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Abstract: Emotion–cause pair extraction (ECPE), i.e., extracting pairs of emotions and corresponding
causes from text, has recently attracted a lot of research interest. However, current ECPE models face
two problems: (1) The common two-stage pipeline causes the error to be accumulated. (2) Ignoring the
mutual connection between the extraction and pairing of emotion and cause limits the performance. In
this paper, we propose a novel end-to-end mutually interactive emotion–cause pair extractor (Emiece)
that is able to effectively extract emotion–cause pairs from all potential clause pairs. Specifically, we
design two soft-shared clause-level encoders in an end-to-end deep model to measure the weighted
probability of being a potential emotion–cause pair. Experiments on standard ECPE datasets show
that Emiece achieves drastic improvements over the original two-step ECPE model and other end-to-
end models in the extraction of major emotional cause pairs. The effectiveness of soft sharing and the
applicability of the Emiece framework are further demonstrated by ablation experiments.

Keywords: emotion–cause pair extraction; soft sharing; end-to-end model; multi-task learning;
emotion–cause extraction

1. Introduction

Recently, emotion–cause extraction (ECE) has gained great popularity in text analy-
sis [1,2]. ECE aims at extracting potential causes that lead to emotional expressions in the
text. Instead of using word-level labeled sequence, ECE concentrates on the clause-level
sequence, thus fully exploiting the linked relationship between different sentences [3]. This
kind of clause-level observation improves the reliability of the ECE analysis greatly. In
this respect, Ref. [4] first released a corresponding corpus, which was widely used in the
following studies [5–11]. There are, however, two limitations [12] associated with the ECE
task. On the one hand, ECE relies on the annotated text sentiment as the input at inference
time, which limits its application. On the other hand, ECE ignores the mutual relationship
between emotion and cause sentences in the text.

To solve the existing problems in ECE, Ref. [12] proposed a new task, emotion–cause
pair extraction (ECPE), which aims to extract all possible emotion–cause pairs in the text
without a given annotated sentiment word. Figure 1 illustrates the goal of ECPE and the key
differences in comparison with ECE in the solution process. For the input document, the ECE
task first identifies and annotates the emotion of the clauses, and then extracts the cause based
on the annotated emotion. In the example shown in the figure, the emotion “anger” is first
marked according to clause 7 “Jobs threw a tantrum” (Figure 1), and then the corresponding
cause clause, “Scott assigned No.1 to Wozniak and No.2 to Jobs” (Figure 1), is extracted from
the input document according to the emotion annotation. The ECPE task, in contrast to the
ECE task, does not require annotations of sentiment from emotion clauses but notes that
emotion and cause are mutually indicative. Therefore, all possible pairs are matched and
filtered, and the two valid emotional cause pairs in this input document are directly derived:
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(clause 7–clause 1) and (clause 8–clause 1), i.e., the emotion clause “Jobs threw a tantrum”
(Figure 1) and its corresponding cause clause “Scott assigned No.1 to Wozniak and No.2 to
Jobs” (Figure 1), and the emotion clause “even cried” (Figure 1) and its corresponding cause
clause “Scott assigned No.1 to Wozniak and No.2 to Jobs” (Figure 1), without relying on
the emotion annotations “anger” and “sadness” in the clause. The matching of two different
emotion clauses with one identical cause clause, or the pairing of one emotion clause with
two different cause clauses, as in the example in [12], reflects the increased attention of the
ECPE task to the connection between the emotion and cause.

Input Document

Scott assigned No.1 to Wozniak and No.2 to Jobs 

Not surprisingly 

because that would stoke his ego even more 

Jobs demanded to be No.1

I would not let him have it 

said Scott

Jobs threw a tantrum

even cried

Clause 

Clause 

Clause 

Clause 

Clause 

Clause 6

Clause 

Clause 

Scott assigned No.1 to Wozniak and No.2 to Jobs. Not sur-
prisingly, Jobs demanded to be No.1. “I wouldn’t let him 
have it, because that would stoke his ego even more,” said 
Scott. Jobs threw a tantrum, even cried. 

Emotion Cause Extraction (ECE)

Emotion-Cause Pair Extraction (ECPE)
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Figure 1. The difference between ECE tasks and ECPE tasks. ECE task aims to extract each cause
clause provided emotion annotation, while the ECPE task is targeted at extracting all valid pairs of
emotion clauses and the corresponding cause clause in an input document. The orange and green
parts are emotion clauses, and the blue is a cause clause.

Currently, ECPE methods can be divided into two categories: two-step ECPE and end-to-
end ECPE. The two-step ECPE [12] is composed by the emotion extraction and cause extraction
step and the pairing and filtering step. As it is not an end-to-end model, the accumulated
error of the first step will affect the result in the second step. End-to-end models [13,14]
consider the mutual interaction between emotion and cause. However, the process of mutual
interaction is simply implemented by transferring information from one decoder to another
uniaxially, thus harming the mutual transfer of information. Moreover, some of the end-to-end
models of [14,15] contain a huge number of parameters, resulting in an excessive training
time and unremarkable model performance. In this paper, our target is to effectively extract
emotion–cause pairs from all potential clause pairs with fewer parameters.

To address the aforementioned challenges, we propose an end-to-end model, Emiece,
that predicts the emotion–cause pair from the raw document. We observe that ECPE
can be viewed as three mutually related tasks: a primary task of predicting pairings and
two auxiliary tasks of predicting emotion and cause clauses respectively. To efficiently
learn the three tasks, we consider adopting multi-task learning to establish the connection
of them. Multi-task learning [16–28] is an effective way to achieve better generalization
performance with a group of related tasks, while sharing some common parameters. Since
the two auxiliary tasks are highly similar, we attempt to utilize multi-task learning to tackle
the problem of ECPE models’ unsatisfactory performance. Inspired by [29], we choose
to leverage a soft-sharing approach to exploit the intrinsic connection between emotion
and cause.

After the word-level encoder, each clause is passed through the emotion and cause
clause probabilities that indicate the importance of the clause in terms of emotion and
cause, and then we obtain the weighted representation of emotion clause and cause clause,
respectively. The aim of the weighted representation is to make the true representation and
the false one as separate as possible in the feature space so that the extracted representation
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can be more easily classified for the pair predictor in the higher layer. We conduct sufficient
experiments on an ECPE task suitable corpus, which is adapted from the English-language
corpus benchmark of the NTCIR-13 Workshop [30].

The main contributions of our work can be summarized as follows:

• Mutual transfer of information in emotion and cause extraction. Soft-sharing is
applied between emotion and cause encoders. We add the soft-sharing loss to the total
loss function in a multi-task learning style to involve mutual interaction between the
two auxiliary tasks. Therefore, the two encoders can learn from each other rather than
unidirectional learning in previous methods.

• Efficient pair extractor with weighted representation. We utilize the weighted rep-
resentation of emotion and cause to filter the clauses which tend to be meaningless.
Therefore, only the useful emotion-weighted and cause-weighted clause representa-
tions can be reserved to improve the efficiency of emotion–cause paring.

• Novel end-to-end ECPE model. We propose a novel end-to-end method that uses two
LSTMs to automatically transfer information between the emotion encoder and cause
encoder via soft sharing. Since the end-to-end model considers single emotion and
cause extraction along with emotion–cause pairing at the same time, it greatly avoids
the cumulative errors in separated steps and significantly improves the performance.

2. Related Work

The emotion–cause extraction (ECE) task was first proposed in [1]. As a word-
level task, the extraction is fulfilled with traditional machine learning and rule-based
approaches [5–11,31–34]. For example, in [7], the authors proposed a fine-grained rule-
based method for the task and conducted experiments on the Chinese microblog posts
corpus labeled by human annotators. Despite the overall performance of the word-level
task not being promising enough, it provides a new way to look at the emotion classifica-
tion task.

Another kind of emotion–cause extraction task is based on a clause that solves the
problem of word-level labeling in previous work [35–39]. In [35], the authors employed a
multi-kernel learning method for the clause-level task on a Chinese emotion cause corpus.
Moreover, with the development of deep learning, multiple recurrent neural networks
(RNNs) related models have been proposed to solve clause-level tasks due to their excellent
performance in analyzing the relationship between different sequences [40,41]. Long short-
term memory (LSTM), an advanced version of RNNs, achieves better performance in
related tasks thanks to its forgetting mechanism [38]. Although clause-level methods relax
word-level annotations into clause-level annotations and achieve higher performance due to
the development of neural networks, it is still restricted by manual annotations. In addition,
it neglects the mutual relationship and interaction between emotion and cause [42].

To overcome the mentioned drawbacks of ECE, Ref. [12] proposed emotion–cause
pair extraction (ECPE) and they conducted a two-step hierarchical structure network for
the task. This model separates the emotion and cause extraction and the pairing into two
steps; therefore, the mistakes made in the first step will affect the results of the second step.

To solve these limitations in [12], several end-to-end ECPE models have been pro-
posed [13–15,43]. Ref. [14] proposed to model interactions in emotion–cause pairs by
means of a two-dimensional transformer [44], which in turn represents emotion–cause
pairs in a 2D form. Then a joint framework [45] is used to integrate the two-dimensional
representation, interaction and prediction. The work of [15] introduces multi-label learning
(MLL) in the ECPE task. The emotion clause and cause clause are designated as the center
of the multi-label learning window [46], respectively, and the window slides as the center
position is moved. The two joint parts are integrated to obtain the ultimate result. These
two models achieved state-of-the-art performance in the ECPE task. Nonetheless, the
enormous amount of parameters makes the training overhead of both models extremely
large. After that, the method of Ref. [13] uses Bi-LSTM to perform word-level embedding
for the input clauses and encodes representations for the emotion and reason clauses.
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Finally, a layer of fully connected network is used to predict the matching pairs. It achieves
comparable performance with fewer parameters and a simpler architecture. However, its
unsatisfactory performance suggests that it does not fully exploit the intrinsic connection
between sentiment and cause.

3. Materials and Methods
3.1. Task Formalization

Formally, the documents consist of texts that are segmented as an ordered set of clauses
D = {c1, c2, . . . , cd}. The ECPE task aims to figure out a set of emotion–cause pairs

P = {. . . , (ci, cj), . . .}(ci, cj ∈ D), (1)

where ci is an emotion clause and cj is the corresponding cause clause. All we have to do
is to construct an end-to-end sentiment–cause matching model, which predicts the set of
matching pairs P̂ , where the correctly predicted part constitutes the set P̂C, making the P̂C
as close as possible to the target set P .

3.2. Architecture

The whole model contains three layers as illustrated in Figure 2: word-level encoder
layer, clause-level encoder layer, and pairing layer. We take the vector representation vij
of the j-th word in the i-th clause as input. For each clause, the word vector sequence
vi,1, vi,2, . . . , vi,m is passed through a word-level encoder, implemented via a Bi-LSTM with
attention [47]. The word-level encoder outputs a clause representation si for each clause.

The higher level contains two clause-level encoders implemented for emotion clause
detection and cause clause detection, respectively. Any of the current mainstream encoders,
such as the stacked Bi-LSTM [48] or BERT [49], can be used. The two encoders take the
clause representation sequence s1, s2, . . . , sd as input and generate the emotion and cause
representation of the clauses re

i , rc
i . In order to mutually transfer the information obtained by

the encoders, we use a soft-sharing strategy between the two encoders. The representations
are then fed into detectors (logistic regression layers) to obtain the probability distribution
ae

i , ac
i of the clause being an emotion clause and a cause clause, respectively, formed as

ae
i = softmax(W ere

i + be),

ac
i = softmax(W crc

i + bc),
(2)

where W e, W c, be, bc are the parameters for emotion and cause detection layers. It should
be noted that ae

i is a 1× 2 vector in which one element pe
i represents the probability that

it is indeed an emotion clause and the other element represents the probability that it is
not. ac

i and pc
i are related as above. It is worth noting that these two outputs ae

i and ac
i in

our approach also need to participate in pair extraction later, instead of having only one
function of obtaining supervisory signals, as in the two auxiliary task outputs in the work
of [13]. Thus, in contrast to the cascade of the hierarchical framework of [13], our model
achieves parallelism.

These probabilities can be regarded as the attention of emotion and cause encoders.
Thus, we multiply the clause representation by the probabilities to obtain the emotion-
weighted and cause-weighted clause representation r̃e

i , r̃c
i as

r̃e
i = pe

i re
i ,

r̃c
i = pc

i rc
i ,

(3)

Once we collect all the weighted representation of clauses into two sets E = r̃e
1, r̃e

2, . . . , r̃e
d

and C = r̃c
1, r̃c

2, . . . , r̃c
d, the Cartesian product is applied on the two sets to generate all the

potential emotion–cause pairs (r̃e
i , r̃c

i ). In Figure 3, we use rp
ij = r̃e

i ⊕ r̃c
i ⊕ dij as the repre-

sentation of a pair, where ⊕ denotes the concatenation operator and dij is the positional
embedding vector that indicates the relative position relation between clause i and j [50].
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The pairs are fed into the pairing layer one at a time to obtain the predicted label. The
pairing layer is a fully connected layer as

hij = ReLU(Whrp
ij + bh),

ŷp
ij = softmax(Wyhij + by),

(4)

where ŷp
ij gives the Bernoulli distribution probabilities of (ci, cj) to be an emotion–cause

pair. In total, there are three tasks: one primary task for predicting pairs and two auxiliary
tasks for predicting emotion and cause clauses. The outputs are ŷp

ij,a
e
i ,ac

i , respectively.

Word-level Encoder

Input Documents

Pair Predictor

Soft
Sharing

Emotion
 Clause
Encoder

Cause
 Clause
Encoder

Word-level Encoder Layer

Clause-level Encoder Layer

Clause 

Pairing Layer

Emotion
Detector

Cause
Detector

… … ……

… …

…

…

…

…

…

Valid emotion-cause pairs
…

Potential emotion-cause pairs

Weighted representation of emotion and cause

Cartesian Product

Clause 

1

2

3

C

Figure 2. An illustration of our proposed end-to-end mutually interactive emotion–cause pair extrac-
tor. v11, v1m, vn1 and vnm denote the word vector sequence. s1 and sn are the clause representation
as the output of the word-level encoder. Additionally, re

1, re
n, rc

1 and rc
n are the emotion and cause

representation of corresponding clauses. ae
1, ae

n, ac
1 and ac

n denote the probability distribution of
the clause being an emotion clause and a cause clause. r̃e

i and r̃c
i show the emotion-weighted and

cause-weighted clause representations, respectively. (r̃e
i , r̃c

j ) represents potential emotion–cause pairs.

ŷp
ij gives the Bernoulli distribution probabilities of potential emotion–cause pairs to be true.



Appl. Sci. 2022, 12, 8998 6 of 14

E
m

ot
io

n 
 C

la
us

e
E

nc
od

er
E

m
ot

io
n

D
et

ec
to

r

Softmax

Weighted Representation

 
Soft-shared

Probability Distribution

Softmax Softmax

…

…

…

…

…

…

…

…

…

True probability

Encoder Layer

Encoder Layer

Encoder Layer

Encoder Layer

1st layer

2nd layer

3rd layer

N-th layer

Figure 3. Implementation details of the weighted representation. The weighted representation of the
cause clause is similar to that of the emotion clause, thus it is omitted here. si−1, si and si+1 are the
clause representation output by the word-level encoder. re

i−1, re
i and re

i+1 are the emotion and cause
representations of corresponding clauses.

3.3. Learning with Mutual Transfer of Information

In order to effectively train Emiece, we set the loss function to be

Ltotal = λpLp + λeLe + λcLc + λs f Ls f , (5)

where Lp, Le and Lc are the cross-entropy losses of pair extraction, emotion clause detection,
and cause clause detection, respectively. Ls f is the soft-sharing loss for the mutual transfer
of information.

Following [29], we define

Ls f = ∑
d∈D
‖φe

d − φc
d‖

2, (6)
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whereD is the set of sharing parameter indices, φe and φc are the emotion and cause encoder
parameters, respectively. The works in recent years found [51] that features extracted in
the shallow layers of a deep neural network contain more general features of different
tasks. The higher the network level, the more task specific the extracted features will be.
Following the work of [29,52], we employ a similar soft-sharing strategy on the first-layer
encoder in the emotion and cause encoders and keep the second layer of the two encoders
unshared, which is further away from the input. A discussion of soft-sharing modules and
ablation studies is given in Section 5.2.

To avoid the imbalance of positive pairs and negative pairs in the pair extraction, the
loss Lp is revised as

Lp = L+
p + λ−L−p , (7)

where L+
p ,L−p denotes the term of positive and negative ground truths in the cross-entropy

loss function. λ− is relatively small since the number of negative pairs is much more than
positive ones.

3.4. Evaluation Metrics

Following the previous work [12], we also used the same three evaluation metrics:
precision, recall, and F1 score. The F1 score takes both precision and recall into account,
and thus it is the most crucial of these evaluation metrics. They are defined as follows:

Precision =
|P̂c|
|P̂ |

,

Recall =
|P̂c|
|P| ,

F1 score =
2× Precision× Recall

Precision + Recall
,

(8)

according to Section 3.1, |P̂c| indicates the number of emotion–cause pairs predicted by the
model, |P̂ | indicates the number of correct pairs among these predicted matches, and |P|
indicates the number of all emotion–cause pairs in the actual dataset.

4. Results
4.1. Dataset

The dataset was constructed by [13] from an existing emotion–cause extraction (ECE)
corpus. The corpus was introduced in the NTCIR-13 Workshop [30] for the ECE chal-
lenge. There are 2843 documents taken from several English novels, and each document is
annotated with the following:

1. Emotion–cause pairs (the set of emotion clauses and their corresponding cause
clauses);

2. Emotion category of each clause;
3. Keywords in the emotion clauses.

Detailed statistics about the dataset are presented in Tables 1 and 2 below. In our
experiments, we do not leverage the emotion category or keywords and only exploit the
emotion–cause pairs in the training process. None of the annotations are used when testing
the model. The whole dataset is split by 80%–10%–10% for training, validating, and testing.

Table 1. Overall information on the English-language corpus dataset. Information on the four main
dimensions related to the ECPE task was counted.

# Document # Clause (|D|) # Emotion-Cause Pair (|P|) # Annotated Emotion Type

2843 21,802 3272 6
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Table 2. The distribution of emotion clauses corresponding to the six annotated emotions in
the dataset.

Annotated Emotion # Corresponding Emotion Clause

happiness 741
surprise 388
sadness 638

fear 622
anger 269

disgust 214

4.2. Baselines and Settings

We include four baseline methods in our comparison with Emiece: the original two-
step model ECPE [12], a relatively lightweight end-to-end model E2E-PExtE [13], and two
state-of-the-art ECPE models ECPE-2D(BERT) [14] and ECPE-MLL(ISML-6) [15].

• ECPE [12]: As a second step, a Cartesian product is applied to the emotion clauses and
causal relationships extracted from the multi-task learning network in the first step
in order to compose them into pairs, and a filtering model is trained so that the pair
containing the causal relationship is the final output. Bi-LSTM and attention [47,48] is
the word-level encoder used in the first extraction step, and Bi-LSTM [48] is used in
the emotion and cause extractors as well. Logic regression is used to filter the pairs in
the second step.

• ECPE-2D(BERT) [14]: The interactions in the emotion–cause pairs were modeled by a
2D transformer, which in turn represented the pairs in a two-dimensional form, i.e., a
square matrix. Two-dimensional representations are integrated with interactions and
predictions using a joint framework. The encoding part uses a word-level Bi-LSTM
and an attention mechanism [47], while the clause-level emotion extractor and cause
extractor leverage BERT [49] to enhance the overall effectiveness of the model.

• ECPE-MLL(ISML-6) [15]: Multi-label learning (MLL) was introduced in the ECPE task.
To obtain a representation of the clause, the emotion clause and cause clause are
specified as the center of the multi-label learning window. An iterative synchronous
multi-task learning (ISML) model with six iterations is used for clause encoding, while
the same Bi-LSTM [47] is used for word-level embedding.

• E2E-PExtE [13]: Using Bi-LSTM plus attention [47], the clause-level representation is
obtained based on the word-level one. The clause level representation uses another
Bi-LSTM network to further extract contextual information and is used to determine
whether the clause is an emotion one or a cause one. Finally, the predicted pair is
obtained by a fully connected neural network.

We denote Emiece-LSTM that using as the stacked Bi-LSTM [48] clause-level encoder.
Emiece-LSTM is trained for 30 epochs using the Adam optimizer [53]. We set the learning
rate α = 0.005, and batch size N = 64. The model parameters φ are initialized randomly
following uniform distribution φ ∼ U(−0.1, 0.1). We leverage GloVe word embedding [54]
of 200 dimensions. The dropout rate is set to 0.8 for word embeddings and `2 decay is set
to 10−5 on softmax parameters. The loss weights are set as λe:λc:λp:λs f = 1:1:2.5:0.75 and
the negative pair weight λ− = 0.4. Here, the value of λ− is taken with reference to the work
of [13], and we have made many attempts to take the value of λs f , as shown in Figure 4.
As a result of setting λs f to 0.75, the model performs best in combination at validation, i.e.,
it performs best on the more important F1-score metric and relatively well on the other two
metrics. We also denote Emiece-BERT with the clause-level encoder setting to BERT [49].
Constrained training server performance, we set the batch size of Emiece-BERT to 16 and
vary the learning rate by 2 × 10−5, keeping other hyperparameters the same.

In order to achieve higher model performance through better positional embeddings,
randomly initialized embeddings are trained after setting the clipping distance [50] to 10.
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0.75

R
at

e

Weight of Soft-sharing loss

Metric

Figure 4. Repeated experiments on the determination of the value of λs f in different metric. A higher
percentage value and a smaller variance indicate better results. It is not appropriate to use weights
that are too high or too low.

4.3. Overall Performance

Table 3 presents the experimental performance in the ECPE task. Compared to a similar
end-to-end approach E2E-PExtE [13], the F1 scores of our model Emiece-LSTM improved by
1.28%, 1.72% and 2.4% in the emotion extraction, cause extraction and emotion–cause pair
extraction tasks, respectively. This is a strong indication that the way of using the intrinsic
connection between emotion and cause to extract match pairs is correct, and the related
ablation experiments will be placed in Section 5. Compared to the traditional two-step
approach ECPE [12], our Emiece model improves the performance of the emotion–cause
pair extraction task by an impressive 8.9%. In addition, our method has better results
than the current methods ECPE-2D(BERT) [14] and ECPE-MLL(ISML-6) [15] on the most
dominant prediction matching pair task, even though the number of parameters is much
smaller than theirs.

Table 3. Best results of our model and previous experimental methods with existing metrics after
hyper-parameter tuning. Bold fonts indicate the best results for the method, and underlining stands
for the second best results. The top half is the performance of pipelines, and the bottom half is the
one of our model.

Emotion Extraction Cause Extraction Pair Extraction
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

ECPE [12] 0.6741 0.7160 0.6940 0.6039 0.4734 0.5301 0.4694 0.4102 0.4367
ECPE-2D(BERT) [14] 0.7435 0.6968 0.7189 0.6491 0.5353 0.5855 0.6049 0.4384 0.5073
ECPE-MLL(ISML-6) [15] 0.7546 0.6996 0.7255 0.6350 0.5919 0.6110 0.5926 0.4530 0.5121
E2E-PExtE [13] 0.7163 0.6749 0.6943 0.6636 0.4375 0.5226 0.5134 0.4929 0.5017

Emiece-LSTM (Ours) 0.7702 0.6550 0.7071 0.7010 0.4413 0.5398 0.5693 0.4903 0.5257
Emiece-BERT (Ours) 0.8263 0.7441 0.7830 0.7135 0.5522 0.6225 0.6833 0.5325 0.5985

Through the case study in Figure 5, we can also visualize that the Emiece method
performs well in relatively complex short texts.
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At the Kings' today I found everybody in a flurry, and one of the children said that 
her oldest brother had done something dreadful, and Papa had sent him away. I 
heard Mrs. King crying and Mr. King talking very loud, and Grace and Ellen turned 
away their faces when they passed me.

At the Kings today I found everybody in a flurry
and one of the children said that her oldest brother had done something dreadful
and Papa had sent him away
I heard Mrs
King crying and Mr
King talking very loud 
and Grace and Ellen turned away their faces when they passed me

Ground Truth Emiece (ours)

Input Documenti

Figure 5. A case study of our method. Our method also works well in extracting emotion–cause pairs
when the input text contains multiple emotions and multiple causes that match each other.

5. Ablation Study

We studied the effect of different modules on the experimental results through abla-
tion experiments.

5.1. Clause-Level Encoder

The excellent performance of ECPE-2D(BERT) [14] and ECPE-MLL(ISML-6) [15] with
a larger number of parameters in the ECPE task cannot be ignored. Inspired by their work,
we replaced the clause-level encoder in Emiece from the stacked Bi-LSTM [48] to BERT [49]
as the new Emiece-BERT model. Nonetheless, due to the server storage space limitation,
training Emiece-BERT can only set the batch size to 16. To control the variables, we keep
the hyperparameters of Emiece-LSTM in line with Emiece-BERT and retrain it.

As can be seen from Table 4, under the end-to-end soft-sharing emotion–cause pair
extraction framework, simply replacing a more complex encoder, i.e., BERT [49], makes the
model surprisingly effective in improving each metric on each of the three tasks of ECPE.
However, this undoubtedly introduces a much larger number of parameters for training.
In total, 69 hours are consumed by the BERT model in one training, while 16 hours are
consumed by Emiece-LSTM training; such a replacement causes a considerable overhead
and makes the model redundant and unwieldy.

Table 4. Comparison of the model effects of Emiece composed of two different clause-level encoders.
The results are under the same hyper-parameter setting.

Clause-Level Encoder
Emotion Extraction Cause Extraction Pair Extraction

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

stacked Bi-LSTM [47] 0.7425 0.6665 0.7014 0.6570 0.4762 0.5473 0.5398 0.4973 0.5153
BERT [49] 0.8263 0.7441 0.7830 0.7135 0.5522 0.6225 0.6833 0.5325 0.5985
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5.2. Mutual Transfer of Information

We selected the most comprehensive metric F1 score and the primary task emotion–
cause pair extraction to analyze the effectiveness of the mutual transfer of information by
varying the soft-sharing setting: no soft-sharing, sharing only the first layer of the emotion
and cause encoders, and sharing all layers of both encoders. Figure 6a shows that sharing
only the first layer of the encoder achieves better performance compared to the other two
cases, indicating that the intrinsic connection between emotion and cause is closer to the
lexico-syntactic level [29]. Due to the long training time of model Emiece-BERT, only model
Emiece-LSTM is selected here.

Setting of soft-sharing

F1
 S

co
re

(a) F1 score for different soft-sharing settings in ECPE tasks.

Metric

R
at

e

(b) Performance of two soft-sharing settings with different metrics.

Figure 6. (a) F1 score for different soft-sharing settings in emotion–cause pair extraction tasks. Soft
sharing of first layer parameters is far better than not sharing. (b) A detailed comparison of the
performance of soft sharing one layer and sharing all layers under different metrics. More layers of
soft-sharing parameters do not directly lead to better results.

In Figure 6b, the results illustrate that the number of parameters shared in the encoder
is not linearly correlated with the effect of the prediction results. This is consistent with
the results of previous experiments in which the weight of soft sharing was altered by
changing the value of λs f , but the higher the weight is not better. Ref. [52] found that in
the seq2seq machine translation model, the low-level layer of the RNNs unit (i.e., the first
layer in the encoder) represents the word structure, while the high-level layer focuses on
the semantic meaning. Since the semantic information of the emotion clause and the cause
clause is quite different, sharing the high-level layer alone will blur the features of the text,
not to mention that sharing all layers will confuse the word structure information with the
semantic information, resulting in a reduced effect.

6. Conclusions

In this paper, we propose an end-to-end model that mutually transfers information
via soft sharing between emotion and cause extraction tasks. By using weighted represen-
tations of sentiment and cause filtering nonsensical clauses, we improved the efficiency
of emotion–cause pairing. The end-to-end model takes into account both emotion and
cause extraction and emotion–cause pairing, thereby greatly reducing the cumulative error.
Based on experiments conducted on the standard ECPE dataset, Emiece achieves significant
improvements in emotion–cause pairs extraction over the original two-step ECPE model
and other end-to-end models.

In the future, (1) we will examine the reasons for the model’s mistakes by performing
an interpretability analysis on the possible wrong predictions in the current model. (2) We



Appl. Sci. 2022, 12, 8998 12 of 14

also attempt to reduce the network depth in order to perform the emotion–cause pair
extraction as a solution to the problem that it is difficult to train a clause-level encoder with
numerous parameters. (3) It is relatively complex to construct pairs with the Cartesian
product, so we will use a more efficient module for pairing prediction.
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