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Abstract: Pile foundations in earthquake-prone regions must be analyzed and designed considering
the dynamic loads. In the fully nonlinear dynamic analyses, the soil nonlinearity can be considered
using the modulus degradation curves in the total-stress approach, and the soil damping is controlled
by the unloading/reloading rule. Several researchers have investigated the effect of soil damping
on the free-field soil response analyses, but the effect on the soil–pile–structure system response has
not been studied thoroughly. In this study, the nonlinear elastic method (hyperbolic model) and the
elastoplastic Mohr–Coulomb (MC) models were implemented to investigate the effect of soil damping
on the pile and structure response. Dynamic soil–pile–structure interaction analyses were performed
by simulating two different centrifuge tests published in the literature, and the analysis results were
compared with the centrifuge test results. The analyses with the low-intensity input motions showed
that the superstructure accelerations and the bending moments in the single pile were estimated
with reasonable accuracy. However, the superstructure accelerations might be underestimated under
high-intensity motions, especially in the MC model. Additional analyses were performed under
six earthquake records. The constitutive models (MC and hyperbolic) may significantly vary the
maximum structural acceleration and pile maximum moments (up to 50%). As a result, the responses
of the superstructure and the pile in soil–pile–structure interaction problems are highly dependent on
the soil constitutive model that must take the damping into account accurately; in turn, due account
must be given to the selection of the constitutive model.

Keywords: dynamic; interaction; damping; nonlinear; soil; pile

1. Introduction

Designing a pile foundation is critical under lateral loading, especially in high seismic-
ity zones. Two commonly used methods are available for the analyses: Three-dimensional
finite element (or finite difference) [1–4] or beam on Winkler Foundation (BNWF) [5–7]
approaches. Both methods require the definition of nonlinear soil behavior under dynamic
loads. Historically, the assumption of linear behavior for the pile and the superstructure is
valid in most cases, and the linear soil–pile–structure interaction has been well studied by
various researchers [8–10]. However, soils exhibit highly nonlinear behavior even under
low strains, and the main uncertainty in the analyses arises from the modeling approach
taking this nonlinearity into account [7,11–13].

The nonlinear behavior of soils has been studied by many researchers experimen-
tally [14–18]. The equivalent-linear analysis method was developed initially [19], and the
modulus degradation curves have expressed the soil nonlinearity in these analyses. The
equivalent-linear analysis is a theoretically linear method, but the soil nonlinearity and
damping are integrated into the analyses by an iterative approach. The fully nonlinear tech-
niques have been developed to represent the nonlinear soil behavior accurately. However,
a major difficulty in the fully nonlinear methods is the definition of unloading/reloading
behavior which governs the damping ratio. The effect of several soil constitutive models
on the soil response has been studied by 1-dimensional site response analyses [20–23].
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Several other 3D constitutive models are available to simulate soil behavior [24–26]. How-
ever, a wide variety of damping performances exist under dynamic loading. Studies have
been conducted on the soil–pile–structure interaction [2,27–29]. However, the effect of soil
damping on the structure and pile responses has not been studied thoroughly.

The main purpose of this study is to show the effect of the soil hysteretic damping
on the pile–soil–structure system response using relatively simple constitutive models.
Two different centrifuge test setups of Gohl [30] and Wilson [31] were simulated by three-
dimensional models in FLAC3D [32] for verification purposes. Fully nonlinear analyses
were performed for the single pile–soil–structure systems. Since the earthquake records
used in the centrifuge tests were limited, a new numerical model was created, having a
single pile–structure model embedded in a single cohesionless soil layer and analyzed
using six different earthquake records. The methods followed in the study are given in
detail in Section 2. The results of the analyses are presented in Section 3.

2. The Method

The main objective of this study is to show the effect of soil’s damping ratio on the
soil–pile–structure interaction analyses. For this purpose, two constitutive models were
employed; each has a different damping formulation for soil.

2.1. Soil Models

The first model is the hyperbolic model, where the modulus degradation curves
govern the nonlinear soil behavior, and the ultimate strength is not defined explicitly.
The reference strain concept defines the nonlinear soil behavior in the hyperbolic model.
Figure 1a shows a loading–unloading–reloading cycle in the hyperbolic model. The second
model is the Mohr–Coulomb (MC), in which the shear strength limits the ultimate stress
that can be sustained. Figure 1b depicts a loading–unloading–reloading cycle in the MC
model. Both models employ Masing’s rule for unloading/reloading behavior. However,
the resulting damping ratio could be higher in the MC model, depending on the shear
strain. According to Figure 1, the stress–strain behavior in MC for strains up to the yield
strain γm is the same as in the hyperbolic model. However, the dissipated energy is greater
in the MC when the accumulated shear strain is greater than the yield strain. Therefore,
the models yield different damping values, particularly at shallow depths where the shear
strength of cohesionless soils is significantly lower.
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The definition of hysteretic damping is the ratio of the energy dissipated in one cycle
to the maximum stored energy. The damping ratio for the stress–strain loops shown in
Figure 1a can be calculated using Equation (1) in the hyperbolic model.

Dmasing =
2
π

2
1 + γc

γre f(
γc

γre f

)2

[
γc

γre f
− ln

(
1 +

γc

γre f

)]
− 1

 (1)

Equation (1) includes the γc, the shear strain due to the dynamic load, and γref, the
soil property defining the modulus degradation curves. In addition to the parameters
used in the hyperbolic model (γc and γref), the MC model includes the strain at which
the maximum shear stress is sustained, γm. If the cyclic strain γc is less than the γm, the
resulting damping ratio becomes equal to the one in the hyperbolic model. Once the strain
γc is greater than γm in the MC model, the damping ratio formulation is as in Equation (2).
Equations (1) and (2) were given in the FLAC3D manual [32]. However, in this study, the
denominator of the multiplication has been corrected to 1/(γc/γm).

Dmasing =
2
π
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γm
γre f

)2

[
γm

γre f
− ln

(
1 +

γm

γre f
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− 1

 1
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γm

+
2
π

(γc − γm)

γc
(2)

In this study, the soil’s small strain shear moduli (Gmax) were determined by
Equations (3) and (4) (Seed and Idris [16]), and the bulk modulus is calculated by
elastic theory using Poisson’s ratio. The maximum shear modulus computed using
Equation (3) was applied to the soil domain considering the initial confining stresses.
However, a minimum cut-off value of 10 kPa was applied to Gmax to prevent the soil
domain near the ground surface from having an unrealistically low initial soil modulus.

Gmax = 21.7 (K2)max pa

(
σ′m
pa

)0.5

(3)

(K2)max = 3.5 (DR)
2/3 (4)

The nonlinear stress–strain behavior of soils can be considered by normalized shear
modulus reduction (G/Gmax) curves. Many researchers have studied the nonlinear behavior
of cohesionless soils under cyclic loads, and reduction curves have been suggested [14–16].
The curves suggested by Seed and Idriss [16] have been implemented in the verification
analyses presented by Boulanger et al. [11], Thavaraj et al. [33], and Kwon & Yoo [34]. In
this study, effective stress-dependent curves of Darendeli [14] were employed to better
consider the variation with depth (Figure 2a). The shear modulus reduction equation
is given in Equation (5). The reference strain in the equation depends on the effective
confining stress as in Equation (6), according to Darendeli [14]. The hysteretic damping
command in FLAC3D [32] was utilized for the soil domain in the model. The reference
strain values were assigned to each zone by considering the initial effective stress (total
stress approach). However, the maximum shear strain was on the order of 0.1–0.3% in
the study performed by Darendeli [14], which could not involve the large strain (>1%)
behavior. In contrast, the study of Seed and Idriss [16] showed that the G/Gmax value for
modulus degradation curves at 3% shear strain varies between 0.03 and 0.05. Therefore,
a cut-off for G/Gmax is required to accurately represent the large strain behavior in the
modulus degradation. Since the experimental study presented by Darendeli (2001) does not
include the large strain data (≥1%), 0.05 was assumed for minimum G/Gmax considering
the Seed and Idriss [16] curves. The minimum cut-off value of 0.05 was applied for the
modulus reduction ratio to prevent further increase in damping beyond a certain shear
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strain. The damping ratio variation with shear strain curves in the hyperbolic model is
shown in Figure 2b.

G
Gmax

=
1

1 +
(

γ
γre f

)0.919 (5)

γr = 0.0352
[

σ′m
pa

]0.3483

(6)
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Figure 2. (a) Modulus degradation curves of Darendeli [14] (b) Masing Damping ratio curves.

It should be noted that the damping values in Figure 2b are calculated using
Equation (1), which obeys Masing’s [35] criterion for unloading/reloading. However,
the MC model approach yields different damping ratio values than the hyperbolic model.
Equations (1) and (2) can be used to compare the damping ratios at various cyclic strains
for a given confining stress. Figure 3 shows the damping ratio variation with shear strain
for hyperbolic and MC models for the given confining stress levels. According to the figure,
the damping at relatively higher strains is significantly greater in the MC model, especially
at the lower confining stresses. Consequently, a perfectly plastic MC model could cause the
damping to be considerably higher than the hyperbolic model.
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(a) σ

′
m = 10 kPa and (b) σ

′
m = 100 kPa.

2.2. Verification Analyses Using Hyperbolic and MC Constitutive Models

In this study, two centrifuge tests published in the literature were used for verification
purposes. Figure 4 shows the test containers (Gohl [30] and Wilson [31]) in the prototype
units. In Gohl [30], a pile with a diameter of 0.57 m was placed inside dry Nevada sand
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with a relative density of DR = 40%. The single mass was placed on top of the pile extending
to 2.0 m from the ground surface.
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The diameter and the length of the highly instrumented single pile in Wilson [31]
were 0.67 m and 16.7 m, respectively. A 49 Mg mass on the pile created a single degree of
freedom system. The free height of the single pile was 3.8 m. The soil in which the piles
were embedded was the saturated Nevada sand placed at two different relative densities.
The thicknesses of these layers were 9.4 m and 11.3 m, and the relative densities were 55%
and 80%, respectively.

The damping ratio formulations given in Equations (1) and (2) depend on the reference
strain (γref) and yield strain (γm), where the last of which depends on the shear strength.
The friction angles for medium-dense and dense sand were selected as 36◦ and 40◦ for soil
layers in Wilson (1998). The friction angle was assumed to be 34◦ for the sand in Gohl
(1991). The soil parameters selected for the verification analyses are given in Table 1.

Table 1. The soil parameters selected for the verification analyses.

Wilson, 1998 Gohl, 1991

Layer Layer 1 Layer 2 Single Layer

Effective unit weight, γ′ (kN/m3) 9.5 9.9 15.1
Relative density (%) 55 80 40
Friction angle, ϕ′ (◦) 36 40 34
Dilation angle ψ (◦) 4 8 2
Poisson’s ratio, ν 0.45 0.45 0.30

In this study, the numerical model was created in FLAC3D [32]. The model dimensions
in x-y-z directions are 16 m × 10 m × 12 m and 20 m × 51 m × 20 m in Gohl [30] and
Wilson [31], respectively. The zone sizes must be fine enough to accurately transmit the
waves from the base into the model. Finer zones are used in the vicinity of the pile in the
lateral direction, and the zone sizes gradually increase using an aspect ratio of 1.1. In the
vertical direction, the dimension of each solid zone is constant. Still, the height of each
element must be lower than the limit suggested by Kuhlemeyer and Lysmer [36], which
(∆l) is one-tenth of the wavelength (λ) of the input wave motion (∆l < λ/10). The minimum
zone size in the vertical direction is selected (∆l < λ/10 = 1.0 m). The bottom boundary of
the model was fixed, and the dynamic free-field boundaries were applied to the sides. Due
to symmetry, half of the model is presented in Figure 5.
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Figure 5. The numerical model created for the verification analyses (FLAC3D).

Although the piles and the structure are three-dimensional in nature, they were mod-
eled with the beam elements for simplicity. The structural elements (beam) were rigidly
connected to the surrounding soil, where the pile displacement is the same as the deforma-
tion of the soil. The rigid connection approach was adopted by several researchers [12,13,37].
Since the problem is a laterally loaded pile model under dynamic loading, the key property
affecting the response is the flexural stiffness of the pile and the superstructure. The super-
structure properties summarized in Table 2 were assigned to the beam elements used in the
numerical analyses.

Table 2. The superstructure properties in the verification analyses.

Structure (Wilson, 1998) Structure (Gohl, 1991)
Flexural Stiffness

EI (MN·m2)
Height

(m)
Mass
(Mg)

Tfixed
(s)

Flexural Stiffness
EI (MN·m2)

Height
(m)

Mass
(Mg)

Tfixed
(s)

427 3.8 49 0.3 172 2.0 52.2 0.3

The numerical models for verification analyses were created in the FLAC3D and
analyzed under the same input motions as in the centrifuge tests. Gohl [30] applied a
random input motion having 0.15 g acceleration amplitude to the rigid container base. The
acceleration–time history of the motion is given in Figure 6 (provided by Amin Rahmani
and Mahdi Taibeat). In Wilson [31], two real earthquake records (Loma Prieta, 1989-Santa
Cruz station and Kobe, 1995-Port Island station) were used in the centrifuge tests. The UC
Davis centrifuge laboratory provides the input motion’s acceleration time history. Although
the soil in Wilson [31] was saturated sand, the Santa Cruz motion with amax = 0.05 g (Event
K) did not cause significant excess pore water pressure. Hence, the event was selected in
this study for the non-liquefiable case. Event I and Event J are the motions of Santa Cruz
and Kobe with amax = 0.49 g and amax = 0.22 g, respectively, in which the medium dense
sand completely liquefied under these events in Wilson [31].
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Figure 6. Earthquake records used in the centrifuge tests of Gohl [30] and Wilson [31].

2.3. Numerical Analyses Using Hyperbolic and MC Constitutive Models

A new single pile–soil–structure model was created and analyzed using the additional
earthquake records in this study. The numerical model consists of a single layer of dry
cohesionless soil where DR = 55%. The unit weight of the soil was 18 kN/m3. The friction
angle and dilation angle values were 36◦ and 4◦, respectively. The model dimensions
were 20 × 20 × 30 in x, y, and z directions. The soil properties used in the verification
analyses are given in Table 3. The bottom boundary of the model was fixed, and the lateral
boundaries were free-field to prevent wave reflection from the model sides to the model.

Table 3. The soil properties used in the numerical analyses.

Layer Single Layer

Effective unit weight, γ′ (kN/m3) 18
Relative density (%) 55
Friction angle, ϕ′ (◦) 36
Dilation angle ψ (◦) 4
Poisson’s ratio, ν 0.30

The diameter of the single pile was 0.65 m in the analyses, and the elastic modulus of
concrete (E = 30 GPa) was set to the pile. The pile length was 12 m, setting the slenderness
ratio L/D = 18 (flexible pile). A single degree of freedom system was created with a column
having the same properties as the pile. A single 40-tonne mass was placed at the top of the
5 m high column. The fixed base natural period of the single degree of freedom system was
approximately 0.5 s. The parameters for the pile and the structure used in the numerical
analyses are given in Table 4.

Table 4. Pile and superstructure properties used in the numerical analyses.

Pile Structure

Diameter
(m)

Length
(m)

E
(MN/m2)

I
(m4)

Mass
(Mg)

Flexural Stiffness
EI (MN·m2)

H
(m)

Tfixed
(s)

0.65 16 30,000 0.00876 40 262.8 5.0 0.5

The earthquake records were selected from the PEER database [38], with correspond-
ing parameters given in Table 5. The stations where the average shear wave velocity (Vs,30)
values were a minimum of 650 m/s (almost bedrock motion) were selected so that the
input motions could be directly applied to the bottom of the model. The original records
were linearly scaled by the given factors (SF) such that the peak ground accelerations were
obtained around 0.15 g without changing the frequency content. The acceleration time
histories of the selected motions are shown in Figure 7.
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Table 5. The earthquake records used in the soil–pile–structure interaction analyses.

PEER
Code Earthquake Year Mw Station Fault Rrup

(km)
(Vs)30
(m/s)

Pga
(g) SF

RSN143 Tabas, Iran 1978 7.35 Tabas Reverse 2.05 766 0.14 0.17
RSN285 Irpinia, Italy-01 1980 6.90 Bagnoli Irpinio Normal 8.18 650 0.13 1.0
RSN572 Taiwan SMART1 (45) 1986 7.30 SMART1 E02 Reverse 51.35 672 0.14 1.0

RSN1091 Northridge-01 1994 6.69 Vasquez Rocks Park Reverse 23.64 996 0.15 1.0

RSN1206 Chi-Chi, Taiwan 1992 7.62 CHY042 Reverse
Oblique 28.17 665 0.15 1.5

RSN1613 Duzce, Turkey 1999 7.14 Lamont 1060 Strike Slip 25.88 782 0.16 3.0
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Figure 7. Time histories of the selected earthquakes.

3. Analysis Results
3.1. Verification Analysis

The soil–pile–structure systems created for the verification analyses were subjected to
base excitation with the earthquake input motions in Figure 6. The results of the acceleration
response spectrum of the structure and the maximum bending moments that occurred
along the pile are presented. This study classified the verification analyses as Case 1 and
Case 2 for non-liquefiable and liquefiable soils, respectively.

3.1.1. Non-Liquefiable Soil (Case 1)

The structure responses in Case 1 (Gohl, 1991 [30] and Event K in Wilson, 1998 [31])
were compared with the centrifuge test results through the acceleration response spectra
(ARS), as shown in Figure 8. The MC model results were close to the test results in
Gohl for both the peak and the spectral accelerations, whereas the hyperbolic model
slightly overestimates the accelerations (Figure 8a). The hyperbolic and MC models slightly
overestimate the spectral accelerations in the high-frequency domain and underestimate
the low-frequency domain under Event K as shown in Figure 8b.
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Figure 8. ARS of the structure (D = 5%) for verification analyses (Case 1): (a) Gohl [30] and
(b) Wilson [31] (Event K).

The model responses were compared through the maximum bending moments along
the pile. Figure 9a shows the results of the study by Gohl [30], where the bending moments
were captured by MC and were overestimated by the hyperbolic model. The bending
moments obtained using both MC and hyperbolic models agreed with the centrifuge test
results in Event K (Wilson, [31]).
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Figure 9. Bending moment variation with depth for verification analyses (Case 1): (a) Gohl [30] and
(b) Wilson [31] (Event K).

The results showed that the hyperbolic and MC models could be used to simulate the
soil behavior by applying a cut-off value of 0.05 to the G/Gmax value. It should be noted
that the assigned cut-off allows limiting the damping ratio. When the cut-off value was set
to 0.02, the hyperbolic model yielded closer results than the MC model. Therefore, a 0.05
value was recommended for the G/Gmax in the MC model to get more accurate responses.

3.1.2. Liquefiable Soil (Case 2)

The soil–pile–structure system response in the liquefiable soils under Event I and
Event J (Case 2) were investigated by comparing the analysis results with the centrifuge
test outputs. Figure 10a shows the acceleration response spectra for Event I, where the
hyperbolic model slightly overestimates the response while the MC model better captures
the general trend. However, the MC model significantly underestimates the accelerations in
Event J (Figure 10b), in which the hyperbolic model yields closer results. The reason for the
high superstructure response in the centrifuge test under Event J has been reported as the
reduction in the pore pressures, which result in increased effective stresses (Boulanger, [11],
and reduced damping. Since the pore water pressures were not considered in the models
employed in this study, the analysis results were overdamped compared to the centrifuge
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results. The spectral accelerations obtained through the hyperbolic model were closer to
the centrifuge test results since the hyperbolic model provides lower damping.
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Figure 10. ARS of the structure (D = 5%) for verification analyses (Case 2): (a) Event I [31] and
(b) Event J [31].

The model responses in the liquefiable soil case were compared through the maximum
bending moments along the pile. Figure 11a compares Event I, where the bending moments
were closer in the MC model, to the centrifuge test results. In contrast, the hyperbolic model
slightly overestimated the bending moments at the shallow depths and underestimated the
depths greater than 3 m. Figure 11b shows the pile response under Event J. Both models
underestimated the bending moments for shallow depths due to the low superstructure
accelerations. However, the hyperbolic model led to a closer pile response in Event J than the
MC model. Overall, the MC model caused higher damping than the hyperbolic model due
to the perfectly plastic behavior, especially under high-intensity motions. Accordingly, the
resulting pile and structure responses were lower in the MC than in the hyperbolic model.
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Figure 11. Bending moment variation with depth for verification analyses (Case 2): (a) Event I [31]
and (b) Event J [31].
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In general, differences in the spectral accelerations and bending moments were ob-
served the verification analysis. Similar inconsistencies were observed in past studies that
have used the same centrifuge tests for verification purposes [12,33,34,37]. The primary
reason might be the uncertainties in soil behavior. The complex nature of centrifuge tests,
and sequential loading that might change the relative density of soil after each test, could
be the secondary effect of the uncertainties that could not be taken into consideration in
the numerical analyses. Therefore, the verification analysis results were assumed to be
promising, considering the complex nature of the problem.

3.2. Numerical Analyses

Further numerical analyses were performed with the earthquake records given in
Table 1 to reveal the effect of hysteretic soil damping more clearly. The superstructure
accelerations, acceleration response spectra, and maximum bending moments along the
pile were compared for the Hyperbolic and MC models.

The numerical analysis results are presented for low-intensity and high-intensity
response outputs. Figure 12 shows the acceleration time history of the superstructure,
which consists of the first set of earthquake events: RSN143, RSN572, and RSN1614,
where the peak structure acceleration (PA) values vary between 0.15 g and 0.31 g. The
acceleration response spectra of the structure for the events are compared in Figure 13 with
the ARS of the input motions (IM). According to the ARS results, the natural period of
the single degree of freedom system is approximately 1 s, where the spectral accelerations
reach the peak value. Peak spectral accelerations (PSA) vary from 0.94 g to 1.43 g in the
hyperbolic model and between 0.62 g and 1.02 g for the MC model. Figure 14 shows the
variation of the maximum bending moments with depth for the first set of earthquakes.
The hyperbolic model results in 27%, 55%, and 63% higher bending moments than the MC
model for RSN143, RSN572, and RSN1613, respectively. According to the analysis results,
the structure and pile responses were greater in the hyperbolic model than in the MC for
all the first set of earthquake records.

Figure 15 shows the acceleration time histories of the superstructure for the second set
of earthquakes, which consists of RSN285, RSN1091, and RSN1206, where the PA values
vary between 0.24 g and 0.70 g. The acceleration response spectra of the structure for the
second set of earthquakes were compared in Figure 16 with the ARS of the input motions
(IM). According to the ARS results, the natural period of the single degree of freedom
system is slightly higher than 1 s, where the spectral accelerations reach the peak value.
Peak spectral accelerations varied from 1.73 g to 3.69 g in the hyperbolic model and between
0.94 g and 2.32 g for the MC model. Figure 17 shows the variation of the maximum bending
moments with depth for the second set of earthquakes. The hyperbolic model results in
38%, 45%, and 49% higher bending moments than the MC model for RSN285, RSN1091,
and RSN1206, respectively. Again, the structure responses were greater in the hyperbolic
model than in the MC for all the second set of earthquake records.

The results obtained from the soil–pile–structure interaction analyses have shown
the effect of soil damping on the system response. Moreover, it was revealed that the
selection of earthquake records plays a key role in the outputs. Although the peak ground
accelerations of the input motions were close, the resulting superstructure accelerations
were significantly different, depending on the frequency content.

The peak structure acceleration (PA), the peak spectral acceleration (PSA), and maxi-
mum bending moments that occurred under the given earthquakes were summarized in
Table 6 for both hyperbolic and MC models for comparison. Overall, the superstructure
accelerations in the hyperbolic model were higher than in the MC model for all the selected
earthquake records. Accordingly, the bending moments were greater again in the hyper-
bolic model. To summarize, the results of dynamic soil–pile–structure interaction analyses
are highly influenced by the input motion and modeling approaches, such as the selection
of the constitutive model.
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Figure 12. Acceleration time responses of the superstructure using Hyperbolic and MC models
(a) RSN143, (b) RSN572, (c) RSN1613.
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Figure 13. ARS of the superstructure (D = 5%) using Hyperbolic and MC models (a) RSN143,
(b) RSN572, (c) RSN1613.
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Figure 14. Maximum bending moment vs. depth using Hyperbolic and MC models (a) RSN143,
(b) RSN572, (c) RSN1613.
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Figure 15. Acceleration time histories of the superstructure using Hyperbolic and MC models
(a) RSN285, (b) RSN1091, (c) RSN1206.
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Figure 16. ARS of the superstructure (D = 5%) using Hyperbolic and MC models (a) RSN285,
(b) RSN1091, (c) RSN1206.
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Figure 17. Maximum bending moment vs. depth using Hyperbolic and MC models (a) RSN285,
(b) RSN1091, (c) RSN1206.

Table 6. Summary of the numerical analysis results under various earthquakes.

RSN 143 572 1613 285 1091 1206

PA (g) Hyperbolic
MC

0.24 0.31 0.24 0.53 0.37 0.70
0.18 0.19 0.15 0.33 0.24 0.41

PSA (g) Hyperbolic
MC

1.27 1.43 0.94 2.87 1.73 3.69
0.95 1.02 0.62 1.79 0.94 2.32

Mmax (kN·m) Hyperbolic
MC

533 701 543 1180 862 1580
419 451 333 853 593 1060

4. Conclusions

The aim of this study is to investigate the influence of hysteretic soil damping on the
pile and structure response in the dynamic soil–pile–structure analyses. For this purpose,
two well-known centrifuge tests were simulated and analyzed in FLAC3D for verification
using two constitutive soil models. Further analyses were performed with the additional
earthquake records in a single pile–soil–structure system. The conclusions from the fully
nonlinear analyses are outlined below:

• The nonlinear soil behavior can be modeled using the modulus degradation curves
in numerical analyses of soil–pile–structure problems. According to the verification
analyses, if the soil damping is integrated into the model accurately, the use of modulus
degradation can represent the response even for liquefiable soils.



Appl. Sci. 2022, 12, 9002 15 of 16

• The constitutive models without a cut-off for G/Gmax might cause significantly higher
damping ratios. To overcome the higher damping ratio problem, the minimum G/Gmax
value was set to 0.05, and closer results were obtained in the verification analyses.
Thus, the cut-off must be applied to eliminate higher damping ratios at large strains.
Generally, the agreement between the 3D analysis results and centrifuge test outputs
was reasonably good.

• Dynamic single pile–soil–structure analyses performed with the additional earthquake
records selected from the PEER database have confirmed the effect of soil damping
on the pile and structure response. Peak structure accelerations, peak spectral accel-
erations, and bending moments along the pile were compared for hyperbolic and
MC models. The peak structure accelerations and the peak bending moments for all
earthquake records were greater in the hyperbolic model. The difference between the
hyperbolic and MC models varies between 27 and 63%, depending on the applied
earthquake record. The results have indicated that the soil damping ratio in the MC
model could be considerably high, especially in the shallow depths, since the lower
confining stresses cause the shear strength to be significantly low.

• Apart from the damping effect, the analyses have shown that the selection of earth-
quake records significantly affects the structure and pile response. In particular,
although the selected earthquakes have the same peak ground acceleration, as much
as three times the difference might occur in the resulting structure accelerations (RSN
1613 and RSN 1206).

The results have indicated that the damping ratio affects the soil–pile–structure re-
sponse significantly; hence the selection of the constitutive soil model, which represents
the damping characteristics of the soil–pile–structure system, is critical. In this study, the
soil–pile–interaction problem was investigated through the single pile; however, group pile
behavior should be examined in future studies to better understand the actual problem.
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