
a more accurate trust model of the vehicle is given in [34], which can be expressed as

Ti = c1ω2
i

(
c2

(
1 +

3
2

µ2
i (t)

)
− λi(t)

)
= c1ω2

i c2 + c1ω2
i

[
c2

3
2

µ2
i (t)− λi(t)

]
︸ ︷︷ ︸

δ

,

where Ti is the trust of motor ith, ωi is the angular velocity of the motor ith, µi(t) and λi(t) are the
advance and inflow ratios respectively (nonlinear functions), c1 and c2 are positive constants. So, δ
could be the second term of Ti, among other unmodelled dynamics.
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With the nominal model given by (11), the robust backstepping controller is synthesized in
the next section.

4. Control Strategy Applied to the Quadrotor

In this section, the quadrotor mathematical model (11) is divided into subsystems as
was done in [11,35]: the altitude subsystem z, the yaw subsystem ψ, the pitch subsystem
x − θ and the roll subsystem y − φ. Then, the robust stabilizing controllers for each
subsystem are obtained using the result of Theorem 1 while considering the presence of
matched vanishing disturbances δ(t, ϑ).

4.1. Altitude Controller

The subsystem z that describes the UAV dynamic of altitude is represented by

z̈ =
cos θ cos φ

m
us − g + δ(ϑ, t), (12)

where |δ(t, ϑ)| ≤ ∆1, ∆1 is the upper bound of the matched disturbances. Defining the state
variables x1 = z and x2 = ż, and

us =
m

cos θ cos φ
[g + uz], (13)

and according to the backstepping methodology [26], x2 = µ(x1) = −α6x1, for α6 > 0, the
subsystem (12) is rewritten as follows:

ẋ1 = −α6x1
ẋ2 = uz + δ(ϑ, t).

(14)

The Lyapunov function is Vz(x1) =
1
2 x2

1, and following the result of Theorem 1, with ζ = x2,
f0(ϑ) = 0, ϑ = x1, f1(ϑ) = 1, and z̄ = x2 + α6x1, the stabilizing control for subsystem (14)
takes the following form:

uz = −(1 + kzα6)x1 − (α6 + kz)x2 − sgn(x2 + α6x1)∆1.

4.2. Yaw Controller

The dynamic of the ψ angle is given by

ψ̈ = φ̇θ̇c1 + c2τψ + δ(ϑ, t), (15)

where c1 =
Iy−Ix

Iz
, c2 = l

Iz
, |δ(t, ϑ)| ≤ ∆2; Ix, Iy, Iz are parameters of the inertia matrix.

Defining the state variables x3 = ψ, x4 = ψ̇, and

τψ =
1
c2

(
−φ̇θ̇c1 + uψ

)
, (16)

then Equation (15) becomes as follows:

ψ̈ = uψ + δ(ϑ, t).

Following a similar procedure as in the altitude control, x4 = µ(x3) = −α7x3, for α7 >
0, the subsystem (15) yields to

ẋ3 = −α7x3
ẋ4 = uψ + δ(ϑ, t).

(17)

Let Vψ(x3) =
1
2 x2

3 the Lyapunov function and defining ζ = x4, ϑ = x3, f0(ϑ) = 0, f1(ϑ) = 1,
z̄ = x4 + α7x3, the control law for the subsystem (17) is given by

uψ = −(1 + kψα7)x3 − (α7 + kψ)x4 − sgn(x4 + α7x3)∆2. (18)
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4.3. Controller for Subsystem x− θ

Dynamics related with translational motion along x-axis and the pitch angle θ around
the y-axis are described by

ẍ = − 1
m sin θus

θ̈ = φ̇ψ̇ Ix−Iz
Iy

+ l
Iy

τθ + δ(ϑ, t), (19)

where c3 = Ix−Iz
Iy

, us 6= 0, and c4 = l
Iy

. Let x5 = x, x6 = ẋ, x7 = θ and x8 = θ̇. Then, the
state space representation is given by

ẋ5 = x6
ẋ6 = − 1

m sin x7us
ẋ7 = x8
ẋ8 = φ̇ψ̇c3 + c4τθ + δ(ϑ, t).

(20)

Considering the first and second equations of the state space representation (20) and
defining the virtual input as follows:

u1x = sin x7 = −m
us

ux, (21)

then, according to the backstepping methodology [26] x6 = µ(x5) = −α5x5, for α5 > 0.
Notice that the selected virtual input sin(x7) produces bounded control signals and it is
appropriate to the physical constrains of the UAV: x7 ∈ [−π

4 , π
4 ]. These equations can be

rewritten as follows:
ẋ5 = −α5x5
ẋ6 = ux,

where ux = −(1 + α5k5)x5 − (α5 + k5)x6 is the control input, computed with the Lyapunov
function V1(x5) =

1
2 x5

2. Replacing ux into Equation (21), it yields to

u1x =
m
us

(d1x5 + d2x6), (22)

where d1 = 1 + α5k5 and d2 = α5 + k5.
Next, the iterative methodology of backstepping is applied; taking the first three

equations of the state space representation (20), the subsystem is rewritten as[
ẋ5
ẋ6

]
=

[
x6
0

]
+

[
0
− us

m

]
sin x7

ẋ7 = x8 = u2x,
(23)

In this case, ϑ = (x5, x6)
T , and ζ = x7. The modified backstepping structure, proposed

by [11], is applied for system (23) considering the Lyapunov function

V2 = V2(x5, x6) =
1
2

x2
5 +

β1

2
(x6 + α5x5)

2.

The virtual input µ1 = µ1(x5, x6) =
m
us
(d1x5 + d2x6) is defined as u1x, given in Equation (22);

substituting Equation (13) in µ1

µ1(x5, x6) =
cos x7 cos x11

p
(d1x5 + d2x6).

where p = g + uz. Applying Proposition 1 of [11], the control u2x has the following form:

u2x=
∂µ1
∂ϑ [ f0(ϑ) + f1(ϑ) sin ζ]− ∂V2

∂ϑ f1(ϑ)− k6(sin x7 − µ1)

cos ζ
, (24)
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where

∂(µ1(x5, x6))

∂x5
=

cos x7 cos x11d1

p
,

∂(µ1(x5, x6))

∂x6
=

cos x7 cos x11d2

p
,

∂(V2(x5, x6))

∂x6
= β1α5x5 + β1x6,

So, the virtual input u2x is

u2x =

(
k6d1 cos x11

p
+

β1α5 p
cos2 x7 cos x11

)
x5 (25)

+

(
d1 cos x11 + k6d2 cos x11

p
+

β1 p
cos2 x7 cos x11

)
x6 − (d2 + k6) tan x7

Finally, the whole state space representation (20) is considered with ϑ = (x5, x6, x7)
T ,

ζ = x8, and for

τθ =
1
c4
[−φ̇ψ̇c3 + τθa], (26)

this subsystem can be rewritten asẋ5
ẋ6
ẋ7

 =

 x6

− p sin x7
cos x7 cos x11

0

+

0
0
1

x8,

ẋ8 = τθa + δ(ϑ, t) = u3x + δ(ϑ, t).

(27)

The proposed Lyapunov function for subsystem (27) is

V3 = V3(x5, x6, x7) =
1
2 x2

5 +
β1
2 (x6 + α5x5)

2 + β2
2

(
sin x7 − cos x7 cos x11

p (d1x5 + d2x6)
)2

,

and the virtual input µ2 is associated with u2x, given in (25), as

µ2 =
(

k6d1 cos x11
p + β1α5 p

cos2 x7 cos x11

)
x5 +

(
(d1+k6d2) cos x11

p + β1 p
cos2 x7 cos x11

)
x6 − (d2 + k6) tan x7.

According to Theorem 1, the controller is given by

u3x = −k7z3 −
∂V3(ϑ)

∂ϑ
f1(ϑ)− sgn(z3)∆3 +

∂µ2(ϑ)

∂ϑ
[ f0(ϑ) + f1(ϑ)ζ],

where z3 = x8 − µ2, k7 > 0, ϑ = (x5, x6, x7)
T , f1(ϑ) = [0, 0, 1]T , and

∂µ2
∂x5

=
(

k6d1 cos x11
p + β1α5 p

cos2 x7 cos x11

)
∂µ2
∂x6

=
(

d1 cos x11
p + k6d2 cos x11

p + β1 p
cos2 x7 cos x11

)
∂µ2
∂x7

=
(

2β1α5 p sin x7
cos3 x7 cos x11

)
x5 +

(
2β1 p sin x7

cos3 x7 cos x11

)
x6 − (d2 + k6) sec2 x7

∂V3
∂x7

= β2 sin x7 cos x7 −
[

β2 cos x11(d1x5+d2x6)
p

](
2 cos2 x7 − 1

)
.

Therefore, the input u3x is

u3x =
∂µ2

∂x5
x6 −

∂µ2

∂x6

p sin x7

cos x7 cos x11
+

∂µ2

∂x7
x8 −

∂V3

∂x7
− sgn(x8 − µ2)∆3 − k7(x8 − µ2).
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4.4. Controller for Subsystem y− φ

The translational and rotational dynamics experienced by the flying robot along the
y-axis and the roll angle φ respectively are represented by

ÿ = us
m cos θ sin φ

φ̈ = θ̇ψ̇c5 + c6τφ + δ(t, ϑ),
(28)

where c5 =
Iy−Iz

Ix
, c6 = l

Ix
. Defining the variables x9 = y, x10 = ẏ, x11 = φ, x12 = φ̇, the

state space representation is given by

ẋ9 = x10
˙x10 = cos x7

m sin x11us
˙x11 = x12
˙x12 = θ̇ψ̇c5 + c6τφ + δ(t, ϑ).

(29)

Considering the first two equations of (29), the virtual input

uy = sin x11 =
m

us cos x7
u1, (30)

and defining x10 = µ(x9) = −α1x9, for α1 > 0; the subsystem is rewritten as ẋ9 = −α1x9
and ˙x10 = u1. The Lyapunov function is V1(x9) = 1

2 x2
9, and according to the classic

backstepping methodology, the input u1 = −(k1α1 + 1)x9 − (k1 + α1)x10 is substituted
into Equation (30), which yields

uy =
m

us cos x7
[−b1x9 − b2x10], (31)

where b1 = k1α1 + 1, b2 = k1 + α1; substituting (13) into (31)

uy =
cos x11

p
(−b1x9 − b2x10).

In the next step, the third equation of the state space representation (29) is added, and
the subsystem is rewritten as in [11], with ϑ = (x9, x10)

T , and ζ = x11, as follows:[
ẋ9
ẋ10

]
=

[
x10
0

]
+

[
0
p

cos x11
,

]
sin x11

ẋ11 = x12 = uy2.
(32)

Following a similar procedure applied to the previous subsystems, with V2(x9, x10) =
1
2 x2

9 +
β3
2 (x10 + α1x9)

2, and µ1 = cos x11
p (−b1x9 − b2x10), a control is obtained as the given

in the Equation (24), and it has the following structure:

uy2 = −
[

k2b1
p + β3α1 p

cos2 x11

]
x9 −

[
b1+k2b2

p + β3 p
cos2 x11

]
x10 − (b2 + k2) tan x11. (33)

In the last step, subsystem (29) is fully considered, with ϑ = (x9, x10, x11)
T , ζ = x12,

and defining

τφ =
1
c6

[
−θ̇ψ̇c5 + τ1

]
, (34)

it can be rewritten as follows:  ẋ9
ẋ10
ẋ11

 =

 x10
p sin x11
cos x11

0

+

0
0
1

x12

ẋ12 = τ1 + δ(t, ϑ),

(35)
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where τ1 = uy3, µ2 is associated with uy2, given in Equation (33), and the Lyapunov
function is defined by

V3(x9, x10, x11) =
1
2

x2
9 +

β3

2
(x10 + α1x9)

2 +
β4

2

[
sin x11 +

(b1x9 + b2x10) cos x11

p

]2
.

From Theorem 1, the input uy3 is computed as

uy3 =
∂µ2

∂x9
x10 +

∂µ2

∂x10

p sin x11

cos x11
+

∂µ2

∂x11
x12 −

∂V3

∂x11
− k3(x12 − µ2)− sgn(x12 − µ2)∆4.

where

∂µ2
∂x9

= −
(

k2b1
p + β3α1 p

cos2 x11

)
∂µ2
∂x10

= −
(

b1+k2b2
p + β3 p

cos2 x11

)
∂µ2
∂x11

= −
(
(k2+b2)
cos2 x11

+ (α1x9+x10)2β3 p sin x7
cos3 x7

)
∂V3
∂x11

=
[

β4
p (b1x9 + b2x10)

](
2 cos2 x11 − 1

)
+

(
β4 −

β4(b2
1x2

9+b2
2x2

10)

p2 − 2β4b1b2x9x10
m2 p2

)
sin x11 cos x11.

To assess the effectiveness of the synthesized controllers (13), (16), (26) and (34) in the
trajectory tracking task of a quadrotor UAV, experimental tests are conducted as described
in the next section.

5. Experimental Results
5.1. Experimental Platform Description

The quadrotor is constructed on a plastic frame F450. An autopilot Pixhawk, version
2.4.8, is on board the F450 structure. The Pixhawk exhibits the following performance: a
primary clock at 168 MHz, and with a 32-bit processor STM32F427 Cortex M4 core with
a floating processor unit. The autopilot has two accelerometers, a gyroscope, and two
magnetometers for attitude measurements of the UAV. The Pixhawk is equipped with
radio signal input ports compatible with Futaba 10J radio. Furthermore, it has eight pulse
width modulation main outputs that are used to control the motors. To pinpoint the
longitudinal positions, an external module Ublox NEO-M8N GPS (accuracy of 0.6–0.9 m)
is mounted. The yaw angle is estimated via an internal magnetometer located in the
GPS. As power supply of the UAV, Lipo technology batteries are employed (capacity of
5200 mAh, discharge rate of 15 C). The quadrotor has four propellers of model 1045, four
2212 920 KV brushless motors and four electronic speed controllers of model SIMONK30A.
The trajectory tracking reference was programmed into the Pixhawk (Figure 2).

Figure 2. Quadrotor prototype.
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5.2. Experimental Results Applying Synthesized Controllers

In this subsection, for comparison purposes, experimental tests in outdoor environ-
ment of UAV are presented for the proposed backstepping controller and a PD controller.
For the trajectory tracking task on the spaces (x; y; z) and (φ, θ, ψ), the UAV follows three
paths: 1. The manual takeoff of the UAV, until the desired altitude is reached, and this
altitude is defined by the pilot. 2. The quadrotor tracks parametric circle equations given by

xre f =
(
−5 cos

( π

180
t
)
+ 5
)

m,

yre f = −5 sin
( π

180
t
)

m,

zre f = 2.3m.

3. At the end, when the trajectory is finished, the pilot regains control of the quadrotor
and lands it. The programmed sampling time (T) is T = 0.01 s, it was used in all exper-
imental tests. The quadrotor parameters are as follows: mass m = 1.3 kg, distance from
the motors to the centre of gravity l = 0.3 m, constant of gravity g = 9.81 m/s2 and inertia
moments Ix = Iy = 0.01567 kgm2, Iz = 0.028346 kgm2. The gains of controllers (13), (16),
(26) and (34) are heuristically proposed in Table 1. The delta values (∆i, i = 1, 2, 3, 4) are the
maximum values for the matched disturbances that could be adjusted heuristically such
that the closed-loop performance is satisfactory.

Table 1. Controller gains.

Subsystems

ψ z x − θ y − φ

kψ = 24.2 kz = 7.39 k5 = 0.1 k1 = 0.4
α7 = 5.7 α6 = 12.3 k6 = 0.13 k2 = .27
∆1 = 3.2 ∆2 = 2.5 k7 = 7.3 k3 = 5.3

∆3 = 5 ∆4 = 2
α5 = 12 α1 = 0.009
β1 = 0.1 β3 = 5.2

β2 = 0.25 β4 = 3.64

To compare the behavior of the proposed controller, a PD controller, which is tuned as
is proposed in [35], is employed, obtaining the gains by proposing the following temporal
parameters: the maximum overshoot and the settling time. Translational and attitude initial
values of the drone are near to the origin.

Figure 3 displays the translational positions recorded during the experiment following
the desired trajectory. The figure is divided in three figures: 1. The first shows the trajectory
of the vehicle on the X axis, 2. The second displays the trajectory along the Y axis, 3. The
last one illustrates the trajectory tracking task on the Z axis. As shown in Figure 3, the
trajectory tracking task in (X, Y, Z) space, in the blue line, displays a reliable performance
when it is compared with the reference values in the red line. The position performance of
the drone in the (X, Y) space is displayed in Figures 4 and 5. It is noteworthy that these
experimental results were obtained in an outdoor environment.

Figure 6 shows the relative small errors during the trajectory tracking. During the
trajectory tracking task, the references are subject to changes in the X, Y axes, then the errors
may increase or decrease. Nevertheless, for the altitude, the Set Point is constant, then the
error is relatively small. Furthermore, the measurements of the position, provided by the
GPS device, present a relatively larger deviations (around 1.4 m to 1.6 m) than other devices
employed for indoor environment. This explains the errors in the trajectory-tracking
displacement task.
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The four control input signals for roll, pitch, altitude and yaw, respectively, are presented
in Figure 7. These control inputs are obtained with the proposed backstepping controllers and
are sent to the motors in real-time during the tests for desired trajectory tracking.

Figure 8 shows the recorded translational positions, following the desired trajectory,
for PD controllers. This figure is divided into three subfigures, representing the trajectory
performance along the X, Y and Z axes.

Figure 9 shows the UAV’s trajectory performance in three-dimensional space, whereas
Figure 10 displays it in two-dimensional space. Figures 11 and 12 show the errors during
the trajectory tracking and the control signals for PD controllers, respectively.
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Figure 3. Positions in the X, Y and Z axes; (Backstepping controllers).
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To compare the performances of both controllers, the Integral Absolute Error (IAE)
is computed for the robust backstepping (BS) and PD, and these values are reported in
Table 2.

Table 2. Comparative analysis of the performance IAE for the trajectory tracking phase.

Trajectory Tracking

Performance Index BS PD σBS σPD

IAEx 674.0325 732.8948 0.3195 0.6095
IAEy 646.48 849.0646 0.5691 0.6949
IAEz 59.96 85.4140 0.06747 0.0678

Table 2 shows that the robust backstepping controller outperforms the PD controller in
the trajectory-tracking phase of the quadrotor in the presence of disturbances; additionally,
the standard deviation is calculated to analyze the error dispersion, and the mean value of
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the 10 conducted experimental tests is calculated and compared with the results obtained
using the PD control.

Additionally, Table 3 shows the mean of the integral of the absolute value of the signal
control, defined as

Jcontrol =
N

∑
i=0
|control(i)|,

where N is the number of samples. The index Jcontrol is related with the energy consumption
of the actuators.

Table 3. Comparison of absolute control values during the trajectory tracking phase.

Trajectory Tracking

Performance Index BS PD

Jτφ 6051.2 6662
Jτθ 7337 8661
Jus 519.647 662.5175
Jτψ 802.8 848.2

According to the results showed on Table 3, the energy consumption required by the
Robust Backstepping Controller (RBC) is lower than the PD controller. It implies that the
control signal of the RBC is smaller and softer than the control signal of PD, which allows
the captured images to be less blurred and distorted.

6. Detection of Pest in Corn Leaves

In this section, the vision system and the offline images processing are presented,
aiming to locate the tar spot complex [27] in the maize fields based on the images taken
when the quadcopter flies over the corn crop.

6.1. Vision System

The modules of the vision system include the camera and the image processing (a
PC and MATLAB software). The natural light illuminates the plants to be inspected. The
GoPro HERO8 Black camera [36] is mounted under the UAV frame (see Figure 13).

Figure 13. UAV with the GoPro HERO8 Black camera.

While the quadrotor flies over the crops, the camera lens captures and sends images
to the camera sensor in the form of light. This sensor converts this light to a digital image
that is then stored in the camera’s memory for later analysis. For the image processing,
the “Color Thresholding” toolbox is used (included in MATLAB Software), in which the
interesting areas in the analyzed images are selected based on the color spaces: Red, Green,
Blue (RGB); Hue, Saturation, Value (HSV); Luma, Blue and Red chromaticity (YCbCr) and
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Luminosity, Red/Green and Yellow/Blue chromaticity coordinates (CIE-Lab). This is done
by applying segmentation methods on the images; in this regard, image segmentation is
a processing technique that refers to the extraction of useful information from a frame
to facilitate observation and analysis since the rest of the image content is not useful for
the purpose, i.e., if within an image the red color is selected, everything that is not red
is discriminated by the segmentation method. This toolbox is selected because it allows
comparing the intensity level, pixel by pixel, with a certain threshold previously defined
by the user. To establish this threshold, it is necessary to analyze the interest region to be
isolated, finding a characteristic and exclusive color level.

6.2. Image Processing

In computer vision, segmentation processes are of vital importance when it comes to
detecting objects in unstructured environments.

In this article, the segmentation process employs the method based on regions [37] due
to the specific task (detecting color levels on affected leaves). Methods based on regions
aim to determine the areas of an image that have homogeneous properties, and the border
of these areas will delimit some objects from others. Regarding the segmentation methods,
Figure 14 displays the process of application followed in this work.

Figure 14. Scheme for the application of segmentation.

Segmentation Method

The application process of the segmentation method starts with the images of the corn
fields (Figure 15) where the dry leaves of the plants are detected, as this is a symptom that
the plant could be ill. For this purpose, first, based on the photograph, the pixels of interest
are selected to find the thresholds. Once the pixel values are obtained, a new image is
loaded to search for dry leaves in the field.

Figure 16 shows the processed image using different segmentation methods where
the dry leaves of the plant are highlighted. It should be mentioned that in the processed
image, the areas that are not of interest are colored in black. For the RGB segmentation
method, the threshold values are as follows: R > 126, G > 104, B < 80. As for the HSV
method, the ranges are as follows: 0.096 < H < 0.153, 0.243 < S < 0.944, 0.222 < V < 0.944.
In the YCbCr method, the following values are obtained: 70 < Y < 225, 72 < Cb < 109,
136 < Cr < 163. Finally, from the application of the CIE-Lab segmentation, the values are
as follows: 38.49 < L < 100, −10.353 < a < 19.622, 19.622 < b < 55.531.
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Figure 15. Image captured by the camera.

Figure 16. Segmentation methods with thresholds.

With the obtained thresholds, from the segmentation methods, a MATLAB code runs
to analyze the images obtained from the flights made over the corn fields. First, an image
is selected and then subjected to the thresholds of each method to identify dry leaves in
the field.

Figure 17 displays the segmented images using the RGB, HSV, YCbCr and CIE-Lab
methods. From the images obtained after applying the segmentation methods with the
thresholds proposed in the previous section, it can be seen that using RGB segmentation to
detect dry leaves is not very convenient as only some points were highlighted, while in the
HSV segmentation method, a greater detection of dry leaves can be noted in the image of
the crop; however, these highlighted points look like brush strokes, and the plant is not
well distinguished. In the YCbCr segmentation, the dry leaves can be better identified in
the plot; however, when it is compared with the original image, there are parts of the dry
leaves of the plant that despite being dry, do not appear in the processed image. Finally, the
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best detection is obtained when the CIE-Lab segmentation method is applied to the image,
although it also detects a little of the soil, which does not represent a relevant issue.

Figure 17. Segmentation methods applied.

The robustness provided to the proposed controller is necessary to improve the closed
loop performance of the vehicle in outdoor environment. This improved performance is a
crucial issue to the image capturing while the trajectory tracking task is executed by the
UAV, allowing reduce distorted capture of the crops. In fact, when a PD controller is used
to control the vehicle in order to capture the crop images, from ten experiments only six
were satisfactory to stabilize the drone with the mounted camera. In contrast, for the robust
backstepping control approach, all the tests were satisfactory, despite a gimbal or extra
software not being used.

Furthermore, each processed image has an (x, y) coordinate, which is obtained with
the real-time clock (’Time stamp’ function) of the Pixhawk autopilot. Then, when an image
with affected leaves is detected, the user obtains the relative position (x, y) of the chosen
reference frame, and then the user can apply a corrective action, programming a trajectory
whose final point corresponds to these coordinates.

7. Conclusions

The quadrotor trajectory tracking problem, in outdoor environment, is addressed by
the proposed robust control scheme. The four controllers are synthesized using the robust
backstepping approach, it uses virtual bounded inputs (the function sin(.)), which produce
bounded control signals, and it is appropriate to the physical constrains of the UAV. The
convergence for altitude, translational and rotational UAV variables is guaranteed when
the vehicle is subjected to vanishing disturbances. The proposed control algorithm achieves
a higher performance in closed loop when is compared to a linearized model-based PD
controller. This improved performance is a crucial issue to the image capturing while a
trajectory tracking task is executed by the UAV, allowing to reduce the wrong capture of the
crops, despite a gimbal or extra software not being used. In fact, the experimental results
validate and confirm the aforementioned higher performance level of the proposed control
algorithm. Moreover, the proposal presents a potential advantage in precision agriculture
as it can prevent crop losses by identifying crop areas with dry leaves. In contrast to the
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most of the reported works, our proposal was tested in a precision agriculture task on a
real maize crop. Future work includes onboard image processing and to implement new
image segmentation techniques.
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