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Abstract: Machine learning techniques are ever prevalent as datasets continue to grow daily. Associa-
tive classification (AC), which combines classification and association rule mining algorithms, plays
an important role in understanding big datasets that generate a large number of rules. Clustering,
on the other hand, can contribute by reducing the rule space to produce compact models. The
above-mentioned facts were the main motivation for this research work. We propose a new distance
(similarity) metric based on “direct” and “indirect” measures and explain the overall importance
of this method, which can produce compact and accurate models. Specifically, we aim to employ
agglomerative hierarchical clustering to develop new associative classification models that contain
a lower number of rules. Furthermore, a new strategy (based on the cluster center) is presented to
extract the representative rule for each cluster. Twelve real-world datasets were evaluated experimen-
tally for accuracy and compactness, and the results were compared to those of previously established
associative classifiers. The results show that our method outperformed the other algorithms in terms
of classifier size on most of the datasets, while still being as accurate in classification.

Keywords: frequent itemset; class association rules (CAR); associative classification; agglomerative
clustering

1. Introduction

The demand for collecting and storing substantial amounts of data is growing exponen-
tially in every field. Extracting crucial knowledge and mining association rules from these
datasets is becoming a challenge [1] due to the large amount of rules generated, causing
combinatorial and coding complexity. Reducing the number of rules by pruning (selecting
only useful rules) or clustering can be a good solution to tackle the aforementioned problem
and play an important role in building an accurate and compact classifier (model).

Mining association rules (AR) [2] and classification rules [3–8] enable users to extract
all hidden regularities from the learning dataset, which can later be used to build compact
and accurate models. Another important field of data mining is associative classifica-
tion (AC), which integrates association and classification rule mining fields [9]. Research
studies [10–17] demonstrate that associative classification algorithms achieve better perfor-
mance than “traditional” rule-based classification models on accuracy and the number of
rules included in the classifier.

Clustering algorithms [18–21] group similar rules together, considering only represen-
tative rules for each cluster helps to construct compact models, especially in the case of large
and dense datasets. There are two main types of clustering: partitional and hierarchical.
In the case of partitional clustering [22,23], rules are grouped into disjointed clusters. In
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the case of hierarchical clustering [24], rules are grouped based on a nested sequence of
partitions. Combining clustering and association rule mining methods [25,26] enables
users to analyze accurately, explore, and identify hidden patterns in the dataset, and build
compact classification models.

Our main goals and contributions in this work are as follows:

• To explore how the amount of directness and indirectness in the distance metrics
affects the accuracy and size of the associative classifier;

• To build new explainable compact associative classifiers and experimentally show the
advantages of these models on real-life datasets.

To achieve the above-mentioned goals, new distance (similarity) metrics (WCB: Weighted
Combined and Balanced, WCI: Weighted Combined and Indirect, WCD: Weighted Com-
bined and Direct) were developed based on “direct” (depending only the content of rules)
and “indirect” (depending on rule metrics, such as coverage, support, and so on) measures
to compute the similarity of two class association rules (CAR) and show the compact
influence of those metrics to produce compact and accurate models.

More precisely, a new explainable cluster-based AC method was proposed by utilizing
the newly developed distance metrics and showing the effects of those similarity measures
on the performance of AC models. AC models are produced in three steps: firstly, class
association rules (class association rule is an association rule where antecedent is itemset
and the consequent is a class label) are generated; CARs are clustered based on a hierarchical
agglomerative fashion in the second step; and finally, the representative rule for each cluster
is extracted to build the final classifier.

The experiments were conducted on 12 real-life datasets from the UCI ML Reposi-
tory [27]. The performance of our proposed methods was compared with 6 associative
classifiers (CBA [9], Simple Associative Classifier (SA) [28], J&B [29], Cluster-based associa-
tive classifiers DC [30], DDC, and CDC [31]).

The structure of the rest of the paper is as follows: Section 2 presents an overview
of existing research and the relatedness of those methods to our algorithm. A detailed
description of our proposed method is provided in Section 3. Section 4 outlines the main
results obtained by the proposed models and presents a comprehensive experimental
evaluation. Section 5 focuses on the discussions and views of the obtained results, followed
by Section 6, which concludes the paper and highlights our future plans.

2. Literature Review

In the computer science literature, rule-based and tree-based classification models
have been studied by many scholars. Since this study proposes an associative classification
method based on clustering, this section discusses the research work performed in the
associative classification field related to the proposed approaches.

The “APRIORI” algorithm is executed first to create CARs in the CBA approach, which
employs the vertical mining method. Then, to generate predictive rules, the algorithm
applies greedy pruning based on database coverage. CBA uses a different rule-selection
procedure than we do—the rule that can classify at least one training example; that is, if
the body and class labels of the candidate rule match those of the training examples, the
body and class labels are chosen for the classifier. Because we attempted to decrease the
size of the classifier, we utilized clustering first and then chose the representative rule for
each cluster.

The Simple Associative Classifier (SA) developed a relatively simple classification
model (SA) based on association rules. A simple associative classifier was presented by
selecting a resealable number of class association rules for each class. The algorithm finds
all the rules in the dataset and sorts them based on support and confidence measures.
Then, the strong CARs are grouped according to class label, and finally, the user-specified
(intended number of CARs) number of CARs for each class is extracted to build a simple
associative classifier.
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In J&B method, a thorough search of the entire example space yielded a descriptive
and accurate classifier (J&B). To be more specific, CARs are first produced using the
APRIORI method. The strong class association rules are then chosen based on how well
they contribute to enhancing the overall coverage of the learning set. In the rule selection
process, J&B has a halting condition based on the coverage of the training dataset. If it
satisfies the user-defined threshold (intended dataset’s coverage), it stops the rule-selection
process and forms the final classifier.

The algorithm described in this paper extends our previous work [30,31]. In [30], the
CMAC algorithm was introduced; it first generates the CARs by employing the APRIORI
algorithm; secondly, the algorithm uses a direct distance metric in the clustering phase of
CARs; finally, the cluster centroid approach is applied to select the representative CAR for
each cluster, while in [31] CMAC is compared to two similar algorithms, one (DDC) using
the same direct distance metric for clustering and covering approach in the representative
CAR selection phase; the other algorithm (CDC) using combined (direct and indirect)
distance metric with the same covering approach to select the representative CAR. This
paper presents a similar approach using a combined distance metric (three different metrics
are proposed by considering the contribution of direct and indirect measures) in the CAR
clustering phase after the CARs are found by using the APRIORI algorithm, and the cluster
centroid approach is used to select the representative CAR for each cluster.

Plasse et al. [32] discovered hidden regularities between binary attributes in large
datasets. The authors used similar techniques as in our research: clustering and association
rule mining to reduce the number of Ars produced, but the proposed algorithm was totally
different. Since there were 3000 attributes in the dataset, their main goal was to cluster (by
using the hierarchical clustering algorithm) the attributes to reveal interesting relations
between binary attributes and to further reduce the future space. Using the APRIORI
algorithm, strong meaningful ARs were generated in the clustered dataset, which can be
used for further classification purposes.

In [33], the authors developed a new algorithm based on strong class association rules,
which obtained 100% confidence. They directly produced CARs with higher confidence to
build a compact and accurate model. A vertical data format [34] was utilized to generate
the rule items associated with their intersection IDs. The support and confidence values of
the CARs were computed based on the intersection technique. Once the potential CAR is
found for the classifier, the associated transaction will be discarded by using a set difference
to eliminate generating redundant CARs. This is a nice related work that differs from our
method in the rule selection stage. More precisely, any clustering technique was used in
the rule extraction phase of the proposed model.

The distance-based clustering approach [35] aims to cluster the association rules
generated from numeric attributes. They followed the same process to cluster and select
the representative rule for each cluster as in our algorithm. The steps are similar, but the
methods used in each step are different. (1) They used the “APRIORI” algorithm to find
the association rules from the dataset with numeric attributes; (2) since they are working
with numeric attributes, the Euclidean distance metric is used to find similarities between
association rules; (3) a representative rule is selected based on coverage, which measures
the degree of a certain rule to cover all others.

In [36], researchers proposed a new similarity measure based on the association rule
for clustering gene data. They first introduced a feature extraction approach based on
statistical impurity measures, such as the Gini Index and Max Minority, and they selected
the top 100–400 genes based on that approach. Associative dependencies between genes
are then analyzed, and weights to the genes are assigned according to their frequency of
occurrences in the rules. Finally, a weighted Jaccard and vector cosine similarity functions
are presented to compute the similarity between the generated rules, and the produced sim-
ilarity measures are applied later to cluster the rules by utilizing the hierarchical clustering
algorithm. In this approach, some steps are similar to our method, but different techniques
are used in those steps.
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In [37], researchers proposed a novel distance metric to measure the similarity of
association rules. The main goal of the research was to mine clusters with association
rules. They first generated the association rules by using the “APRIORI” algorithm, one of
the most-used algorithms. They introduced an “Hamming” distance function (based on
coverage probabilities) to cluster (a hierarchical clustering algorithm is used) the rules. The
key difference between our method and the proposed method is that this study aimed to
produce a compact and accurate associative classifier, while its main goal was to measure
the quality of the clustering.

In [38], the authors focused on detecting unexpected association rules from transac-
tional datasets. They proposed a method for generating unexpected patterns based on
beliefs automatically derived from the data. They clustered the association rules by inte-
grating a density-based clustering algorithm. Features are represented as vectors captured
by semantic and lexical relationships between patterns. The clustering phase considers
such logical relationships as similarities or distances between association rules. The idea is
slightly similar to ours, but used a different clustering technique and cluster association
rules, not class association rules.

3. Materials and Methods

The proposed approach is illustrated in Figure 1. First, the strong CARs in the dataset
were mined. Then, novel distance metrics to utilize in the hierarchical clustering algorithm
were developed. The final association classifier was formed by extracting a representative
CAR for each cluster. Clustering aims to group similar rules together; taking a repre-
sentative CAR within a cluster eliminates the rule-overlapping issue while reducing the
classifier’s size.

Figure 1. Overview of the developed associative classification algorithm.

Each of the steps mentioned in the above figure is described in the following subsections.

3.1. Class Association Rules

This subsection focuses on finding “interesting” associations between attributes and
class labels in the dataset: the generation of strong CARs. The generation of ARs (CARs)
is expressed in two steps: (1) finding the frequent itemsets (the itemsets that satisfy the
user-specified conditions) in the dataset and (2) association rule generation from frequent
itemsets. While the second step is straightforward, the first step is extremely crucial in
the construction of strong CARs. Before generating the CARs, we describe the basic rule
evaluation metrics, which we use later. Rule-evaluation metrics for the rule {A⇒ B} are
expressed below:

supp (A⇒ B) = supp (A ∪ B) =
supp_count (A =⇒ B)

T
(1)

where supp_count (A =⇒ B) is the number of records that include both A and B. T is the
total number of records.
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Confidence of the rule is a percentage value that shows how often each item in B
appears in records that contain items in A. It computes the strength of the rule, that is, the
correlation between antecedent and consequent.

con f (A⇒ B) =
supp (A ∪ B)

supp (A)
(2)

The lift of the rule is computed by dividing the confidence by the expected confidence.
The expected confidence is the support of the consequences of the rule.

li f t (A⇒ B) =
con f (A⇒ B)

supp (B)
(3)

A dynamic algorithm called “APRIORI” is utilized to generate the class association
rules. APRIORI is significantly more time-efficient compared to other frequently used
mining algorithms, easy to implement, and sound enough to make fair comparisons with
other AC methods. APRIORI uses a bottom-up approach that generates a 1-frequent itemset
(includes one item only), whose support is greater than the user-specified threshold in
the initial stage. In the next step, the 2-frequent itemset is found based on the 1-frequent
itemset, and this procedure lasts to produce all the frequent itemsets. The APRIORI
algorithm was simplified in our case because we generated the frequent itemsets containing
class attributes.

Class association rules are generated from frequent itemsets found by APRIORI,
which satisfy a user-defined minimum confidence threshold. Since the APRIORI generates
frequent itemsets containing class attributes, the CAR-generation step is straightforward.
For each itemset F containing Class C, all nonempty subsets of F are generated, and
then every nonempty subset S of F, strong CAR R, is outputted in the form of “S→C” if,
Con f idence (R) ≥ min_con f , where min_conf is the minimum confidence threshold.

3.2. Similarity Measures

In this section, the significant impact of similarity measures (also called distance met-
rics) used to produce an accurate and compact model is demonstrated. Since there is a
lack of distance metrics for CARs, developing such metrics will be an extremely important
contribution to the field. After the strong association rules have been generated, as de-
scribed in Section 3.1, they are then clustered. Since hierarchical agglomerative clustering
will be used, the similarity (how far apart the two rules are) between CARs needs to be
measured. Research studies have suggested a few indirect distance metrics for association
rules, such as Absolute Market-Basket Difference (AMBD) [39], Conditional Market-Basket
Probability (CMBP) and Conditional Market-Basket Log-Likelihood (CMBL) [40], as well
as Tightness [41].

3.2.1. Indirect and Direct Distance Metrics

Rule distances that are obtained from data are called Indirect Distance Metrics, which
are defined as a function of the market-basket sets that support two considered rules.

For the purpose of clustering association rules, Natarajan and Shekar introduced a
measure called “tightness”, which emphasizes the strength of the correlation between
the items of an association rule. The premise of this technique is that correlated items
tend to occur together in transactions. “Tightness” is different from traditional support or
confidence measures. More precisely, the support values for the most and least frequent
items of an association rule were considered for computing the distance.

Let x1x2 . . . xm → · · · . . . xn be an association rule and the . . . = 1 . . . n its respec-
tive items. Sxi denotes the support of item xi. Support values for the most and least
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frequent items of association rule r are given by Srmax = max(S..., . . . , Sxn) and Srmin =
min(. . . , . . . , Sxn). The tightness measure is defined as follows:

T =
Sr(

Srmax+Srmin
2

)
− Sr

T reaches its maximum (i.e., ∞) when Srmax + Srmin = Sr. Based on the notion of
tightness, the following distance measure has been introduced:

d(r1, r2) =
|Tr1 − Tr2 |
Tr1 + Tr2

As Natarajan and Shekar have shown in the context of market basket analysis, this
measure is able to discover similar purchasing behaviors in different item domains and is
appropriate for association rules.

In connection with association rule mining, ref. [39] presented their approach to
mitigating the rule quantity problem with pruning and grouping techniques. They pro-
posed clustering the rules by introducing the following simple distance measure based
on database coverage between association rules with the same consequence. The distance
dAMBD between rule1 and rule2 is the (estimated) probability that one rule does not hold
for a basket, given that at least one rule holds for the same basket. Based on the number of
non-overlapping market baskets, a distance metric can be defined as follows:

dAMBD
rule1,rule2 = m(BSrule1) + m(BSrule2)− 2 ∗ |m(BSrule1, BSrule2)| (4)

where BS is both sides of the rule; that is, the itemset for the association rule. m(BS) denotes
the support of a rule. In Equation (4), rules with similar tuples obtain a lower distance than
the rules with dissimilar tuples. More specifically, the distance indicates the percentage
of tuples in the dataset that are not covered by either rule. This approach, while intuitive
and applicable only for rules with the same consequent, is appropriate for measuring the
similarity of class association rules.

Since the rules are clustered by class label, the distance is computed by ignoring the
class label. When applying indirect distance metrics to our proposed method, a larger
number of clusters is found, meaning the classifiers included a large number of rules. This
issue was a research motivation to propose a new normalized distance metric based on
“direct” measures, called Item Based Distance Measure (IBDM), in this research paper by
considering the differences in rule items.

Let R : {a1, a2, . . . ., an} ⇒ C be a class association rule where, ai, (i = 1 . . . n) is rule
items (attributes’ values), n is the total number of attributes (the number of rule items
cannot exceed n), and C is a class label. Given two rules rule1: {a1, a2, . . . ., am} ⇒
C, rule2 : {a1, a2, . . . ., ak} ⇒ C. rule1, rule2 ∈ R and 1 ≤ m, k ≤ n, we compute the
similarity as follows:

similarity(index) =


i f (arule1

index = arule2
index)

∣∣∣ (arule1
index = ∅ and arule2

index = ∅), 0;

else i f (arule1
index = ∅ and arule2

index 6= ∅)
∣∣∣ (arule1

index 6= ∅ and arule2
index = ∅) , 1;

else 2
(

arule1
index 6= arule2

index

)
.

(5)

where index is the index of rule items. The similarity function (5) has a low value when the
rules have similar items. A rule item that is empty is regarded as being closer than one that
is different. The distance between the two rules is denoted as follows:
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dIBDM
rule1,rule2 = ∑n

i=1 similarityi/(2× n) (6)

The range of distance (6) is between 0 and 1. The distance between CARs that contain
the same things is 0, while the distance between CARs that contain different items is 1.

3.2.2. The New “Weighted and Combined” Distance Metrics

The AMBD metric is appropriate for measuring the similarity of rules with the same
consequence, and IBDM is also proposed for that purpose (to compute the similarity of
CARs). Aiming at applying these distance metrics to cluster the CARs with the same
class, an efficient distance metric, Weighted and Combined Distance Metric (WCDM), is
developed by merging the IBDM and AMBD distance metrics. The advantage of WCDM is
that it considers the direct measure (rule items) and the indirect measure (rule coverage).
The dWCDM between two rules, rule1 and rule2, is defined below:

dWCDM
rule1,rule2 = α× dIBDM

rule1,rule2 + (1− α)× dAMBD
rule1,rule2 (7)

where α is weight parameter, dIBSM is a direct distance metric and dAMBD is an indirect
distance metric.

When we apply AMBD (α = 0) distance metric in the proposed method, a larger
average number of clusters with slightly better accuracy is obtained. When the IBDM
(α = 1) was applied, the distance metric to the proposed method showed a smaller average
number of clusters with slightly lower accuracy. After performing some experiments,
different α parameters were determined to show how the distance metrics affected the
performance of the classifier. The following distance metrics are developed:

Weighted Combined and Balanced (WCB): The α = 0.5 parameter was set in the dis-
tance metric developing part; that is, the contribution of IBDM and AMBD was considered
equal to make the balanced distance metric. The resulting distance metric is defined in
Equation (8).

dWCB
rule1,rule2 = 0.5× dIBDM

rule1,rule2 + 0.5× dAMBD
rule1,rule2. (8)

Weighted Combined and Indirect advantage (WCI): The α = 0.25 parameter was set in
the distance metric developing part; the majority part of the “Combined” distance metric
becomes the “Indirect” distance metric that is shown in Equation (9).

dWCI
rule1,rule2 = 0.25× dIBDM

rule1,rule2 + 0.75× dAMBD
rule1,rule2. (9)

Weighted Combined and Direct Advantage (WCD): The α = 0.75 parameter was set
in the distance metric developing part, and the majority of the “Combined” distance metric
became the “Direct” distance metric that is expressed in Equation (10).

dWCD
rule1,rule2 = 0.75× dIBDM

rule1,rule2 + 0.25× dAMBD
rule1,rule2. (10)

3.3. Clustering of Class Association Rules

The goal of clustering rules is to group related rules; rules in one cluster should be
related to and distinct from rules in other clusters.

Hierarchical clustering techniques come in two types: top-down (divisive hierarchical
clustering) and bottom-up (hierarchical agglomerative clustering). In the beginning, bottom-
up algorithms treat each example as a separate cluster. However, after each iteration, they
combined the two closest clusters into a single cluster that comprised all the examples. A
tree (or dendrogram) is used to illustrate the cluster structure that results. In contrast to the
hierarchical agglomerative clustering method, the top–down strategy. It considers every
case in a single cluster before breaking it up into smaller pieces until every example forms
a cluster or meets the stopping condition.
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We applied the complete linkage method of hierarchical agglomerative clustering.
In the complete linkage (farthest neighbor) method, the similarity of two clusters is the
similarity of their most dissimilar examples; therefore, the distance between the farthest
groups is taken as an intra-cluster distance. Figure 2 illustrates the clustering phase of
the developed algorithm in which each rule is first regarded as a separate cluster (let us
assume N CARs are generated). Utilizing the distance measures outlined in Section 3.2.2,
a similarity (distance) matrix is built. The hierarchical clustering process needs to be
used twice: first, to determine the cluster heights, which will be used subsequently to
determine the ideal number of clusters. The “natural” number of clusters is found when
the dendrogram is “cut” at the point that represents the maximum distance between two
consecutive clusters merging. Agglomerative hierarchical clustering is once more used
to identify the clusters of class association rules after the ideal number of clusters has
been determined.

Figure 2. Clustering phase of our developed classifiers.
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3.4. Extracting the Representative CAR

The representative CAR for each cluster must be extracted once we have identified all
clusters to create a descriptive, compact, and useful associative classifier. In this procedure,
the CAR closest to the cluster’s center is selected as a representative; hence, the representa-
tive CAR must have the minimum average distance from all other rules. The method is
described in Algorithm 1.

Algorithm 1 A representative car based on cluster center (rc)
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Algorithm 2 Developed Associative Classification Model
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tive classifiers were compared with the above-mentioned AC methods because in 

Algorithm 2 describes every step of the proposed model. The model is given a
dataset with minimum support and confidence constraints, which are used to produce
class association rules. CARs are organized into groups based on their class labels in line 3.
For each group of CARs (lines 4–14), the hierarchical clustering algorithm complete linkage
method (HCCL) builds the distance matrix using one of the distance measures described
in Section 3.2.2 (line 5), computes the cluster heights (distances between clusters) using
the distance matrix in line 6, and then uses these heights (distances) to calculate the ideal
number of clusters (line 7). Then, to locate the clusters of CARs, the HCCL method is
employed once again. Lines 10–14 extract the representative CAR for each cluster using the
technique outlined in Section 3.4 and then incorporate it into our final classifier.

The following classifiers were constructed: CCC1 was built based on WCB; CCC2
was formed based on WCI; CCC3 was formed based on WCD; and all algorithms used
the RC method defined in Algorithm 1 for extracting a representative CAR (based on
cluster center).

4. Experimental Evaluation

Empirical evaluations were performed on 12 real-life datasets taken from the UCI
ML Repository. The developed associative classifiers were compared with 6 associative
classifiers (CBA and our previously developed classifiers: SA, J&B, DC, DDC, and CDC) on
accuracy and size. We also included the Majority Class Classifier (MCC) in the comparison
to see if AC algorithms have problems classifying minority classes. The new associative
classifiers were compared with the above-mentioned AC methods because in previous



Appl. Sci. 2022, 12, 9055 11 of 19

research [28,29,31], a comprehensive evaluation of our above-mentioned AC methods with
well-known rule-based classification models was already provided. This study utilized a
paired t-test (with a 95% significance threshold) method of statistical significance testing to
present the statistical differences in the obtained results. A paired t-test is used to compare
the means of two sample sets when each observation in one sample could be paired with
an observation in the other sample. In our case, two sample sets are the classification
accuracies of two models over a 10-fold cross-validation method (10 pairs of results, a pair
of results for each fold).

The same default parameters were applied for all AC methods; to make a fair com-
parison, min_support, and min_confidence thresholds were set to 1% and 60%, respectively,
as default parameters. In some datasets, minimum support was lowered to 0.5% or even
0.1%, and confidence was lowered to 50% to ensure “enough” CARs (“enough” means
at least 5–10 rules for each class value; this situation mainly happens with imbalanced
datasets) were generated for each class value. We utilized the WEKA workbench [42]
implementation of all associative classifiers.

A 10-fold cross-validation evaluation protocol was used to perform the experiments.
The descriptions of the datasets and input parameters of the AC methods are shown in
Table 1.

Table 1. Description of datasets and AC algorithm parameters.

Dataset # of
Attributes # of Classes Class

Distribution # of Records Min Support Min
Confidence

# of
Analyzed

Rules

Breast.Can 10 2 201; 85 286 1% 60% 1000

Balance 5 3 288; 49; 288 625 1% 50% 218

Car.Evn 7 4 1210; 384; 69;
65 1728 1% 50% 1000

Vote 17 2 267; 168 435 1% 60% 500

Tic-Tac 10 2 626; 332 958 1% 60% 3000

Nursery 9 5 4320; 2; 328;
4266; 4044 12,960 0.5% 50% 3000

Hayes.R 6 3 65; 64; 31 160 0.1% 50% 1000

Lymp 19 4 2; 81; 61; 4 148 1% 60% 1500

Spect.H 23 2 56; 211 267 0.5% 50% 3000

Adult 15 2 34,013; 11,208 45,221 0.5% 60% 5000

Chess 37 2 2839; 357 3196 0.5% 60% 3000

Connect4 43 3 44,473;
16,635; 6449 67,557 1% 60% 5000

Table 2 illustrates the experimental results on classification accuracies (average values
over the 10-fold cross-validation with standard deviations). The best accuracy for each
dataset was shown in bold.
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Table 2. Overall accuracies with standard deviations.

Dataset MCC CBA SA J&B DC DDC CDC CCC1 CCC2 CCC3

Breast.Can 70.2 71.9 ± 9.8 79.3 ± 4.4 80.5 ± 4.7 81.2 ± 4.0 81.9 ± 4.1 82.6 ± 4.5 80.9 ± 5.1 81.2 ± 4.9 80.8 ± 4.8
Balance 46.1 73.2 ± 3.8 74.0 ± 4.1 74.1 ± 2.6 72.8 ± 2.4 73.2 ± 2.9 73.2 ± 3.0 75.9 ± 2.1 74.7 ± 2.4 74.1 ± 2.7
Car.Evn 70.0 91.2 ± 3.9 86.2 ± 2.1 89.4 ± 1.4 85.8 ± 1.4 88.9 ± 1.2 87.1 ± 1.6 87.5 ± 1.9 88.9 ± 1.6 88.1 ± 1.8

Vote 61.4 94.4 ± 2.6 94.7 ± 2.3 94.1 ± 1.8 92.9 ± 2.5 93.2 ± 2.8 90.6 ± 2.3 91.8 ± 1.9 91.6 ± 2.3 92.5 ± 2.0
Tic-Tac 65.3 100.0 ± 0.0 91.7 ± 1.5 95.8 ± 2.0 87.3 ± 1.3 91.8 ± 1.0 92.4 ± 1.1 89.0 ± 1.4 88.1 ± 1.2 89.7 ± 1.5

Nursery 33.3 92.1 ± 2.4 91.6 ± 1.2 89.6 ± 1.1 88.5 ± 1.1 89.3 ± 1.1 92.3 ± 0.9 90.4 ± 0.7 92.9 ± 0.8 88.1 ± 0.7
Hayes.R 40.6 75.6 ± 10.9 73.1 ± 6.0 79.3 ± 5.9 79.9 ± 5.7 77.8 ± 5.2 82.7 ± 6.1 81.0 ± 6.0 81.4 ± 6.5 78.1 ± 6.9

Lymp 54.7 79.0 ± 9.7 73.7 ± 5.1 80.6 ± 5.7 78.4 ± 6.7 80.0 ± 6.1 84.0 ± 6.4 80.2 ± 7.1 79.7 ± 6.4 79.2 ± 6.7
Spect.H 79.0 79.0 ± 1.6 79.1 ± 2.1 79.7 ± 3.1 81.5 ± 0.7 81.3 ± 1.1 82.8 ± 1.3 80.6 ± 1.1 80.8 ± 1.0 80.0 ± 1.0
Adult 75.2 81.8 ± 3.4 80.8 ± 2.6 80.8 ± 2.9 81.9 ± 2.4 82.0 ± 2.6 82.8 ± 3.0 81.3 ± 2.4 81.4 ± 2.8 81.8 ± 3.2
Chess 88.8 95.4 ± 2.9 92.2 ± 3.8 94.6 ± 2.7 97.0 ± 2.0 97.3 ± 2.0 97.8 ± 2.0 97.1 ± 1.6 96.8 ± 1.6 96.1 ± 1.9

Connect4 65.8 80.9 ± 8.1 78.7 ± 6.0 81.0 ± 5.2 80.0 ± 5.9 80.7 ± 5.9 81.7 ± 5.9 81.2 ± 6.9 81.7 ± 6.6 81.0 ± 6.0

Average
(%): 62.5 84.5 ± 4.9 82.3 ± 3.4 84.9 ± 3.3 83.9 ± 3.0 84.7 ± 3.0 85.8 ± 3.2 84.7 ± 3.2 84.9 ± 3.1 84.1 ± 3.3

Bold result means the best accuracy for each dataset

Overall observations on accuracy (shown in Table 2) reveal that newly developed
techniques CCC1, CCC2, and CCC3 achieved an average accuracy that was comparable
to the other associative classifiers (84.7%, 84.9%, and 84.1% respectively). The average
accuracy of CCC2 was higher than the CCC1 and CCC3 approaches (and higher than CBA,
SA, DC, and DDC as well), while the J&B and CDC algorithms produced results that were
similar or slightly higher. Noticeably, the proposed methods achieved the best accuracy
on the “Balance” (CC1: 75.9%), “Nursery” (CCC2: 92.9%), and “Connect4” (CCC2: 81.7%)
datasets among all AC methods. The developed classifiers received lower results on the
“Tic-Tac” dataset than the other algorithms (except DC).

Figure 3 shows the comparison of the overall performance of the classifiers on average
accuracy and other evaluation metrics such as “Precision,” “Recall,” and “F-measure” to
see how reliable the achieved accuracies by associative classification models. Weighted
(based on class distribution) average results of the Precision, Recall, and F-measure were
reported, and the detailed information on evaluation metrics for each dataset is provided
in Appendix A.

Figure 3. Comparison of the performance of AC models on average accuracy, weighted average
Precision, Recall, and F-measure.

The statistical differences were measured (wins/losses counts) on accuracy between
CCC1, CCC2, CCC3, and other AC models (shown in Table 3). W: our approach was
significantly better than the compared algorithm; L: selected rule-learning algorithm signif-
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icantly outperformed our algorithm; N: no significant difference has been detected in the
comparison.

Table 3. Statistically significant wins/losses counts of CCC1 method on accuracy.

CBA SA J&B DC DDC CDC CCC2 CCC3

W 3 4 1 1 2 1 0 2
L 3 2 2 0 1 3 1 0
N 6 6 9 11 9 8 11 10

Table 3 shows that CCC1 obtained the comparable results with AC methods included
in the comparison. However, CCC1 lost to J&B. CDC and CCC2 methods according to
win/losses counts (CCC1 has more losses than wins compared to those algorithms); there
was no statistical difference between them on the 8, 9, and 11 datasets out of 12. The same
experiment was carried out for CCC2, as shown in Table 4.

Table 4. Statistically significant wins/losses counts of CCC2 method on accuracy.

CBA SA J&B DC DDC CDC CCC3

W 2 5 3 2 2 0 2
L 3 2 2 0 1 3 0
N 7 5 7 10 9 9 10

Interestingly, CCC2 did not get worse accuracy than DC and CCC3 methods on any
datasets. Even though CCC2 lost to the CBA and CDC algorithms, it won the rest of the
algorithms in accuracy due to wins/losses counts.

Table 5 defines the wins/losses counts of the CCC3 method. The results showed that
the CCC3 method obtained a slightly lower result than all other AC methods in terms of
statistical win/loss counts except for DC and SA. However, on average, the classification
accuracies of CCC3 are not much different from those of the other 8 associative classifiers.

Table 5. Statistically significant wins/losses counts of CCC3 method on accuracy.

CBA SA J&B DC DDC CDC

W 2 3 0 2 0 1
L 3 3 1 0 1 5
N 7 6 11 10 11 6

Experimental evaluations of the number of rules generated by classifiers are shown
in Table 6 (The best result for each dataset was bolded). Since the size of DC, DDC (DC
and DDC utilized the same “direct” distance metric for clustering, further producing the
same number of rules), and CDC, CCC1 (CDC and CCC1 methods employed the same
“indirect” distance metric for clustering) are the same, these algorithms are merged in the
resulting table.
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Table 6. Number of CARs.

Dataset CBA SA J&B DC&DDC CDC&CCC1 CCC2 CCC3

Breast.Can 63 20 47 8 9 11 9
Balance 77 45 79 34 79 86 61
Car.Evn 72 160 41 32 32 37 32

Vote 22 30 13 6 6 6 9
Tic-Tac 23 60 14 24 17 27 21

Nursery 141 175 109 79 80 114 74
Hayes.R 34 45 34 19 80 80 37

Lymp 23 60 29 5 7 6 5
Spect.H 4 50 11 8 5 7 6
Adult 126 130 97 13 88 101 79
Chess 12 120 24 12 17 14 14

Connect4 349 600 273 59 102 146 117

Average: 79 125 64 25 43 53 39

Table 6 shows that the proposed methods achieved the second-highest result on the
average number of rules, the only classifier that performed better was the DC classifier. Sur-
prisingly, the developed methods produced unexpectedly large classifiers on the “Balance”
and “Hayes.R” datasets. Overall, CCC1, CCC2, and CCC3 produced classifiers similar to
other AC methods included in the study on size.

An interesting and expected fact is that if we increase the α parameter (that means that
the majority of the “Combined” distance metric becomes the “Indirect” distance metric), we
get the higher average number of rules with slightly better average accuracy. If we decrease
the α parameter (that means that the majority of the “Combined” distance metric becomes
the “Direct” distance metric), we get the lower average number of rules with slightly worse
average accuracy. The statistical significance testing (win/loss counts) results are shown
in Tables 7–9 for each proposed classifier. Statistically significant counts (wins/losses)
of CCC1 against other rule-based classification models on classification rules are shown
in Table 7.

Table 7. Statistically significant wins/losses counts of CCC1 method on number of rules.

CBA SA J&B DC&DDC CCC2 CCC3

W 8 10 9 2 6 3
L 2 2 2 5 1 5
N 2 0 1 5 5 4

Table 8. Statistically significant wins/losses counts of CCC2 method on the number of rules.

CBA SA J&B DC&DDC CCC3

W 7 10 7 0 1
L 4 2 5 7 7
N 1 0 0 5 4

Table 9. Statistically significant wins/losses counts of CCC3 method on the number of rules.

CBA SA J&B DC&DDC

W 8 11 10 2
L 1 1 2 5
N 3 0 0 5

In terms of number of rules, our suggested classifiers provided results comparable
to cluster-based AC methods (DC, DDC, CCC3), but these results were better than those
of other AC algorithms (CBA, SA, J&B). On the importance of win/loss counts, CCC1
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produced significantly smaller classifiers than CBA, SA, J&B, and CCC2 on more than half
of the datasets but did not perform as well as DC, DDC, and CCC3 algorithms (it generated
the larger classifier on 5 out of the 12 datasets).

The CCC2 classifier performed the worst among the newly developed methods (CCC1,
CCC3) on size. Although CCC2 produced larger classifiers than DC, DDC, and CCC3 on 7
datasets out of 12, it achieved a better result than CBA, SA, and J&B methods according to
significant wins/losses counts.

Table 9 represents that CCC3 outperformed all AC methods except DC and DDC in
terms of classification rules. It generated a larger classifier on only 1 dataset than CBA, SA,
and 2 datasets out of 12 than J&B.

We analyzed the performance (on accuracy and rules) of the developed methods on
“bigger” datasets, as shown in Figure 4. Since our main goal is to produce compact models
and show the influence of distance metrics (importance of α parameter) for developing
such models, we analyzed the performance of the newly developed models on bigger
datasets.

Figure 4. Comparison of our methods of size for “bigger” datasets.

Figure 3 illustrates that the accuracies of CCC1, CCC2, and CCC3 classifiers were
almost the same as each other on the selected bigger datasets. Regarding accuracy, CCC2
achieved a slightly better result than CCC1 and CCC3, while it obtained a worse result
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than those methods in terms of classification rules (shown in Figure 4), which is expected
behavior.

5. Discussion

The DC, DDC, and CDC cluster-based associative classification algorithms are similar
to our developed methods. All algorithms utilize the “APRIORI” algorithm to generate
the strong class association rules and hierarchical clustering algorithm to cluster the CARs.
After clustering the CARs, the representative CAR is selected for each cluster to produce
the final classifier. The DC method was built based on a “direct” (depending only on
rule items) distance measure (for clustering purposes), and the method for extracting a
representative CAR was based on a cluster center. The DDC method was formed based on
a “direct” (depending only on rule items) distance measure, and the method for extracting a
representative CAR was based on database coverage. The CDC method was formed based
on the “combined” (depending only on rule items and database coverage) distance measure,
and the method for extracting a representative CAR was based on database coverage. The
key differences between the newly developed methods and the DC, DDC, and CDC
methods are that the proposed methods applied a “combined” distance metric (with
different parameters), and a representative CAR was extracted based on the cluster center.

The newly developed models were comparable to all aforementioned associative
classification models, both in accuracy and size. The most important advantage of our
proposed methods was to generate a smaller classifier on bigger datasets compared to
associative and traditional (a previous study proved that traditional rule-based algorithms
are sensitive to dataset size) rule-learners.

We also tried to measure the accuracy and other evaluation measures (Precision,
Recall, and F-measure) of the complete rule set without clustering and representative rule
extraction, but the accuracies were never better than the best accuracy in the result table.

Our proposed algorithm has some limitations:

• To obtain enough class association rules for each class value, we need to apply appro-
priate minimum support and minimum confidence thresholds. That is, we should
take into consideration the class distribution of each dataset;

• Associative classifiers may get lower results in terms of classification accuracy than
other traditional classification methods on imbalanced datasets, because imbalanced
class distribution may affect the rule-generation part of associative classification
algorithms;

• The newly developed distance metric is dependable to α parameter: if we lower the α

parameter, we get a higher number of clusters (higher number of rules) with better
accuracy, and if we increase the α parameter, we obtain a smaller classifier with slightly
lower accuracy, which is an expected behavior.

6. Conclusions

According to experimental evaluations, the CCC1, CCC2, and CCC3 classifiers could
reduce the number of classification rules while still maintaining classification accuracy
that was on par with other AC approaches included in the comparison. Compared to
cutting-edge classification models, it created classifiers that were significantly smaller.

Each of the three associative classifiers that have been built has a different advantage
on specific datasets, and they are even competitive in terms of classification accuracy and
the number of rules produced.

Another promising direction for future research on associative classifiers is to in-
vestigate ways of including numeric attributes in the models. There is already ongoing
research in this area, but using clustering on CARs may open new potentially interesting
perspectives on the matter.
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Appendix A

The detailed information on Precision, Recall, and F-measure for each dataset is shown
in Table A1.

Table A1. Weighted relevance measures (%).

Data Set

Precision (P), Recall (R), F-Measure (F)

CBA SA J&B DC DDC CDC CCC1 CCC2 CCC3

P R F P R F P R F P R F P R F P R F P R F P R F P R F

Breast.Can 71 70 71 78 79 78 84 79 81 81 80 81 82 80 81 84 81 82 82 80 81 81 80 80 81 80 80

Balance 68 73 70 74 72 73 73 75 74 71 72 71 70 72 71 73 72 72 74 72 73 75 74 74 74 74 74

Car.Evn 87 91 89 86 87 86 87 89 88 86 85 85 87 88 87 84 88 86 85 88 86 88 87 87 88 86 87

Vote 94 94 94 94 94 94 94 94 94 92 89 91 94 91 93 89 91 90 91 92 91 92 92 92 93 92 92

Tic-Tac 100 100 100 91 91 91 94 95 95 88 87 87 91 92 91 90 93 91 89 88 88 86 89 87 90 89 89

Nursery 90 93 91 89 91 90 87 89 88 87 89 88 88 90 89 90 93 91 91 88 89 92 93 92 86 89 87

Hayes.R 76 75 75 73 74 73 79 81 80 79 80 79 78 77 77 84 78 81 81 81 81 82 80 81 80 76 78

Lymp 79 75 77 72 76 74 81 80 80 80 75 77 80 76 78 86 83 84 81 79 80 79 80 79 81 77 79

Spect.H 78 79 78 79 79 79 79 80 79 82 81 81 81 82 81 83 83 83 81 80 80 80 82 81 82 82 82

Adult 81 82 81 80 80 80 81 80 80 82 82 82 82 82 82 83 82 82 81 82 81 81 82 81 82 82 82

Chess 95 95 95 93 92 92 94 95 94 97 97 97 98 97 97 97 98 97 97 95 96 97 97 97 94 97 95

Connect 82 78 80 78 77 77 81 80 80 81 79 80 83 78 80 84 79 81 83 80 81 83 80 81 81 81 81
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