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Abstract: The propulsion force of a kayaker can be measured thanks to sensors placed on the paddle.
This article aims at linking this force to the evolution of the velocity of the boat. A general model
is proposed to describe the motion of a K1 kayak. To validate the model and evaluate the relevant
physics parameters, three on-water kayaking trials are proposed: a pure deceleration, a standing
start, and 10 × 50 m with two athletes at the national level. These trials were performed with a force
sensor on the paddle and video recording. We used the deceleration to evaluate the drag of the boat.
Then the standing start showed that there was an active drag coefficient while kayaking. Finally,
the 10 × 50 m exhibited a power law of one-third between the velocity and the stroke rate. The
acceleration during the standing start together with the relationship between the velocity and stroke
rate were well captured theoretically. This approach enabled us to evaluate the important parameters
to describe a kayak race: the drag of the boat, an active drag coefficient, the mean propulsive force,
and a propulsive length. It can be used to characterize athletes and monitor their performances.

Keywords: propulsion; stroke rate; velocity; drag

1. Introduction

In a kayak, the paddler is seated in the direction of motion (contrary to rowing) and
uses a double-bladed paddle, as presented in Figure 1a–c. Kayak races are ruled by the
International Canoe Federation [1], which states that two different disciplines exist at the
summer Olympics: slalom in river and sprint on flatwater. The latter is the one studied in
the present paper. K1, K2, and K4 indicate the number of kayakers per boat; we present
in Figure 1d the nine different events that took place in Rio-2016 with the corresponding
race lengths for both men and women and the different boat sizes and minimum weights.
The time of the winner is indicated in red and the corresponding mean velocity is in blue.

Jackson [2], in his seminal work entitled Performance prediction for Olympic kayaks, gives
the main characteristics of flatwater kayak races as far as physics is concerned: for single
male and female races (K1), the boats of typical length L = 5.2 m reach V = 4.83 m/s for
men and V = 4.24 m/s for women using paddles of blade areas AB = 0.063 m2 and a stroke
cycle frequency of f ≈ 1 Hz. Compared to the results of the Rio Olympic games presented
in Figure 1b, we observe that these numbers are still of a good order of magnitude.

The underlying hydrodynamics has since been studied in detail for both hulls [3,4]
and paddles [5,6], allowing the optimization of shapes. Using the length of the boat, L,
and its velocity, V, we evaluated the Reynolds number ReL = ρV · L/η = 2.5× 107 and the
Froude number Fr = V/

√
gL = 0.67. Both values indicate that the total drag FD can be

written as the sum of the turbulent skin friction and the wave drag [2]:

FD =
1
2

ρV2

(
S · Csj +

Ω5/3

L3 Cwj

)
, (1)
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where S is the wetted area, Csj = 0.0028, the turbulent skin drag coefficient, Ω is the
immersed volume, Cwj = 11, the wave drag coefficient. Since the wetted surface is related
to the immersed volume by the relation S ≈ 2.5

√
ΩL, one deduces for an athlete and

boat mass of 90 kg at V = 4.8 m/s, a drag force FD ≈ 75 N, which means a dissipated
power PD = FD ·V ≈ 360 W. In this example, the wave drag (second term in Equation (1))
accounts for 22% of the total drag.

Figure 1. (a) K1 women’s kayak race, (b) K2 women’s kayak race, (c) K4 women’s kayak race,
(d) presentation of the 9 Olympic events in kayaks at the Rio 2016 Olympic games with corresponding
boat characteristics. The time of the winner is indicated in red and the corresponding mean velocity
in blue.

To our knowledge, in the existing literature on kayaking, few have directly measured
the propulsion force in the paddle. Bjerkefors [7] studied the power output but on an
ergometer whereas Klitgaard [8] showed that there are significant kinematic differences
between the ergometer and the ecological situation. Most of the on-water trials focus on
the kinematic measurements of the instantaneous velocity [9], or of the average stroke
rate, stroke length, and velocity per 50 m [10]. The force on the paddle was evaluated for
kayaking [11–14] and canoeing [15] but was not linked to the kinematics directly. On the
contrary, Delgado [16] proposed a model for the evolution of the velocity of a kayak without
experimental measurements of the force and the velocity.

In the present paper, we propose an on-water study with kinematics and dynamic
measurements thanks to an instrumented paddle. Our goal here was to quantify and model
the dynamics of the kayak through simple physics parameters. We could then compare
the measured force and the evolution of the velocity thanks to the equation of motion. The
paper is organized as follows. In the first section, we detail the experimental set-up and our
theoretical motivations. Then we present three trials to validate and interpret our model: a
pure deceleration trial, a standing start, and a 10 × 50 m with a progressive increase of the
velocity between the trials. The first trial characterizes the drag of the boat. The last two
trials validate the model in the transient regime and the steady regime.

2. General Model and Experimental Set-Up
2.1. Theoretical Motivation

In this article, we focus on the K1 kayak, meaning that there is only one athlete on
the boat. The dynamics of the kayak are described by Newton’s equation, which takes the
following scalar form along the direction of motion:

Me
dV
dt

= Fm(t)− FD(t), (2)
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where Me = Mt + Ma is the sum of the total mass Mt = Mk + Mb (Mk is the mass of the
kayaker and Mb is the mass of the boat) and of the added mass Ma, which accounts for the
mass of the water entrained by the boat. In Equation (2), the force Fm(t) is the propulsive
force exerted by the blade on the water in the direction of motion and FD(t) is the total drag.

We wanted to evaluate the different contributions of this equation and find a simple
model of the evolution of the velocity in the kayak. In the first experiment, we set Fm(t) = 0.
This pure deceleration trial allowed us to evaluate the drag of the kayak. In the second
experiment, we performed a standing start, measuring Fm(t) and linking this force to
the evolution of the velocity. Finally, we set MedV/dt = 0 in steady motion at different
velocities to exhibit a velocity–stroke rate relationship thanks to the balance of forces.

2.2. Experimental Set-Up
2.2.1. Athletes and Boats

The experiments were conducted at the nautic club of Ecole Polytechnique with two
male expert kayakers who used their own kayaks. We named them A1 and A2. The main
characteristics of the kayakers and their boats are presented in Figure 2. A1 is a national U23
athlete, of height 1.70 m and weight 64 kg. A2 is an international U23 athlete, height 1.81 m,
and weight 74 kg. The athletes both used a Gamma Rio M blade from Jantex mounted on a
Kevlight MFTech shaft equipped with strain gauges (see Figure 3). The athletes could vary
the paddle lengths based on their preferences. The total mass of the paddle was 730 g and
was neglected compared to the boat and athlete masses.

Figure 2. Main characteristics of the athletes, boats, and paddles used in the experiments.

2.2.2. Force Measurement

Strain gauges were placed on the paddle and linked to an acquisition card attached to
the middle of the paddle (see Figure 3). The force was recorded at a sample rate of 100 Hz
and the data were stored in a waterproof box MaxiPhyling placed in the boat. We used
Bluetooth to connect the acquisition card and the MaxiPhyling box. In the same waterproof
box, there was an accelerometer and a gyrometer, evaluating the contribution of the yaw,
pitch, and roll. The data are stored on an SD card in the box. The force sensor was calibrated
with calibration masses attached to the center of the immersed part of the paddle (Figure 3).
Both sides were calibrated separately.
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Figure 3. Calibration of the instrumented paddle used for the experiments. The mass “m” symbolizes
the mass of calibration. On the right bottom corner, we show the waterproof box MaxiPhyling placed
on the boat.

2.2.3. Velocity Measurement

We recorded the trials via a fixed camera (GoPro) set on a tripod placed on the lake
bank. The sample rate was 60 frames per second. The selected angle of view made it
possible to observe 40 m of the kayak displacement on the water. We tracked both the front
extremity (xF,yF) and back extremity (xB,yB) of the boat. We call M the center of the boat
(xM, yM) = ( xB+xF

2 , yB+yF
2 ). All the coordinates are defined Figure 4. Knowing the boat

length LB (in meters), we could compute the velocity as:

V(t) =

√
(xM(t + ∆t)− xM(t− ∆t))2 + (yM(t + ∆t)− yM(t− ∆t))2√

(xF(t)− xB(t))
2 + (yF(t)− yB(t))

2

Lboat
2∆t

(3)

The coordinates (x, y) are in pixels. We used this formula to correct the effect of
perspective along the trajectory. We checked that the length of the boat in pixels did not
vary in the interval of time [t−∆t, t+∆t]. Depending on the experiment we performed, we
used different values of ∆t. This was a trade-off between filtering the noise of measurement
and capturing the fast evolution of the velocity.

Figure 4. Description of the notation used to compute the velocity of the boat. The coordinates (x, y)
are in pixels whereas Lboat is in meters.
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3. Pure Deceleration: The Zero Propulsion Limit, Fm(T) = 0

Pure deceleration was achieved when the kayaker stopped paddling and removed the
blades from the water, keeping a constant position along a straight path.

3.1. Observations and Velocity Evolution

An example of a pure deceleration sequence is presented in Figure 5. After a few
paddling cycles, which allowed the kayaker to reach the velocity V0, the kayaker stopped
paddling and kept the same position along a straight path down to rest.

Figure 5. Chronophotography illustrating a deceleration test performed with L to measure the
effective mass Me via the deceleration of the boat. The time between each frame was ∆t = 0.167 s.

Quantitatively, the time evolution of the velocity during the deceleration is shown
in Figure 6a. We observed that the decrease was not linear and that it took typically 5 s
for the velocity to decrease by a factor of 2 from its initial value V0 ≈ 4.5 m/s to V0/2. To
describe this deceleration, we use the no-propulsion limit (Fm = 0) in Equation (2), which
reduces to:

Me
dV
dt

= −1
2

ρ SCD V2, (4)

where SCD is the total drag area. Assuming that SCD remains almost constant, the theoreti-
cal solution deduced from Equation (4) is:

V0

V(t)
= 1 +

t
τ

where τ =
2Me

ρ SCD V0
. (5)

In this expression, τ is the characteristic time over which the velocity decreases
(V(t = τ) = V0/2). The corresponding time evolution of the velocity ratio V0/V(t) is
presented in Figure 6b for Athlete A1 (black squares) and for Athlete A2 (red squares). In
both cases, the theoretical affine relationship expected from Equation (5) was observed; we
measure 1/τ ≈ 0.180± 0.005 s−1. Thus, the velocity decreases over the characteristic time
τ ≈ 5.55 s.

Figure 6. (a) Time evolution of the velocity V(t) for Athlete A1 (black squares) and Athlete A2 (red
squares). (b) Time evolution of the velocity ratio V0/V(t) for Athlete A1 (V0 = 4.76 m/s) and Athlete
A2 (V0 = 4.98 m/s).
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3.2. The Effective Mass Me

As seen in Equation (2), the inertia of the kayaker and his boat did not only depend on
Mt, the sum of the mass of the kayaker Mk, and the mass of the boat Mb. The added mass
could be estimated using the data for an ellipsoid presented in Figure 7 [17]. The volume
of the ellipsoid of the long axis a and small axis b is Ωel = 4/3πab2. While moving along
the large axis direction, the added mass is a fraction of the displaced mass Ma = KamρΩel
where the constant Kam depends on the aspect ratio a/b as shown in Figure 7b. For a
sphere (a/b = 1) one recovers the classical result Kam = 1/2. For a kayak of aspect ratio
a/b ≈ 5.2/0.41 = 12.7 (Athlete A1) one finds Kam ≈ 0.017 so that the added mass can be
estimated to Ma = Kam ·Mt ≈ 1.3 kg. Thus, the corresponding effective mass for Athlete
A1 is deduced: Me = 77.3 kg. The same calculation for Athlete A2 leads to Kam = 0.0332 so
that Ma = Kam ·Mt ≈ 2.8 kg from which Me = 86.8 kg.

Figure 7. (a) Presentation of the ellipsoid. (b) Added mass factor Kam as a function of the aspect
ratio a/b.

3.3. The Total Drag, Fd

The total drag FD = 1/2ρ SCD V2 is composed of three different contributions, the skin
friction, Fs, on the slender hull associated with the immersed part of the boat; the wave
drag, Fw, associated with the interfacial wake produced by the motion of the boat; and
the aerodynamic drag, Fa, due to the airflow around the bluff kayaker [18,19]. Using the
expression of the deceleration time τ in Equation (5), we can estimate the value of the total
drag area SCD for the two kayakers. Using τ = 5.55 s, Me = 77.3 kg and V0 = 4.76 m/s
we find SCD = 5.85× 10−3 m2 for Athlete A1. Using τ = 5.55 s, Me = 86.8 kg and
V0 = 4.98 m/s we find SCD = 6.38× 10−3 m2 for Athlete A2. In Appendix A, we show
that we can recover theoretically this value by estimating the contribution of each involved
drag. In the present discussion, we neglected the impact of the wind and potential currents
in the lake. As we show in Appendix A, aerodynamic drag accounts for 6% of the total
drag. Therefore, we expect a small impact of the wind (typically 5 km/h) on the results.
Concerning the currents, we performed the experiments in a small closed lake, and we
considered that they were negligible.

4. Standing Start

In this section, we analyze the results of the standing start trial and recovered the
evolution of the velocity thanks to the force measurement and the estimation of drag
obtained in the previous section. Before analyzing the first couple of strokes, we analyzed
a single stroke.
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4.1. Single Paddling Stroke

An example of a single paddling stroke is presented in Figure 8. This stroke corre-
sponds to the third stroke after the start in the present case (see blue arrow in Figure 9).
The sequence in (a) decomposes the stroke from the entrance of the paddle (image 1) to its
exit (image 12). The time lapse between images was constant (∆t = 0.05 s) so the whole
stroke lasted 0.55 s. The angle θ between the paddle and the water surface is defined in
Figure 8b together with the measured normal force F.

Figure 8. (a) Time sequence of a single paddling stroke performed by Athlete A1. The time lapse be-
tween each image is ∆t = 0.05 s. (b) Definition of the paddle angle θ and the normal force F. (c) Time
evolution of the paddle angle θ (black squares) and the normal force intensity F (blue squares).

The time evolution of θ and F = ‖F‖ during the stroke is shown in Figure 8c. Focusing
on the paddle angle, we observe that this angle starts at θin ≈ 50°, quickly increases to
60°, and then evolves with an almost constant slope of ωP = 3.2 rad/s up to the exit angle
θout ≈ 160°. Concerning the force, it increases during the entrance of the blade (first 0.1 s)
and decreases during its exit (last 0.1 s) and exhibits a mean value of the order of 155 N
in between. We observe little variations of θin and θout between the stroke cycles and the
athletes between the different tests (less than 5° on the typical variation of 100°).
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Figure 9. Time evolution of the velocity (solid black line with units on the left vertical axis) and the
forces (solid colored curves with units on the right vertical axis) corresponding to the chronopho-
tography presented in Figure 10. (a) Data for Athlete A1. The blue arrow indicates the cycle that is
detailed in Figure 8. (b) Data for Athlete A2. The blue color is used for the force measured on the
right paddle while the red color is used for the left. The quantity F is the intensity of the force exerted
in the direction normal to the paddle surface.

4.2. Experimental Data of the Standing Start

The two kayakers were asked to perform a standing start “as fast as they could” to
characterize the acceleration phase. A chronophotography composed of the superposition
of six pictures taken at equally spaced times ∆t = 1.66 s is presented in [Figure 10a for
Athlete A1 and Figure 10b for Athlete A2].

Figure 10. Chronophotography of a standing start. The time lapse between images is ∆t = 1.67 s:
(a) Athlete A1. The length scale is given by the length of the boat (5.2 m). (b) Athlete A2. The length
scale is given by the length of the boat.

The corresponding time evolution of the velocity is presented with black solid lines in
Figure 9 for the two kayakers. The grey squares underline that the velocity was measured
every 0.16 s at a frequency of 6 Hz. Qualitatively, the velocity build-ups were similar
for the two athletes and we first analyzed the one obtained with Athlete A1 (Figure 9a).
The velocity increased from 0 to 5 m/s over a characteristic time of the order of 5 s.
The associated acceleration is thus of the order of 1 m/s2. The fluctuations observed on the
velocity signal are associated with the periodic motion of the paddle. This is shown with the
force signal reported in blue for the right blade and in red for the left blade. The maximal
values of the blade force are of the order of 200 N.

Even if the maximal forces were larger for the second kayaker (Figure 9b), the same
features were observed in the time evolution of his velocity. This observation reveals that
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even if the boat and kayaker specialties are different, as underlined in Figure 2, the dynamics
of the boat during a standing start are characterized by generic features, which need to
be studied.

We define the period T as the time needed for a blade to perform a full cycle, from one
water entry to the next. The stroke rate f is defined as 1/T. In Figure 9, we show for the
first stroke the different time markers. A period corresponds to T = t5 − t1. We observe
in Figure 9 that the first cycle was longer than the subsequent ones for both kayakers.
We also observe that there was a delay with no force between the end of a propulsive
phase and the beginning of the next one. This corresponds to the recovery time t0 during
which both paddles were in the air. During all of those phases, the velocity of the boat
systematically decreased due to the friction with the water and air. For the first cycle,
t0 = (t3 − t2) + (t5 − t4).

Quantitatively, the evolution of the (period T) and of the recovery time t0 are presented
in Figure 11 as a function of the cycle number n: for the first kayaker, the period decreased
quickly from 2 s in the first cycle to 1 s in the fifth cycle. The decrease was quick in the
sense that, in the second cycle, the period was already 1.34 s (Figure 11a). Concerning
the recovery time t0, it remained almost constant and equal to t0 ≈ 0.31 s. In the last
cycles, 2/3 of the period was dedicated to the propulsive phase and 1/3 to the side-change
(aerial phase).

Figure 11. Evolution of the period T and of the recovery time t0 as functions of the cycle number n
during the two standing starts presented in Figure 9: (a) Athlete A1, (b) Athlete A2.

For the second kayaker, the evolution is presented in Figure 11b. The period also
decreased by a factor of 2 between the initial cycle (T = 1.6 s) and the sixth cycle (T = 0.8 s)
but the evolution was slower. The recovery time t0 remained almost constant and equal
to t0 ≈ 0.28 s. Again, in the last cycles, we recover the 2/3–1/3 proportions between the
propulsive and the aerial phases.

4.3. Theoretical vs. Experimental Velocity

Knowing the effective mass Me (Section 3.2) and the total drag FD (Section 3.3) one can
use the full Equation (2) to predict the time evolution of the velocity for a given propulsion
force Fm(t). This was done by solving the differential equation:

Me
dV
dt

= F(t)nθ(t)− K
1
2

ρSCDV2 with θ(t) = θin + (θout − θin)
t− tin

tout − tin
(6)

For the standing starts presented in Figure 9, this equation was solved with the initial
condition V(t = 0) = 0 together with the measured force F(t). The paddling dynamics are
accounted for via the entrance (θin) and exit angles (θout) together with the corresponding
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instants (tin and tout). In the above Equation (6), we also introduced a constant K ≥ 1 in
front of the total drag FD = 1/2ρSCDV2 in order to account for the increase in the drag
associated with the perturbed motion of the boat (surge, heave, sway, pitch, yaw, roll) that
appeared once paddling started [1,20]: an active drag coefficient.

We compare in Figure 12 the velocity V(t) obtained by the numerical integration of
Equation (6) to the value measured experimentally. The comparison for Athlete A1 is
presented in Figure 12a and the one for Athlete A2 in Figure 12b. In both cases, the zero
perturbation limit (K = 1) is shown with a blue solid line and the best fit with a red solid
line. We obtained K = 1.25 for Athlete A1 and K = 1.1 for Athlete A2, which means
that the drag while paddling was 25% larger than the one measured with no paddling
for Athlete A1 and 10% larger for Athlete A2. This difference is probably associated with
the stability of the boat, which was larger for Athlete A2. Indeed, the boat for Athlete
A2 was wider (w = 61 cm) than the boat of Athlete A1 (w = 41 cm). This hypothesis is
confirmed by the gyroscope placed in the boat. The average norm of the angular velocity

ω = 1
T
∫ T

0

√
ω2

x + ω2
y + ω2

z dt reached 43◦/s for Athlete A2 and ω = 33◦/s for athlete A1 at
high velocities. This shows the lack of stability of the most narrow boat of A1; however, this
higher angular velocity can also be caused by a less efficient technique of A1. There should
be an optimal width of the boat for a given kayaker, minimizing the coefficient KSCD.

Figure 12. Comparison between the velocity measured experimentally and the one obtained by the
numerical integration of Equation (6), for Athlete A1 (a) and for Athlete A2 (b).

4.4. An Algebraic Approximate Solution for the Mean Velocity

A different way to look at the motion of the kayak consisted of taking a picture of each
time the right paddle entered the water. When such a move was done, we observed a steady
motion where all the quantities were averaged over a period: ζ = 1/T(n)

∫ t(n)+T(n)
t(n) ζ(t)dt

where T(n) is the duration of the nth cycle and t(n) is the time at which the nth cycle
starts. The average total force F and average propulsive component Fm = Fnθ for the
standing start (Figure 9) are shown in Figure 13a. We observe that these forces remain
almost constant over the first seven cycles.
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Figure 13. (a) Evolution of the mean total force F and mean propulsive component Fm = Fnθ over
the first n cycles of the standing start are presented in Figure 9 (b).

The equation of motion for the average quantities can be obtained by averaging
Equation (6):

Me
dV
dt

= Fm − K
1
2

ρSCDV2 (7)

In this equation, we used the approximation V2 ≈ V2, which is valid if period T was
small compared to the characteristic time in which the velocity changes 1/τc = 1/VdV/dt.
In the present application, the period is typically 1 s while the velocity changes over τc ≈ 5 s.
Both values justify the approximation. Since Fm is shown in Figure 13a to also be constant,
Equation (7) can be integrated and lead to the algebraic solution:

V(t) = Vmax tanh(t/τ) with Vmax =

√
2Fm

KρSCD
and τ =

MeVmax

Fm
, (8)

where τ is the characteristic time needed to reach the maximal velocity Vmax. Using the val-
ues obtained for Athlete A1 (Fm = 89.6 N, Me = 77.3 kg, K = 1.25,
SCD = 5.85× 10−3 m2) we have τ = 4.2 s and Vmax = 4.95 m/s. The same evalua-
tion for Athlete A2 (Fm = 112 N, Me = 86.8 kg, K = 1.1, SCD = 6.38× 10−3 m2) leads to
τ = 4.4 s and Vmax = 5.6 m/s.

The comparison between the time evolution of the mean velocity V(t) measured ex-
perimentally and the algebraic solution (8) is presented in Figure 13b with a fair agreement
for both kayakers.

5. The 10 × 50 Meter Trial: Kayaking at Constant Velocity
5.1. Experimental Data

In the third type of experiment, the athletes were asked to keep a constant velocity of
over 50 m during 10 different trials. The constraint was to increase the velocity at each trial
from the lower (at trial number 1) to the fastest velocity (in trial number 10). Stroke rate f
was not imposed and was measured afterward from the recorded movies. The relationship
between the mean velocity V over 50 m and stroke rate f is presented in Figure 14. For both
athletes, we observed the same relationship: V = A f 1/3 with A ≈ 4.4.

In Figure 14b, we present the evolution of the mean projected force over the propulsion
time F̃ =

∫ tout
tin

F(t)nθ(t)dt/(tout − tin). F̃L and F̃R correspond, respectively, to the force
generated by the left arm and by the right arm. The evolution θ(t) was obtained thanks to
the movie of the trial, whereas F(t) was given by the sensor on the paddle. We plotted the
mean value of F̃L and F̃R in the zone between 25 and 45 m. The values of the propulsive
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force for the right arm and the left arm were close. After an increase in the three first
trials, F̃ remained almost constant during the seven last trials. We can express the mean
force over a cycle F = f

(
F̃L(tout − tin)L + F̃R(tout − tin)R

)
. By assuming that the kayaker

propelled symmetrically, which is in fair agreement with the data, we can simplify the
previous expression: F = 2F̃(tout − tin)/T. We only present the results for kayaker A1, but
the results are similar for A2.

Figure 14. (a) Velocity–stroke rate relationship in the steady state regime for the two kayakers.
(b) Evolution of the average propulsion force in the direction of paddling with trial N for Athlete A1.
The force is averaged over the propulsion time.

5.2. Velocity–Stroke Rate Relationship Model

In this section, we model the relationship observed during the progressive 10 × 50 m:
V = A f 1/3 (Figure 14a). We start from Equation (7), corresponding to the average
of Equation (2) over one cycle. Once the permanent regime is reached, dV

dt = 0 (as
V(t) = V(t + T)):

Fm = K
1
2

ρSCDV2. (9)

Using tp = tout − tin, the propulsion time, as there are two propulsion phases (left and
right assumed symmetric) during one cycle, Equation (9) yields:

2tP
T
· 1

tP

∫ tout

tin

F(t)n(θ(t))dt = K
1
2

ρSCDV2. (10)

As observed in Figure 14, the mean projected force along the axis of the motion
F̃ =

∫ tout
tin

F(t)n(θ(t))dt/tP is approximately constant, except for the first two trials. There-

fore, we define F̃0 as this constant value. As the stroke rate f is the inverse of the period,
we obtain:

f · tP F̃0 = K
1
4

ρSCDV2. (11)

At this stage, we need to find an expression for the evolution of tP as a function of
the velocity V. The ratio between the hydrodynamic coefficients SCD of the boat and the
paddle is small (SCD = 6× 10−3 m2 for the boat and SCD = 1.2× 10−1 m2 for a paddle).
For this reason, we expect little drift of the paddles in the water compared to the boat during
the propulsion. In the limit where the paddle is anchored in the water, the velocity of the
paddle in the frame of the boat VP/B equals the velocity of the boat V. Defining Lp as the
length of the propulsive path of the paddle in the frame of the boat, it comes VP/B = Lp/tP.
Therefore, the relationship between V and tP should be close to 1/tP = V/Lp. We used the
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data of the 10× 50 m of Athlete A1 to analyze the evolution of the inverse of the propulsion
time and the mean velocity (Figure 15).

Figure 15. Evolution of 1/tP as a function of V for Athlete A1 while performing 10 × 50 m.

In Figure 15, the relationship between 1/tP and V is linear for velocities larger than
2 m/s for both arms. We found a propulsive length of Lp = 1.64 m for Athlete A1. This
length can be compared to the arc length described by the center of a paddle, where we
expect the force resultant to be applied. For Athlete A1, the distance between the two
paddle centers was ` ≈ 1.76 m and we measured paddle angles going from 50◦ to 160◦. This
corresponds to a traveled distance Lp ≈ 0.5`×∆θ ≈ 1.69 m. This represents a 3% difference
with the previous measurement. Using the relation between tP and V, Equation (11) can
be simplified:

V =

(
4Lp F̃0

KρSCD

) 1
3

f
1
3 . (12)

This equation is compatible with the experimental data presented in Section 5.1. We
found A = 4.2 for Athlete A1 (F̃0 = 86 N, Lp = 1.64 m, K = 1.25, SCD = 5.85× 10−3 m2).
This value must be compared to A = 4.4 found experimentally. Thus, we recovered the
experimental behavior with a precision of 5%. In this section, we assumed symmetry
between the left and right propulsion. In the standing start experiments (Figure 9), we
observed a difference in the patterns between the left and right propulsion. However,
if we focus on Figures 14b and 15, we observe that the propulsion time is the same for the
left arm and the right arm and there is no significant difference in the mean value of the
propulsion force between the left and right. As this model is averaged on a cycle, this is
no issue that the force distribution over a cycle is not symmetric, while there are similar
average values of the propulsion force and propulsion time.

However, we can also adapt the model in the case of a non-symmetric propulsion.
In this case, in Equation (12) we replace 2Lp F̃0 with Lr F̃r + Ll F̃l , where Lr and Ll are the
right and left propulsive lengths and F̃r and F̃l are the right and left mean projected forces.
This model has two additional parameters, which are not compatible with our wish to have
a model as simple as possible. For this reason, we showed the model with the assumption
of symmetry.

6. Conclusions

In the present paper, we provided methods to quantify and model the dynamics of
kayak races. Three tests were used to evaluate the important physics parameters: a pure
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deceleration, a standing start, and a progressive test of 10 × 50 m. The drag coefficient
was evaluated from the first one. A typical value of SCD = 6× 10−3 m2 was found.
Theoretically, we were able to quantify the contribution of each term (skin, wave, and
aerodynamic drag) and recover this value. The second test enabled us to quantify the
effect of motion on the drag: an active drag coefficient. We found a drag increase of 25%
(K = 1.25) and 10% (K = 1.10) for our two kayakers. The last test enabled us to evaluate the
link between the velocity and stroke rate. For both kayakers, we found that this relationship
could be written as V = A f 1/3 with an explicit expression of parameter A for each athlete
matching the experimental value.

The present work provides a general model to describe the propulsion in a kayak.
This model is valid for the transient regime and the steady regime and could be used to
develop a general optimization race algorithm coupled with physiological models [21].

The general approach proposed in the present work could be applied to other paddle-
based sports, such as canoeing, rowing, and even swimming. It also presents a way to
monitor and characterize athletes through four physics parameters: a drag parameter
(SCD), an active drag coefficient (K ≥ 1), a mean projected force (F̃0), and a propulsive
length (Lp).
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Appendix A

The objective of this section is to theoretically recover these experimental values and
to estimate the relative contributions of the three forces Fs, Fw, and Fa.

Appendix A.1. Skin Friction Fs

Skin friction Fs is opposed to the motion and its magnitude can be written as
Fs = 1/2ρSCsV2 where S is the wetted surface and Cs is the skin friction coefficient.
This coefficient depends on the Reynolds number ReL = ρVL/η based on the length
of the hull L (Figure A1) and the fluid density ρ and dynamic viscosity η (for water
ρ = 103 kg/m3 and η = 10−3 Pa.s). In the range 104 < ReL < 106, the laminar coeffi-
cient is evaluated at Cs = 1.33/

√
ReL while at a larger Reynolds number, the commonly

accepted formula is the one from the International Towing Tank Conference (ITTC) [18,22]:

Cs = (1 + k) 0.075/(log ReL − 2)2. In this expression, (1 + k) = 2.76
(

L/Ω1/3
)−0.4

is the
shape factor, which depends on the length of the boat L and the immersed volume Ω [23].
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Figure A1. (a) Scheme of a prismatic hull. (b) Evolution of the wave drag coefficient Cw with the
Froude number calculated with Equation (A4).

In kayaking, the typical velocity is V = 5 m/sand the hull length L = 5 m, so that
ReL = 2.5× 107. Using Ω = 80× 10−3 m3, one finds (1 + k) = 1.035. With this Reynolds
number and shape factor, the above formula leads to the value Cs = 0.0027, which is not
far from the value of 0.0028 estimated by Jackson [2]. Since the wetted surface is related to
the immersed volume by the relation S = 2.5

√
ΩL [2], we finally get

Fs =
1
2

ρSCsV2 with SCs =
0.5175L2

(log ReL − 2)2

(
Ω
L3

)0.633
. (A1)

For a given load Ω = Mt/ρ, since the log term remains almost constant, we deduce
that the skin friction increases with the square root of the length L and almost quadratically
with the velocity. For a typical load Mt = 76 kg, a boat length L = 5.2 m, and a boat speed
V = 5 m/s the above Equation (A1) leads to SCs = 4.08× 10−3 m2 or Fs = 51 N for Athlete
A1. The same calculation for Athlete A2 (Mt = 84 kg, L = 4.5 m, V = 5 m/s) leads to
SCs = 4.38× 10−3 m2 or Fs = 54.8 N.

Appendix A.2. The Wave Drag Fw

The wave drag has a long history but one of the more compact forms is given by
Mitchell formula [24–26]:

Fw =
4
π

ρg2

V2

∫ ∞

1

(
I2 + J2

) λ2dλ√
λ2 − 1

, (A2)

where
I =

∫ ∫ d f
dx

eλ2gz/V2
cos
(

λgx/V2
)

dxdz (A3)

with a similar integral for J involving sine instead of cosine. In this expression of the wave
drag, the function f (x, z) stands for the hull shape as presented in Figure A1a.

With a simplified linear profile invariant in z (Figure A1a), the function f takes the form
f (x) = w/L(x + L/2) for x ∈ [−L/2, 0] and f (x) = −w/L(x− L/2) for x ∈ [0,+L/2]. In
this limit, the above formula for the wave drag reduces to :

Fw =
1
2

ρV2w2 128
π

Fr4
∫ ∞

1

(
1− e−λ2/(βFr2)

)2
n4
(

λ

4Fr2

)
dλ

λ4
√

λ2 − 1
(A4)

where β = L/d is the ration between the length of the boat L and the draft d. For the
simplified prismatic hull presented in Figure A1a, Ω = 1/2Lwd so that β = 1/2L2w/Ω.
Using the values of the parameters L, w, and Mt presented in Figure 2, we calculate the
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wave drag coefficient Cw = Fw/
(
1/2ρV2w2) and present its evolution as a function of the

Froude number in Figure A1b.
The non-monotonic evolution is classical for the wave drag as well as its maximum

value achieved for Fr ≈ 0.5 [19,26]. Quantitatively for a 5.2 m long boat moving at
V = 5 m/s one finds Fr = 0.70 and deduces Cw = 6.1× 10−3, which leads to Fw = 12.8 N
with w = 0.41 m (these values correspond to the one of Athlete A1 in Figure 2).

This value for the wave drag can be compared to the one proposed by Jackson using
Equation (1): Fwj = 1/2ρV2CwjΩ5/3/L3. For the same velocity, V = 5 m/s one finds
Fwj = 13.3 N, which is in fair agreement.

The corresponding wave drag area w2Cw is 1.02× 10−3 m2 for Athlete A1 (or
Fw = 12.75 N). The same calculation for Athlete A2 leads to w2Cw = 2.09× 10−3 m2 (or
Fw = 26.1 N), the main difference being the width of the boat.

Appendix A.3. The Aerodynamic Force Fa

The last component of the drag is the aerodynamic contribution Fa, which is the air
friction on the emerged bluff body composed of the upper part of the kayaker and of
the paddle (Figure A2a). Using gma1 for the frontal area of the kayaker and gma2 for the
unshadowed paddle, we have (without wind):

Fa =
1
2

ρa(gma1CD1 + gma2CD2)V2, (A5)

where ρa is the air density and CD1 (respectively, CD2) is the drag coefficient associated
with the frontal area gma1 (respectively, gma2).

Figure A2. (a) Identification of the two bluff-emerged surfaces gma1 for the kayaker and gma2 for
the unshadowed part of the paddle. (b) Anthropometric figure with data extracted from the work by
Drillis and Contini; [27].

The frontal area of the body gma1 can be estimated using the anthropometric data from
Drillis and Contini (Figure A2b) as the blue area, which leads to gma1 = 0.101H2 where H
is the size of the kayaker. The associated drag coefficient is CD1 = 0.7 [28]. For the paddle,
we measure gma2 = 0.08 m2. Using CD2 = CD1 we thus estimate for V = 5 m/s, Fa ≈ 3.9 N
for Athlete A1, and Fa ≈ 4.3 N for Athlete A2. The tables that we used correspond to
the average distribution of mass for the population. The kayakers have more developed
muscles in the upper body than in the lower body, which is why we should have slightly
underestimated the aerodynamic force.

Appendix A.4. Comparison between the Theoretical Drag and the One Measured by Deceleration

The theoretical total force at V = 5 m/s is thus FD = Fs + Fw + Fa = 51+ 12.75+ 3.9 =
67.7 N for Athlete A1, which corresponds to SCD = 5.4× 10−3 m2. This value is 7.5%
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smaller than the one measured via the deceleration (SCD = 5.85× 10−3 m2). Considering
the relative importance of the different contributions of the drag, we find here 75% for skin
friction, 19% for the wave drag, and 6% for the air drag. Even if we slightly underestimated
the aerodynamic force in the last section, this is not the major part of the total drag.

For Athlete A2, the theoretical total force at V = 5 m/s is FD = Fs + Fw + Fa =
54.8 + 26.1 + 4.3 = 85.2 N. This corresponds to SCD = 6.8× 10−3 m2. This value is 6.7%
larger than the one measured via the deceleration (SCD = 6.38× 10−3 m2). The proportions
of the three contributions are 64% for skin friction, 30% for the wave drag, and 6% for
the air.

The main difference with Athlete A1 is associated with the shape of the boat, which is
larger for Athlete A2 (w = 61 cm instead of w = 41 cm) and, thus, induces a much larger
wave drag.

We conclude that the theoretical drag is able to estimate the drag measured experi-
mentally at ±8%, which is fair considering the different approximations that we have used,
especially concerning the shape of the hull.

Concerning the evolution of these different drag contributions with the velocity, we
present in Table A1 their values in the range V ∈ [1 m/s–5 m/s]. Equations (A1), (A4) and
(A5) are, respectively, used to estimate Fs, Fw, and Fa using the parameters associated with
Athlete A1: L = 5.2 m, w = 0.41 m, H = 1.70 m, and Mt = 76 kg.

Even if the different force contributions increase with the velocity, we observe in the
last column of Table A1 that the total drag area remains almost constant throughout the
whole velocity range SCD = 5.7 ± 0.3× 10−3 m2.

Table A1. Evolution of the different drag contributions with the boat velocity estimated using the
parameters associated with Athlete A1: L = 5.2 m, w = 0.41 m, H = 1.70 m and Mt = 76 kg.

V ReL Fr SCs Fs Cw Fw Fa FD SCD
(m/s)

(
m2) (N) (N) (N) (N)

(
m2)

1 0.57× 107 0.14 5.4× 10−3 2.7 12× 10−4 0.1 0.16 2.95 5.9× 10−3

2 1.04× 107 0.28 4.7× 10−3 9.5 26× 10−4 0.9 0.62 11.0 5.5× 10−3

3 1.56× 107 0.42 4.4× 10−3 20.0 77× 10−4 5.8 1.4 27.2 6.0× 10−3

4 2.08× 107 0.56 4.2× 10−3 33.8 76× 10−4 10.2 2.5 46.6 5.8× 10−3

5 2.60× 107 0.70 4.1× 10−3 51.0 61× 10−4 12.8 3.9 67.2 5.4× 10−3
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