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Abstract: In this paper, a novel MRGP-SS method is proposed to deal with the reliability analy-
sis problems under multiple failure modes. First, a random moving quadrilateral grid sampling
(RMQGS) method is proposed to improve the randomness and uniformity of initial samples. Second,
an adaptive procedure, which combines the multiple response Gaussian process (MRGP) model
and the novel active learning functions, is proposed to efficiently and accurately produce surrogate
models for failure surfaces. In this regard, two novel learning functions are introduced to adapt to
different iterative cycles, one is employed to correct the quality of samples, and the other is used to
search for the samples closest to the limit state surface. Third, the subset simulation (SS) is integrated
into the adaptive MRGP model to estimate the failure probability under multiple failure modes
with fewer function calls and time consumption. Numerical and engineering case studies are finally
provided to demonstrate the effectiveness of the proposed method.

Keywords: multiple response Gaussian process; subset simulation; reliability analysis; active
learning function

1. Introduction

Reliability analysis aims at quantifying the reliability state of each performance index
with the consideration of various sources of uncertainties, such as sizes, loads, accelerations,
and variations in material properties. Generally, it can be divided into “system reliability
analysis” (SRA) and “component reliability analysis” (CRA). The former means considering
multiple failure modes, while the latter only considers one single failure mode [1,2].

For CRA, many methods have been developed to improve its efficiency, accuracy,
and engineering applicability. They are divided into three categories according to their
models. The first category is the approximate analytical method, which commonly adopts
the most probable points (MPPs) to replace the mean point as the Taylor series expansion
point of the limit state function [3]. Among them, the first-order reliability method (FORM)
and the second-order reliability method (SORM) are the classical analysis methods based
on MPP expansion. However, both of them need to normalize the non-normal random
variables in the solution process, which increases the nonlinearity of the performance
function. Thus, Du et al. [4] proposed the first-order saddlepoint approximation (FOSPA)
method based on the maximum likelihood point model. Huang et al. [5] studied the
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mean value first-order saddlepoint approximation (MVFOSPA) method, which effectively
improves the efficiency and robustness of the calculation. Different from the above methods,
Rosenblueth [6] investigated the two-point estimation method. Gorman [7] performed a
three-point estimation method considering the first four moments of the input variables.
Wang et al. [8], Remennikov et al. [9], Zhang et al. [10], and Ngamkhanong et al. [11]
presented some moment estimation methods, which enrich and improve the development
of approximate analytical methods. The second category is the surrogate model-based
method, which is widely investigated and used due to its strong fitting ability and small
number of calculations. At present, the polynomial response surface method (RSM) [12,13],
artificial neural networks (ANN) [14], radial basis function (RBF) [15], support vector
machines (SVM) [16], polynomial chaos expansion (PCE) [17], and single response Gaussian
process (SRGP) model (i.e., Kriging model) [18] are the classical surrogate models. Among
these methods, the Kriging model has attracted the attention of many scholars because of
its strong nonlinear fitting ability and generalization ability. It can be divided into the static
surrogate model and the active learning (adaptive) surrogate model. The difference is that
the former requires more initial sample points to ensure the approximation accuracy of the
surrogate model, and the latter can continuously optimize the sample quality by adding
new samples to update the model. Given the high fitting accuracy and efficiency of the
adaptive Kriging surrogate model, its initial design point selection, update strategy, point
addition scheme, probability evaluation, termination criterion, etc., have gained the most
attention. Gao et al. [19] improved the traditional initial design point selection method
by rectangular grid sampling. Li et al. [20] determined the design point selection of the
Bucher experimental and Sobol sequence through the comparison of various experimental
designs. Furthermore, Huang et al. [21] proposed a single-point adding strategy based
on the EI criterion. Li et al. [22] presented a multi-point update strategy combining the
MP criterion and the EI criterion. Moreover, expected feasibility function (EFF) [23], U-
function [24], H-function [25], least improvement function (LIF) [26], etc., update strategies
have been deeply investigated and applied. The third category is the digital simulation
method, which is based on the Monte Carlo (MC) simulation. MC simulation is usually
used as a standard to verify the effectiveness of other methods because of its simple
calculation process and no restrictions on the form of functional functions, dimensions
of basic variables, and distribution types, but has low computational efficiency. For this
purpose, some sampling methods have been developed, such as important sampling
(IS) [27], line sampling (LS) [28], directional sampling (DS) [29], and subset simulation
(SS) [30], etc. Some scholars often combine digital simulation methods with surrogate
models to facilitate engineering applications and reduce time spent. Echard et al. [24]
reported an AK-MCS method, which combines the SRGP model and the MC simulation
procedure. Huang et al. [31] combined the SRGP model and the SS procedure to solve
the problem of small failure probability reliability. In addition, the methods of AK-IS,
Meta-IS-AK, etc., provide a new idea for dealing with CRA.

For SRA, it requires calling the limit state functions of multiple failure modes re-
peatedly, which seriously affects the computational efficiency. Especially in practical
engineering problems, each limit state function has to be calculated with a time-consuming
computer-aided program, such as dynamics simulations, finite element analysis, etc. There-
fore, many efforts have been devoted to minimizing the number of the limit state function
calls to achieve a realistic and acceptable state. Generally, methods proposed for CRA can
be applied to SRA, and they can still be divided into three categories according to the charac-
teristics of SRA. The first category is called the boundary method, which aims to determine
the narrow bound of system failure probability through low-order joint probability. The
second-order narrow boundary method was first proposed by Ditlevsen [32]. Zhi et al. [33]
employed it to conduct a multiple load case reliability analysis. Then, Zhang [34] derived
the third narrow boundary method. Song [35] developed linear programming based on
bounds methods. These methods quantify the correlation between failure modes through
low-order joint probability, which can be used to deal with multiple failure mode problems
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in series and parallel, but the computational efficiency is low. The second category is called
the digital simulation method, which is the same as CRA. As an efficient solution method,
the IS, LS, DS, and SS methods developed for a single failure model can all be extended
to solve the reliability analysis of multiple failure model problems. The third category is
called the surrogate model method, in which the construction process is different from the
CRA. Although the single failure mode surrogate model can be used for multiple failure
modes, it fails to consider the correlation of each failure mode. Thus, the surrogate model
for multiple failure modes must be a composite model that considers the correlation of each
failure mode, but this usually increases the number of function calls and the computational
cost. To overcome this defect, Fauriat et al. [36] proposed an AK-SYS method based on the
adaptive Kriging surrogate model. Yang et al. [37] investigated the improvement of the
SRA method, which combines the active learning Kriging (ALK) model with MC simula-
tion. Yun et al. [38] studied the AK-SYSi method by using a refined U learning function.
Arendt et al. [39] proposed the MRGP method to directly build a surrogate model with
multiple output variables. Wei et al. [40] introduced the MRGP model into the reliability
and importance analysis and combined the strategy of the AK-MCS method to analyze the
system reliability. Although many achievements in the field of SRA have been made, a vital
issue about how to determine the better initial design samples or optimal size of candidate
samples or improve termination criterion needs to be addressed. It not only determines the
fitting accuracy of the performance function of each failure mode but also helps to improve
the efficiency of multiple failure mode reliability analysis.

To solve the above problems, this paper proposes a novel MGRP-SS method for the
reliability analysis of multiple failure modes. The main contributions can be summarized as
the following four aspects: (1) an RMQGS method is proposed to improve the randomness
and uniformity of initial sample points; (2) an adaptive MRGP model combined the novel
learning functions and termination criterion is presented to handle multiple failure modes;
(3) an MRGP-SS model is introduced into the reliability analysis to depict the system
reliability under multiple failure modes; (4) Numerical and engineering examples are
conducted for proving the effectiveness of the proposed method.

The remainder of this paper is organized as follows. In Section 2, an RMQGS method
is given based on random sampling. In Section 3, a novel reliability analysis approach to
multiple failure modes is proposed by introducing an adaptive MRGP model. In Section 4,
three numerical examples are employed to demonstrate the effectiveness of the proposed
method, and two engineering examples are used for application. In Section 5, the key
conclusions of the study are summarized.

2. Random Moving Quadrilateral Grid Sampling Method

Stratified sampling aims to determine the random value of each variable according
to the given variable interval and the number of levels of each variable. Assume that Ω is
a design space with the random variables x and the number of samples is N. The Ω can
be divided into i stratified regions by stratified sampling method, and the space pi of each
stratified region can be described by its probability.

pi = P
(
xij ∈ Ωi

)
j = 1, 2, · · · , ni (1)

where i is the number of stratified regions, j is the number of sample points, and xij is the
random sample in the ith stratified region, j = 1, 2, · · · , ni. If i = 1, the random sampling
space will degenerate to the total space.

A vital issue about randomness and uniformity needs to be addressed in the field
of initial sample point quality based on the stratified sampling method. Although Latin
hypercube sampling (LHS) [41,42] and rectangular grid sampling (RGS) [19] can accurately
select the initial sample points in the design space, it is prone to the situation that the
sample points are too close or distributed on the boundary, resulting in the reduction of
sampling efficiency or the loss of information. Thus, an RMQGS method is proposed based
on RGS.
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If the dimension of the random variables of the system is m, its value range can be
defined as lj′ ≤ xj′ ≤ uj′ , j′ = 1, 2, · · · , m, and qj′ represents the level of the j′-dimensional
variables. Then, the RMQGS method can be described as follows:

Step 1: The original design space is randomly reduced according to the dimension and
level of variables, which is provided as follows:

ûj′ = uj′ − α
uj′ − lj′

qj′ − 1
, j′ = 1, 2, · · · , m (2)

where uj′ and lj′ are the upper and lower limits of the j′-dimensional variables, and α is ran-
dom reduction coefficient related to the mean value of design variables, α = 1/(Γ + rand),
rand ∈ [0, 1], Γ ∈ [1,+∞) is an integer.

Step 2: Grid sampling in a randomly reduced design space, which is provided as
follows:

x(i)j′ = lj′ + k(i)j′
ûj′ − lj′

qj′ − 1
(3)

where k(i)j′ is the coefficient related to the levels of the design variable, k(i)j′ = 1, 2, · · · , qj′ − 1,
and i is the number of sample points.

Step 3: A random move is added to the column element xi and row element xj of the
sample point xij, which is provided as follows:

dj′ =
γij′

λ

uj′ − lj′

qj′ − 1
(4)

where γij′ is the coefficient of motion, which follows a uniform distribution, and λ is the
coefficient of random moving, λ = Γ + rand.

Step 4: Any two adjacent random moving sample points should satisfy the minimum
distance, which is provided as follows:

d = min
1≤j′≤m

 uj′ − lj′

2
(

qj′ − 1
)(1− 1

qj′ − 1

) (5)

Step 5: The sample points with random moving in the randomly reduced design space
are obtained, which is provided as follows:

x(i)j′ = lj′ + k(i)j′
ûj′ − lj′

qj′ − 1
+

γij′

λ

uj′ − lj′

qj′ − 1
(6)

3. Reliability Analysis Approach under Multiple Failure Modes
3.1. Adaptive Multiple Response Gaussian Process

Unlike the Kriging model, which regards a single output variable as a Gaussian stochastic
process, the MRGP model can treat multi-dimensional output variables y = [y1, y2, · · · , ym]
as m-dimensional Gaussian stochastic process with separable covariance functions. Then, the
mathematical expression of the MRGP model is described as follows:

ym(•, •) ∼ GP
(

hm(•, •)Bm, ∑m Rm((•, •), (•, •))
)

(7)

where GP(•, •) is the Gaussian stochastic process, which is used to construct the global ap-
proximate relationship between input variables and output variables,
hm(•, •) =

[
hm

1 (x, x′), hm
2 (x, x′), · · · , hm

n (x, x′)
]

is the vector of regression models,
Bm =

[
βm

1 , βm
2 , · · · , βm

n
]

is the vector of regression coefficients, Rm(•, •) is a spatial cor-
relation function, which denotes the correlation of spatial location, and ∑m is an unknown
covariance matrix, which is the core to deal with the multiple failure models.
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Further, to better describe the correlation of multidimensional output response vari-
ables, an isotropic Gaussian model is adopted to quantify the correlation of spatial location
(Figure 1), which is given as follows:

Rm(x, x′
)
= exp{−

n

∑
k=1

ωm
k
(

xk − x′k
)2} (8)

where ωm
k = (ω1, ω2, · · · , ωn) is the vector of roughness parameters, which represent the

rate at which the correlation between multiple failure models decays to zero. The lower
values of ωm

k , the smother MRGP model for the response ym(•, •).
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For Equation (7), Bm and ∑m are related to the spatial correlation function Rm(•, •),
which is usually expressed by the following equation: B̂m

=
[
(hm)TR−1hm

]−1
(hm)TR−1Y

∑̂
m
= 1

p

[
(Y− hmBm)TR−1(Y− hmBm)

] (9)

where R is the correlation matrix of Rm(x, x′), Y is the corresponding matrix of response
values, and p is the number of sample points.

Due to the solution of roughness parameters ωm
k being the key to building the MRGP

model, a logarithmic inverse function of the maximum likelihood function
ln
[
p
(
vec(Y)

∣∣Bm, ∑m,ωm
k
)]

is employed.

ln
[
p
(

vec(Y)
∣∣Bm, ∑m, wm

k
)]

= −mp
2 ln(2π)− p

2 ln(|∑m|)− m
2 ln(|R|)

− 1
2 vec(Y− hmBm)T × (∑m⊗R)−1vec(Y− hmBm)

(10)

where vec(•) represents sorting a matrix by a column vector, and⊗ is the Kronecker product.
The static MRGP model can be built based on Equation (10), which can predict the

multidimensional response value ŷ(x∗) at any unknown point x∗. The mean and variance
of the predicted value can be expressed as follows:

µŷ(x∗) = hm(x∗)B
m
+ r(x∗)TR−1(Y− hmBm)

∑̂
m
ŷ = diag

∑×


1− r(x∗)TR−1r(x∗)+(

h
m
(x∗)T − (hm)TR−1r(x∗)

)T
×(

(hm)TR−1hm
)−1(

hm(x∗)T − (hm)TR−1r(x∗)
)

 (11)

where hm(x∗) is regression model vector at an unknown point x∗, r(x∗) is the spatial
correlation vector between unknown point x∗ and input sample point, and diag(•) denotes
the diagonal element of the matrix.

The MRGP model can directly build the limit state surface of the structure under
multiple failure modes. Although the quality of the initial sample points has been sig-
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nificantly improved by the RMQGS method, the accuracy of the model still cannot meet
the requirements due to its limited numbers. Therefore, the adaptability of the MRGP
model needs to be enhanced to improve its accuracy and efficiency. Generally, U-function,
H-function, and EFF-function are used to search for the best update iteration sample points
from the candidate sample points of MC simulation and then update the initial MRGP
model until it meets the accuracy conditions. However, the three learning functions have
different screening conditions for sample points. If they are used alone, the efficiency is
low, and if they are used in combination, the complementary effects are difficult to achieve.
To avoid that, two novel learning functions are defined according to the iteration form of
the MRGP model.

To increase high-quality sample points, when the number of iterations is odd, the
probability value of the U-function is defined as the condition for judging the sign of the
maximum possible wrongly predicted response value. The mathematical expression is
given as follows:

ΘU(x) = Φ
(∣∣∣∣µŷ(x)

σŷ(x)

∣∣∣∣) (12)

where µŷ(x) and σŷ(x) denote the predicted mean and standard deviation of the MRGP
model, and Φ(•) is the cumulative distribution function for a standard normally distributed
variable. Then, the sample points that need to be updated can be provided as follows:

xΘ = arg min
x∈SMC

ΘU(x) (13)

where SMC is the sample repository generated by MC simulation.
When the number of iterations is even, a novel learning function is proposed to screen

the sample points closest to the limit state surface, which is expressed as follows:
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 denote the predicted mean and standard deviation of the 

MRGP model, and  Φ   is the cumulative distribution function for a standard normally 
distributed variable. Then, the sample points that need to be updated can be provided as 
follows: 

 Θ arg min Θ
MC

Ux S
=  x


x  (13) 

where MCS  is the sample repository generated by MC simulation. 
When the number of iterations is even, a novel learning function is proposed to 

screen the sample points closest to the limit state surface, which is expressed as follows: 

 
 
   ˆ

ˆ
ˆ

y
U y

y

μ x
x = φ μ x

σ x

 
 
 
 

 (14) 

where  φ   is the probability density function for a standard normally distributed vari-
able. Then, the updated sample points can be given by the following: 

 arg max
MC

Ux S
=  x


x  (15) 

Due to the results of Equations (13) and (15) being probability values, the probability 
evaluation and termination criterion should be made to ensure sample points are updated. 
The variation coefficient of the estimated failure probability is calculated according to MC 
simulation, and its expression is provided as follows: 

   

ˆ
ˆ

ˆ

1
Cov

1
f

f
MC f

- P
P =

N - P
 (16) 

where 
ˆ

fP
 is the estimated failure probability. It is considered that the estimation is un-

acceptable when 
 ˆCov 5fP %

, and then the sample repository needs to be expanded. 
Otherwise, it is considered acceptable, and the number of sample points is sufficient. 

Further, the termination criterion of the adaptive learning procedure can be ex-
pressed as follows: 

 

ˆ
1

Θ
MCN

MC U
j=

MC f

N - x
ξ =

N P


 (17) 

where MCN  is the number of sample points by MC, when 5% , the iteration termi-
nates. Otherwise, some new sample points are added. 

3.2. MRGP-SS Based Structure Reliability Analysis 
For engineering structures with multiple failure modes, the relationship of each fail-

ure mode is mainly in the forms of series, parallel, and series-parallel, etc. Then, their fail-
ure probability expression can be provided as follows: 

= arg max
x∈SMC

Appl. Sci. 2022, 12, 8961 7 of 22 
 

where  ŷμ x
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NMC P̂f
(17)

where NMC is the number of sample points by MC, when ξ ≤ 5%, the iteration terminates.
Otherwise, some new sample points are added.
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3.2. MRGP-SS Based Structure Reliability Analysis

For engineering structures with multiple failure modes, the relationship of each failure
mode is mainly in the forms of series, parallel, and series-parallel, etc. Then, their failure
probability expression can be provided as follows:

Pf = Pr(Gχ(x), χ = 1, 2, · · · , m) =



Pr
(

min
χ=1,2,··· ,m

Gχ(x) ≤ 0
)

, series

Pr
(

max
χ=1,2,··· ,m

Gχ(x) ≤ 0
)

, parallel

Pr
(

minmax
χ=1,2,··· ,m

Gχ(x) ≤ 0
)

, series-parallel

(18)

where Gχ(•) is the χth limit state equation, which is built using adaptive MRGP, and m is
the number of the limit state equation.

The traditional failure probability is mostly based on MC simulation to ensure the
accuracy of the results, which is a time-consuming computer-aided program. However,
the reliability solution under multiple failure modes belongs to the problem of small
failure probability; its efficiency and accuracy have a great impact on the applicability of
engineering applications. For these purposes, a novel reliability approach combined with
the adaptive MRGP model and SS method is proposed. The principle of SS is to convert
the problem of small failure probability into the product of larger conditional probability, if
the intermediate events of each sequence satisfy f1 ⊃ f2 ⊃ · · · ⊃ fn = f , the target failure
probability can be expressed as follows:

PF = P(F1)
m

∏
a=2

P(Fa|Fa−1 ) (19)

where F = {Gχ(x) ≤ b} is the target failure event, b is the structural response threshold, F1 is
the first failure event, Fa is the middle failure event, and P(Fa|Fa−1) is conduction probability.

In Equation (19), the initial value of conditional probability is usually selected from an
interval of [0.1, 0.3]. Meanwhile, the value P(F1) is determined as follows:

P(F1) ≈ P̃1 =
1
N

[
N

∑
b=1

IF1(xb)

]
(20)

IF1 =

{
1, xb ∈ F1
0, xb /∈ F

(21)

where {xb|b = 1, 2, . . . , N} is a set of sample points of independent and identically dis-
tributed, and IF1 is the indicative function.

Moreover, the Markov chain Monte Carlo simulation is conducted based on an im-
proved Metropolis–Hastings algorithm to produce the condition samples, and the estimated
value of conditional probability in a level can be expressed as follows:

P(Fa|Fa−1 ) ≈ p̃a =
1
N

[
N

∑
b=1

IFb+1(xb)

]
(22)

where p̃a is the predicted failure probability in a level.
The estimated failure probability of the target failure event is given as follows:

PF ≈ p0(a− 1)
NF(a)

N
(23)

where NF(a) is the number of sample points, which fall into the failure region in a level.
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3.3. Summary of the Proposed Method

The flowchart of the proposed method is shown in Figure 2, and it can be summarized
as follows:
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Stage 1: Obtaining the true response of multiple failure modes using the RMQGS
method and Matlab-ANSYS co-simulation.

Step 1: Build a collaborative simulation platform combining Matlab and ANSYS to
determine the design variables and design response under multiple failure modes;

Step 2: Generate initial input random variables samples using the RMQGS method;
Step 3: Recording the True structure function value of multiple failure modes based

on Step 1 and Step 2.
Stage 2: Building MRGP-SS reliability analysis model.
Step 1: Determine the type of spatial correlation location function of the initial MRGP

surrogate model;
Step 2: Estimate the roughness parameters of the MRGP model by employing a

logarithmic inverse function of the maximum likelihood function;
Step 3: Build the initial MRGP model using input random variables and their respective

true response from the collaborative simulation platform;
Step 4: Build the limit state equation of multiple failure modes based on Step 3;
Step 5: Predict their response by combining the SS method and the limit state equation

of multiple failure modes in Step 4;
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Step 6: Calculate the CDF of the structure under multiple failures and judge the
percentage error between the MC simulation and the MRGP-SS method.

Stage 3: Adaptive MRGP-SS analysis model.
Step 1: Check the accuracy of the MRGP-SS reliability analysis. If the reliability result

is accurate enough, the analysis ends. Otherwise, move to stage 3 of the proposed method;
Step 2: If the reliability result is not accurate enough, select a sample with argminΦ(U)

function when the number of iterations is odd, or select a sample with argmaxϕ(U)/|µ|
function when the number of iterations is even;

Step 3: Update the response value and estimate the final failure probability;
Step 4: Check the variance coefficient to ensure the accuracy of the reliability analysis.

If its value is less than the given threshold (5%), repeat steps 1–6 of stage 2. Otherwise,
check the termination criterion of the adaptive learning procedure; if its value is less than
the given threshold (5%), add new samples to the repository for recalculation. Otherwise,
repeat steps 1–6 of stage 2;

Step 5: Repeat stages 1–3 until step 1 of stage 3 is accurate enough.

4. Case Studies
4.1. Validation of RMQGS Method

The methods of LHS and RGS are compared to prove the effectiveness of the proposed
RMQGS. Assume that the dimensionless design variables x1 and x2 follow a normal
distribution N

(
10, 32), and the range is [0, 20] with 10 levels for each design variable. There

are 100 sample points obtained by three methods, as shown in Figure 3.
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From Figure 3, the 100 sample points selected by the LHS method have good random-
ness but poor uniformity, which cannot be distributed in the entire design space. Moreover,
there is a phenomenon where the sample points are too concentrated or overlapped, and it
is easy to lose the information from the samples. The RGS method makes up for the lack of
uniformity of the LHS method to a certain extent and only needs to determine the range
of design variables to obtain high-quality samples. However, the randomness of sample
points is greater than that of the LHS method, and there are a large number of sample points
distributed on the boundary of the design space, resulting in a serious lack of information.
The RMQGS method has both the randomness and uniformity of the sample points, which
can be uniformly and randomly distributed in each dimension, and the sample information
covers the entire sample space. Therefore, the samples selected by the RMQGS method
have greater advantages in uniformity and randomness compared with the LHS and RGS
methods, and the accuracy of the initial MRGP model can be significantly improved.

4.2. A Numerical Series System Analysis

To verify the applicability and effectiveness of the proposed method, a numerical
series system is adopted, and it is compared with a variety of classical combined reliability
analysis methods. This numerical series system is composed of four components whose
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limit state functions are given in Equations (24)–(27) [24]. Among the Equations, x1 and x2
follow the standard normal distribution with their independent and identically distributed.

G1(x1, x2) = 3 +
(x1 − x2)

2

10
− (x1 + x2)√

2
(24)

G2(x1, x2) = 3 +
(x1 − x2)

2

10
+

(x1 + x2)√
2

(25)

G3(x1, x2) = (x1 − x2) +
6√
2

(26)

G4(x1, x2) = (x2 − x1) +
6√
2

(27)

The initial samples are obtained by the RMQGS method according to the range of
design variables in Equations (24)–(27), and the true response value of the performance
function is solved to build the initial MRGP model, which then calculates the reliability
under multiple failure modes and checks its accuracy. Alternate sample points are screened
through different active learning functions and convergence criteria, and the best sample
points are determined to update the MRGP model, so as to achieve accurate calculation
and analysis of reliability under multiple failure modes. In this example, the initial samples
of RMQGS are set to 6, and the perfect MRGP model is fitted by the proposed method and
its effectiveness is compared by the methods of MRGP + U, MRGP + H, and MRGP + EFF,
as shown in Figure 4.

Figure 4 depicts the fitting accuracy of the MRGP model with different active learning
functions. In Figure 4, the black dots are MC simulation sample points; the blue dots are
initial samples obtained by LHS or RMQGS; the green lines are the fitting curve of the
MRGP model; the red lines are the true limit state surface; the yellow dots are updated
samples. It can be seen from the figure that the fitting effects of the four methods are almost
the same, which is close to the true limit state surface. However, due to the difference
between the active learning function and the termination criterion, the number of true
performance function calls and the time-consuming are different. Judging from the number
of updated samples, the proposed method only needs 4 updated samples to achieve a
convergence state, while the methods of MRGP + U, MRGP + H, and MRGP + EFF need
9, 15, and 12 updated samples, respectively. In terms of sample distribution, the initial
samples of the RMQGS method have the advantage of randomness and uniformity. It is
the basis for ensuring a high-precision initial MRGP model. Then, although the updated
samples of the MRGP + U method and the proposed method are close to the limit state
surface, the updated samples obtained by the MRGP + U method are concentrated. The
updated samples of the MRGP + H method and MRGP + EFF method are far from the limit
state surface, and the sample quality is lower than that of the proposed method.

Table 1 shows the reliability comparison results of five different methods under multi-
failure models, in which the MC simulation results are used as the accurate solution
to verify the reliability accuracy of the other four methods. In Table 1, Ncalls denotes
the number of calls to the true performance function; Pf denotes the failure probability,
β denotes the reliability index; δβ denotes the percentage error. From Table 1, it is known
that the proposed method has high accuracy and efficiency in dealing with the reliability
problem of multiple failure modes. Although the reliability results of the proposed method
are similar to those of the MRGP + U method, the number of function calls is reduced by
30%. Especially the efficiency of the proposed method is improved by 110% and 44.4%,
respectively, compared with the MRGP + H method and the MRGP + EFF method. In
general, the proposed method can take into account the accuracy and efficiency of reliability
at the same time, and the time-consuming can be significantly saved on the premise of
ensuring the solution’s accuracy.
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Table 1. Results of example 4.2 with different methods.

Method Ncalls Pf/10−3 β δβ/%

MC simulation 106 4.52 2.6105 _
Proposed
method 10 4.50 2.6121 0.0613

MRGP + U 15 4.45 2.6159 0.2069
MRGP + H 21 4.40 2.6197 0.3524

MRGP + EFF 18 4.35 2.6236 0.5018

4.3. A Numerical Parallel System Analysis

A parallel system with multiple failure regions is considered to identify the efficiency and
accuracy of the proposed method. The reliability problem is defined by Equations (28)–(31) [36].

Pf = Pr[G1(x) ≤ 0∩ G2(x) ≤ 0∩ G3(x) ≤ 0] (28)

G1(x1, x2) = 8x2
2 − 8x1

2 +
(

x1
2 + x2

2
)2

(29)

G2(x1, x2) = 2x1
2 − 2x2

2 +
(

x1
2 + x2

2
)2

(30)

G3(x1, x2) = 8x2
2 − 8x1

2 −
(

x1
2 + x2

2
)2

(31)

x1 and x2 follow the normal distributions with zero mean and unit standard deviation,
and the RMQGS method is employed to produce initial samples to build the initial MRGP
model. The adaptive MRGP model is then built by the proposed update strategy and
termination criterion and compared with the methods of MRGP + U, MRGP + H, and
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MRGP + EFF, as shown in Figure 5. Finally, the accuracy and efficiency of different methods
for the results of reliability analysis are compared in Table 2.
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Table 2. Results of example 4.3 with different methods.

Method Ncalls Pf/10−3 β δβ/%

MC simulation 106 0.19242 0.8690 _
Proposed
method 27 0.19260 0.8684 0.0690

MRGP + U 123 0.19340 0.8654 0.4143
MRGP + H 51 0.19230 0.8695 0.0575

MRGP + EFF 52 0.19180 0.8713 0.2647

Figure 5 illustrates the active learning process upon which the MRGP models are
built with four different methods. In Figure 5, the initial samples (blue dots) generated by
the RMQGS method can cover most of the design space to be efficient, while the samples
generated by the LHS method are more concentrated. In general, the MRGP + U method
and the proposed method can achieve the sample points added in the vicinity of the limit
state, while the updated samples of the MRGP + H method and MRGP + EFF method have
high uncertainty. In terms of overall fitting accuracy, the proposed method is lower, but it
has high fitting accuracy for the failure domain and requires the least number of sample
points, which is beneficial to the reliability analysis.

The results in Table 2 illustrate the efficiency and accuracy of each method, for which
106 samples of an MC simulation population are classified. An MC simulation is performed
on the true limit state surface with a population of 106 samples and taken as the reference
for the probability of multiple failure models Pf. From Table 2, it is known that the proposed
method requires 27 calls to the composite performance function and leads to a relatively
good estimation probability of failure. However, the MRGP + U method involves an
excessive number of calls (123) to the composite performance function and leads to a
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relatively poor estimation result. The cause of this imprecision may be that the reliability
method cannot effectively be sampled in the failure domain or the quality of sample points
is low. Compared with methods of MRGP + H and MRGP + EFF, the computational
efficiency of the proposed method is doubled, and the reliability error is lower than that of
MRGP + EFF. Although the MRGP + H method has the highest accuracy of reliability in
a parallel system, the accuracy of reliability is low in a series system. Overall, numerical
examples prove that the proposed method considers both accuracy and efficiency in dealing
with the reliability problem under multiple failure modes and can complete the reliability
analysis of complex structures efficiently and quickly.

4.4. Motor Hanger Reliability Analysis under Multiple Failure Models

As a key component of the railway vehicle, the function of the motor hanger is to suspend
the motor and bear various excitations during train operation. Any form of failure will directly
affect the service safety of the train. Therefore, a typical motor hanger is studied to verify the
engineering application of the proposed method. Due to the physical model of the motor
hanger being difficult to obtain, its failure models can only be simulated by the finite element
(FE) simulation method. Then, the FE model of the motor hanger is built according to the
characteristics and load cases, as shown in Figure 6. This FE model consists of beam188,
shell181, solid185, rigid and rbe3 elements. It is meshed to have 50,879 elements, including
21,766 triangular and quadrilateral shell elements, and 28,973 tetrahedral and hexahedral
solid elements. The ANSYS software is employed to perform the structure strength analysis;
the stress and displacement nephogram are plotted in Figure 7.

Appl. Sci. 2022, 12, 8961 15 of 22 
 

reliability in a parallel system, the accuracy of reliability is low in a series system. Overall, 
numerical examples prove that the proposed method considers both accuracy and effi-
ciency in dealing with the reliability problem under multiple failure modes and can com-
plete the reliability analysis of complex structures efficiently and quickly. 

4.4. Motor Hanger Reliability Analysis under Multiple Failure Models 
As a key component of the railway vehicle, the function of the motor hanger is to 

suspend the motor and bear various excitations during train operation. Any form of fail-
ure will directly affect the service safety of the train. Therefore, a typical motor hanger is 
studied to verify the engineering application of the proposed method. Due to the physical 
model of the motor hanger being difficult to obtain, its failure models can only be simu-
lated by the finite element (FE) simulation method. Then, the FE model of the motor 
hanger is built according to the characteristics and load cases, as shown in Figure 6. This 
FE model consists of beam188, shell181, solid185, rigid and rbe3 elements. It is meshed to 
have 50,879 elements, including 21,766 triangular and quadrilateral shell elements, and 
28,973 tetrahedral and hexahedral solid elements. The ANSYS software is employed to 
perform the structure strength analysis; the stress and displacement nephogram are plot-
ted in Figure 7. 

  
(a) (b) 

Figure 6. Structure characteristic and FE model of the motor hanger. (a) Geometric model of the 
motor hanger; (b) FE model of the motor hanger. 

  
(a) (b) 

Figure 7. Static strength analysis of motor hanger. (a) Stress nephogram; (b) Displacement nepho-
gram. 

As can be seen from Figure 7, the maximum stress and displacement of the motor 
hanger are 316.85 MPa and 3.52 mm, respectively, which meet the standard requirements 

Figure 6. Structure characteristic and FE model of the motor hanger. (a) Geometric model of the
motor hanger; (b) FE model of the motor hanger.

Appl. Sci. 2022, 12, 8961 15 of 22 
 

reliability in a parallel system, the accuracy of reliability is low in a series system. Overall, 
numerical examples prove that the proposed method considers both accuracy and effi-
ciency in dealing with the reliability problem under multiple failure modes and can com-
plete the reliability analysis of complex structures efficiently and quickly. 

4.4. Motor Hanger Reliability Analysis under Multiple Failure Models 
As a key component of the railway vehicle, the function of the motor hanger is to 

suspend the motor and bear various excitations during train operation. Any form of fail-
ure will directly affect the service safety of the train. Therefore, a typical motor hanger is 
studied to verify the engineering application of the proposed method. Due to the physical 
model of the motor hanger being difficult to obtain, its failure models can only be simu-
lated by the finite element (FE) simulation method. Then, the FE model of the motor 
hanger is built according to the characteristics and load cases, as shown in Figure 6. This 
FE model consists of beam188, shell181, solid185, rigid and rbe3 elements. It is meshed to 
have 50,879 elements, including 21,766 triangular and quadrilateral shell elements, and 
28,973 tetrahedral and hexahedral solid elements. The ANSYS software is employed to 
perform the structure strength analysis; the stress and displacement nephogram are plot-
ted in Figure 7. 

  
(a) (b) 

Figure 6. Structure characteristic and FE model of the motor hanger. (a) Geometric model of the 
motor hanger; (b) FE model of the motor hanger. 

  
(a) (b) 

Figure 7. Static strength analysis of motor hanger. (a) Stress nephogram; (b) Displacement nepho-
gram. 

As can be seen from Figure 7, the maximum stress and displacement of the motor 
hanger are 316.85 MPa and 3.52 mm, respectively, which meet the standard requirements 

Figure 7. Static strength analysis of motor hanger. (a) Stress nephogram; (b) Displacement nephogram.

As can be seen from Figure 7, the maximum stress and displacement of the motor
hanger are 316.85 MPa and 3.52 mm, respectively, which meet the standard requirements
of the maximum allowable stress of 345 MPa and the maximum displacement of 4 mm.
However, there are many uncertain factors in the manufacture and operation of the motor
hanger, which is easy to make its stress and displacement exceed the allowable range and
failure occurs. Therefore, the reliability analysis of the motor hanger is carried out with the
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help of Matlab and ANSYS collaborative computing platforms, considering the stress and
displacement failure modes. Their failure probability limit state equation can be provided
as follows:

Pf = Pr
(

min
χ=1,2

Gχ(x) ≤ 0
)
= Pr{min

(
345− ySEQV(x) ≤ 0
4− yUSUM(x) ≤ 0

)}
(32)

where x is the random variables, ySEQV(•) is the maximum Mises stress, and yUSUM(•) is
the maximum displacement.

First, two plate thicknesses and a stochastic load, which have a greater impact on
the two failure modes, are selected as random variables. Second, the initial samples
are obtained by the RMQGS method, and the ANSYS software is repeatedly called to
determine the true response value of the performance function. Finally, the MRGP model
is continuously updated iteratively by the proposed method until the reliability accuracy
meets the requirements. The reliability analysis results are shown in Figure 8 and Table 3.
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Table 3. Results of example 4.4 with different methods.

Method Ncalls Pf/10−3 β δβ/%

MC simulation 106 3.2 2.7266 —
Proposed
method 18 3.1 2.7370 0.3814

MRGP + U 22 3.1 2.7370 0.3814
MRGP + H 30 2.9 2.7589 1.1846

MRGP + EFF 19 3.0 2.7478 0.7775

Figure 8 depicts the CDF curves of the motor hanger with limit state function and
updated samples. The reliability of the motor hanger under the two failure models of stress
and displacement is 0.9969, i.e., the failure probability is 0.0031. This shows that the motor
hanger can maintain high structural performance under the fluctuation of uncertainty
factors. It can be seen from Figure 8b that the updated sample sizes of the four methods
are 9, 21, 13, and 10, respectively, and the reliability accuracy is the same, indicating that
the proposed method can achieve high-precision reliability analysis with the least number
of iterations. Table 3 provides the comparative quantification results of the four methods.
The accuracy of the proposed method is the same as that of the MRGP + U method, but
the efficiency is improved by 18.18%. Moreover, the MRGP + EFF method is slightly lower
than the proposed method in both accuracy and efficiency, while the MRGP + H method
has a larger difference. In a word, the proposed method has good engineering applicability
in dealing with the reliability of the motor hanger with multiple failure modes.
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4.5. Reliability Analysis of A Bionic Robot Lower Extremity Exoskeleton (LEEX) under Multiple
Failure Models

LEEX is a piece of typical complex equipment, which is mainly composed of a power
source, sensing system, control system, driving system, mechanical structure, etc. Due
to the uncertainty of the environment, especially the road condition and random shocks,
the LEEX will be continuously affected during operation, which will inevitably lead to
failure. As the main executive part of the mechanical structure, the harmonic reducer plays
a key role in driving LEEX. The harmonic reducer consists of the following four basic
components: a wave generator, flexible gear, flexible bearing, and rigid gear. Its main
failure modes are tooth surface contact fatigue failure, tooth root bending fatigue failure
of flexible gear or rigid gear, and the transmission efficiency failure of harmonic reducer.
Therefore, the reliability analysis of LEEX is performed in consideration of the three failure
modes of the harmonic reducer. Figure 9 shows a three-dimensional model sketch of the
LEEX and the composition of the harmonic reducer.
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For the tooth surface contact fatigue failure mode, the limit state function of LEEX can
be expressed as follows:

G1(x) = σHlimZN ZLZV ZRZW ZX − σH
√

KKAKVKH (33)

where σH is contact stress on the tooth surface, σHlim is tooth surface contact fatigue limit,
ZN is life factor, ZR is roughness coefficient of the tooth surface, ZV is velocity coefficient,
ZW is working hardening factor, ZL is lubricant coefficient, ZX is size factor, K is calculation
coefficient; KA is usage factor, KV is dynamic load factor, and KH is load distribution factor
along with the direction of tooth width.

For the tooth root bending fatigue failure mode, the limit state function of LEEX can
be expressed as follows:

G2(x) = σFlimj − σF = σFlimYSTYNTYδTYRTYX −
1.91× 107kpP

dnpnbmn
YFaYSaYεYβKAKV KFβKFα (34)

where σFlimj is tooth surface bending fatigue strength, σF is bending fatigue stress, σFlim is
tooth root bending fatigue limit, YST is stress correction factor, YNT life factor, YδT is sensitivity
coefficient of relative tooth root fillet, YRT is coefficient of relative tooth root surface condition,
mn is gear normal modulus, YFa is the tooth form factor, YSa is stress correction factor, Yε is
contact ratio factor, Yβ is helix angle coefficient, KFβ is load distribution factor along with the
direction of tooth width, and KFα load distribution factor between teeth.
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For the transmission efficiency failure, the limit state function of LEEX can be expressed
as follows:

G3(x) = ηpm − ηmin =
M2{[

µd1
7.194×10−11Eb(KbendKhdm)

m2(D+d)3

]
+ µd1

M2 tan
(

cos−1
(

0.47Zr
0.51Zr+3

)
+tan−1( f )

)
m(Zr−2(h∗a+c∗)+2(3+0.01Zr)− δ

m )

}
i

(35)

where ηpm is true transmission efficiency, ηmin is minimum transmission efficiency, M2 is
output torque, µ is dynamic resistance coefficient of bearing, E is the modulus of elasticity,
Kbend is correction coefficient of bending section, Kh is structure coefficient, dm is flexspline
diameter, m is the modulus, Zr is the number of flexible teeth, h∗a is addendum coefficient, c∗

is top clearance coefficient, δ is the thickness of flexible gear ring, and f is friction coefficient of
the tooth surface.

The failure probability of LEEX under multiple failure models based on Equations (33)–(35)
can be given as follows:

Pf = Pr
(

max
χ=1,2,3

Gχ(x) ≤ 0
)
= Pr{max

 G1(x) = σHlimj − σH ≤ 0
G2(x) = σFlimj − σF ≤ 0
G3(x) = ηpm − ηmin ≤ 0

 (36)

To verify the reliability of LEEX under uncertainty factors, five random variables with
great influence on three failure modes are selected, and detailed information is presented
in Table 4.

Table 4. Information of random variables.

Symbol Unit Distribution Mean Mean Square Deviation

ZW — Gaussian 1 0.02
K — Gaussian 1 0.13

YST — Gaussian 2 0.06
d mm Gaussian 24 0.24
δ mm Gaussian 4 0.40

As mentioned above, the LEEX reliability analysis under multiple failure modes using
the proposed method was performed. The proposed RMQGS method is first used to build
the initial MRGP model, and then the adaptive MRGP model is built by the update strategy
and termination criterion. The LEEX reliability analysis is finally conducted, combined with
the SS method, and compared with the MRGP + H, MRGP + H, and MRGP + EFF methods.

Figure 10 illustrates the reliability analysis results of LEEX under multiple failure
modes. It can be seen from the results that the reliability of LEEX under the combined effect
of tooth surface contact fatigue failure, tooth root bending fatigue failure, and transmission
efficiency failure is 0.9976, indicating that the LEEX has high reliability and can resist
uncertain changes in the external environment. The solution accuracy of the proposed
method is consistent with the MRGP + H and MRGP + EFF methods, but the computational
efficiency is improved by 51.53% and 32.76%, respectively, as can be seen in Table 5.
Although the number of calls and solution accuracy of the MRGP + U method are similar
to those of the proposed method, the overall performance is still lower. The reason for
the difference in analysis results is that the proposed method can achieve high-precision
reliability analysis results with fewer updated samples, as shown in Figure 10b. The
proposed method only needs to add 19 updated samples to reach the convergence condition,
while the MRGP + H, MRGP + U, and MRGP + EFF methods require 111, 49, and 66,
respectively. By comparing the total number of calls, it is found that the proportion of
the updated samples in the four methods to the total number of calls is 24.36%, 68.94%,
49.50%, and 56.90%, respectively. This further proves that the initial MRGP built by the
proposed method has high accuracy. Above, the analysis shows that the proposed method
can achieve the efficient application of multi-failure engineering problems for complex
structures under the condition of taking into account the solution efficiency and accuracy.
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Table 5. Results of example 4.5 with different methods.

Method Ncalls Pf/10−3 β δβ/%

MC simulation 106 2.5 2.8070 —
Proposed
method 78 2.4 2.8202 0.4681

MRGP + U 99 2.3 2.8338 0.9548
MRGP + H 161 2.4 2.8202 0.4681

MRGP + EFF 116 2.4 2.8202 0.4681

5. Conclusions

In this paper, a method is proposed to handle the reliability problems under multiple
failure models with an adaptive MRGP model. An RMQGS method is first proposed to
optimize the uniformity and randomness of initial samples to improve the accuracy of the
initial MRGP model. Two novel learning functions for describing the different iterative
cycles are presented to build the adaptive MRGP model. The cumulative probability under
multiple failure models is estimated by the MRGP-SS method with a few performance
function calls. The main conclusions can be summarized as follows:

(1) Compared with LHS and RGS methods, the sample points generated by the
proposed RMQGS method can be evenly and randomly distributed in the entire sample
space, which effectively avoids the problem of sample points falling on the design space
boundary and duplication;

(2) Two numerical examples illustrate the effectiveness of the proposed method in
handling multiple failure modes in series and parallel relationships. For the series system,
the proposed method improves the efficiency of MRGP + U, MRGP + H, and MRGP + EFF
by 30%, 110%, and 44.4%, respectively, under the condition of similar calculation accuracy.
For the series system, the proposed method can give both the accuracy and efficiency of
calculation compared with MRGP + U, MRGP + H, and MRGP + EFF, and obtain better
failure probability estimation with the least number of complex performance function calls;

(3) The reliability analysis of the motor hanger and LEEX under multiple failure modes
verifies the engineering application value of the proposed method. The results show that
the reliability of the motor hanger under two series failure modes is 0.9969, and the error
is only 3.1% compared with the MC simulation method, but the efficiency is significantly
improved. The reliability of LEEX under three parallel failure modes is 0.9976, which is
the same as the calculation result of MRGP + H and MRGP + EFF, but the efficiency is
improved by 51.53% and 32.76%, respectively.
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