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Abstract: Carbon dioxide geological utilization and storage (CGUS) is an effective way to mitigate
climate warming. In this paper, we resorted to Lo’s model to analyze the dispersion and attenuation
characteristics of unsaturated porous media. Based on this, we analyzed the sensitivity of the first
compressional wave (P1) and the shear wave (S) to various physical parameters. In addition, the
modified models of live oil’s velocity and density were proposed, which were verified by experimental
data under the consideration of CO2 dissolution. It is shown that the velocities and attenuations
of P1 and S waves are influenced by various parameters, especially CO2 saturation and pore fluid
parameters, such as density and velocity. In particular, with increasing CO2 saturation, the sensitivity
of P1 velocity decreases, while that of the S velocity increases. Better monitoring results can be
achieved by combining P1 and S waves. Finally, the acoustic response was analyzed under the
modified model. With the increase in CO2 saturation, the P1 velocity decreases, while the S velocity
becomes almost constant and then linearly increases, with the trend changing at the critical saturation.
The study provides a more precise basis for monitoring the security of CO2 injection in CGUS.

Keywords: propagation characteristics; dissolution effect; two immiscible fluids; porous media;
seismic monitoring; CGUS

1. Introduction

With the intensification of the greenhouse effect, carbon capture and storage (CCS)
and carbon capture, utilization, and storage (CCUS) have attracted much attention in recent
years [1]. Carbon dioxide (CO2) geological utilization and storage (CGUS) is one of the
most common methods to achieve CCUS. However, it requires careful monitoring to ensure
the security of CGUS [2]. Seismic monitoring is an essential technology with the advantages
of a wide detection range and high accuracy [3]. For seismic monitoring, it is vital to clarify
the physical nature of acoustic wave propagation with varying environmental parameters,
which can be used in identifying CO2 migration status, spatial distribution, and providing
guidance for CGUS strategy.

Most underground formations can be classified as porous media; the fluid-holding
capacity of pore space is the basis for CGUS. When CO2 is injected into the reservoir,
the pore fluid is replaced by CO2, accompanying the dissolution effect, which affects the
energy exchange of the acoustic wave [4]. Thus, understanding the changes of seismic
attributes form the foundations for successful monitoring. Therefore, analyzing the wave
propagation in the reservoir filled with supercritical CO2 and other fluids is crucial. In
particular, changes in CO2 injection in pore fluid parameters via different temperatures and
pressures significantly impact how waves propagate.

Formations in CGUS are typical unsaturated porous media, composed of a solid grain
and two fluids (usually CO2 and oil in the oil reservoir), where acoustics theories for
multi-phase porous media are appropriate for studying wave propagations [5]. To date,
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many models have described the porous media saturated by two immiscible fluids, such as
Biot–Gassmann–Wood (BGW) theory [6–8], White’s model [9], Johnson’s model [10], the
Biot–Rayleigh (BR) theory [11], Santos’s model [12] and Lo’s model [13,14]. Among them,
the BGW theory is based on the effective media theory, which can be used at low frequen-
cies [15]. The BR, White, and Johnson’s models describe patchy saturation’s mesoscopic
dissipation mechanisms [16]. Santos and Lo’s models are the theory of the unsaturated
porous media, considering both changes in capillary pressure and inertial and viscous
coupling. Santos’s model is derived on the Lagrangian description, and Lo’s model is
deduced on the Eulerian description. Compared with Santos’s model, Lo’s model derives
from basic equations of the dynamic problem and the equation of state, and provides a
detailed mathematical description of viscous coupling parameters, so that the parameters
have clearer physical meaning. Currently, the BGW theory is commonly used in the seismic
monitoring of CGUS [17]. However, the essence of this model is still a fluid–solid porous
media, which replaces the parameters in Biot theory with the equivalent parameters of the
mixed fluid. As a result, the BGW theory ignores fluid–fluid interactions [18]. In contrast,
Lo’s model considers the coupling of fluid–fluid, which is more suitable to match the actual
situation of unsaturated porous media in CGUS. Lo [13,14] validated the correctness by
degenerating the model into the fully saturated porous media (Biot [6,7]; Berryman [19])
and the unsaturated porous media (Santos [12]; Tuncay [20]). Jardani [21] used Lo’s model
to analyze the acoustic propagation in the unsaturated porous media.

The fluid type, CO2 content, and dissolution are the key factors causing changes
in pore fluid parameters [22]. In the monitoring of CGUS, many scholars used Batzle’s
model [23] to describe the gas dissolution effect on fluid parameters [17]. Batzle’s model
was proposed for hydrocarbon gases. The influence of hydrocarbon gases and CO2 on oil,
however, are different [24]. Therefore, it is inaccurate to treat CO2 as a hydrocarbon gas.
Han developed a preliminary model to explain the velocity and density of live oil (Han’s
model) [24], but the model has limits when used with other oil samples.

The above studies show that it is necessary to understand the acoustic propagation of
unsaturated porous media for seismic monitoring. The current models, however, cannot
consider the influence of fluid–fluid interactions and is not accurate enough to describe the
physical parameters of the CO2–oil mixtures. Therefore, to precisely illuminate the acoustic
properties of porous media during CO2 injection, a more realistic model, including the pore
fluid parameter models and the unsaturated porous media model should be used.

In this paper, we selected Lo’s model to describe the acoustic propagation in un-
saturated porous media, considering the dissolution effect of CO2. With the change of
frequency and CO2 saturation, we calculated the phase velocities and attenuations of four
mode waves (three types of compressional waves and one shear wave). We analyzed the
sensitivity of phase velocities and attenuations of P1 and S, which reflected the importance
of pore fluid parameters for monitoring. Furthermore, we modified the live oil’s density
and velocity models and validated them against experimental data. Finally, we compared
the application of the fluid parameter models before and after the correction.

2. Fundamental Theory

Considering the influences of inertial coupling and viscous coupling, the motion equa-
tion of unsaturated porous media can be obtained, which is aided by the closure relation
for porosity change and the balance of mass and momentum. For a more concise represen-
tation, the equation of motion is expressed as the vector–matrix form (Equation (1)). The
description of the 3D three-component form of the motion equation is given in Appendix B.

ρ
..
u + A

..
u + R

.
u = M∇∇ · u + N∇ · ∇u, (1)

where u =

[
→
u

s
,
→
u

1
,
→
u

2
]T

denotes the displacement matrix; the superscripts s, 1, and 2 refer

to the solid grain, the nonwetting fluid, and the wetting fluid, respectively; ρ denotes the
mass densities matrix; A denotes the inertial coefficients matrix; R denotes the viscous
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coefficients matrix; M denotes the rigidity moduli matrix; and N denotes the shear moduli
matrix. ρ, A, R, M, and N are given by [14]:

ρ =

 ρs(1− φ) 0 0
0 ρ1S1φ 0
0 0 ρ2S2φ

, M =

 a11 + N/3 a12 a13
a12 a22 a23
a13 a23 a33

, N =

 N 0 0
0 0 0
0 0 0

,

A =

 −A11 − 2A12 − A22 A11 + A12 A12 + A22
A11 + A12 −A11 −A12
A12 + A22 −A12 −A22

,

R =

 −R11 − R22 − R12 − R21 R11 + R21 R12 + R22
R11 + R12 −R11 −R12
R21 + R22 −R21 −R22

,

(2)

where ρl denotes the density of phase l, l = s, 1, 2; φ is the porosity; S1 is the saturation
of nonwetting fluid, S2 is the saturation of wetting fluid, and S2 = 1 − S1; N is the shear
modulus; A11 denotes the inertial coupling between solid grain and nonwetting fluid, A22
denotes the inertial coupling between solid grain and wetting fluid, and A12 is the inertial
coupling between nonwetting fluid and wetting fluid; R11 represents the viscous coupling
between solid grain and nonwetting fluid, R22 denotes the viscous coupling between solid
grain and wetting fluid, R12 and R21 are the viscous coupling between nonwetting fluid
and wetting fluid; aij (i, j = 1, 2, 3) denotes the elastic coefficients, which are derived from
the closure relation for porosity change, the balance of mass, and the equation of state, as
shown in Appendix A. We list Aij, Rij, and aij in Appendix A, which are functions of rock
parameters (φ, κ, Ks, N, Km, ρs) and fluid parameters (K1, K2, ρ1, ρ2, S1, S2).

According to the Helmholtz theorem, applying the divergence and rotational oper-
ators to the motion equation (Equation (1)), we can obtain the governing equations of
compressional and shear waves:

ρ
..
ϕ+ A

..
ϕ+ R

.
ϕ = (M + N)∇2ϕ,

ρ
..
ψ+ A

..
ψ+ R

.
ψ = N∇2ψ.

(3)

where ϕ =
[
ϕs, ϕ1, ϕ2]T , ϕl = ∇·→u

l
represents the potential functions of compressional

waves, l = s, 1, 2; ψ =

[
→
ψ

s
,
→
ψ

1
,
→
ψ

2
]T

,
→
ψ

l
= ∇×→u

l
represents the potential functions of

shear waves, l = s, 1, 2. The definition of potential functions in porous media also refers to
Refs. [7,12,25].

Next, the governing equations (Equation (3)) are subjected to the steady-state analysis,
i.e., the single-frequency plane waves (Equation (4)) are substituted into the governing
equations (Equation (3)). The final governing equations of compressional and shear waves
can be written as Equation (5).

ϕs

ϕ1

ϕ2

 =

αs

α1

α2

 exp
[
i
(
kp·r−ωt

)]
,


→
ψ

s

→
ψ

1

→
ψ

2

 =


→
β

s

→
β

1

→
β

2

 exp[i(ks·r−ωt)], (4)

where αl and
→
β

l
are wave amplitudes; ω is the angular frequency; kp and ks are the complex

wave number vectors of the compressional and shear waves, respectively.
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[
−ω2(ρ+ A)− iωR + kp

2(M + N)
] αs

α1

α2

 = 0,

[
−ω2(ρ+ A)− iωR + ks

2(N)
]

→
β

s

→
β

1

→
β

2

 = 0

(5)

Therefore, we can obtain the dispersion relation of compressional (Equation (6)) and
shear waves (Equation (7)).

det
(
−ω2(ρ+ A)− iωR + kp

2(M + N)
)
= 0 (6)

det
(
−ω2(ρ+ A)− iωR + ks

2(N)
)
= 0 (7)

Since the dispersion equation of compressional wave (Equation (6)) is a cubic poly-
nomial in ω2/kp

2, there exist six complex roots of kp. With the physical constraint that
the elastic wave always diminishes along the propagation direction (i.e., Im (kp) > 0), we
finally obtained three complex roots of Equation (6) about kp. Similarly, we obtained one
complex root about ks in the dispersion equation of shear wave (Equation (7)). We used
phase velocity v and inverse quality factor Q−1 to analyze the dispersion and attenuation,
which can be written as

vi = ω/Re(ki), i = P1, P2, P3, S,
Qi
−1 = 2Im(ki)/Re(ki), i = P1, P2, P3, S,

(8)

where ki denotes the roots of dispersion equations of compressional (Equation (6)) and
shear waves (Equation (7)).

In summary, there are three types of compressional waves (the first compressional
wave (P1), the second compressional wave (P2), and the third compressional wave (P3),
respectively) and one shear wave (S) in unsaturated porous media. The phase velocities
and attenuations of each mode wave are influenced by various factors, including rock
parameters and fluid parameters. We will analyze the propagation characteristics of each
mode wave via Lo’s model to explore the acoustic response of the unsaturated porous
media during CGUS.

3. Numerical Analysis
3.1. Wave Modes Characteristics

According to the results in Section 2, we calculated the propagation characteristics
of acoustic waves at different CO2 saturations and frequencies, including phase velocities
and attenuations in the porous media. The physical parameters of the porous media
are presented in Table 1. In particular, we consider the dissolution effect on the live oil
parameters, given by Batzle’s model [23].

Table 1. Physical parameters of unsaturated porous media.

Type Parameters Value

Utsira sand

grain bulk modulus, Ks (GPa) 40 1

frame bulk modulus, Km (GPa) 1.37 1

shear modulus, N (GPa) 0.82 1

grain density, ρs (kg/m3) 2600 1

porosity, φ 0.36 1

permeability, κ (D) 1.6 1
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Table 1. Cont.

Type Parameters Value

Nonwetting fluid—CO2,
(p = 10.3 MPa, T = 45 ◦C)

density, ρ1 (kg/m3) 539.07 2

bulk modulus, K1 (MPa) 30.6 2

viscosity, µ1 (µPa · s ) 38.9 2

CO2 gravity, G 1.5281 2

Wetting fluid—oil,
(p = 0.101 MPa, T = 25 ◦C)

density, ρ0 (kg/m3) 799 3

viscosity, µ0 (mPa · s ) 2.76 3

Molar Weight, MW (g/mol) 223 3

1 The physical parameters of the solid grain are from Ref. [17]. 2 The physical parameters of the nonwetting fluid
are from Ref. [26]. 3 The physical parameters of the wetting fluid are from Ref. [27].

We first examine the impact of CO2 dissolution on the pore fluid’s phase state. Follow-
ing Carcione’s work [17], we assume that when the CO2 content in the pore is greater than
the maximum CO2 dissolution of crude oil, there are two phase fluids in the pore (live oil
and free CO2); otherwise, the pore contains one type of fluid (live oil). It can be written
as [17]

S′1 =

{
0, S1 < Sc
S1−Sc
1−Sc

, S1 ≥ Sc
, (9)

where S1
′ denotes the actual CO2 saturation after CO2 dissolution; S1 denotes the saturation

of injection; Sc denotes the critical saturation, calculated by the maximum dissolution of
crude oil, which can be written as

Sc =
ρCO2sρoilGOR

ρCO2ρ0 + ρCO2sρoilGOR
, (10)

where ρCO2s and ρCO2 are the density of CO2 at the surface (15.6 ◦C and 1 atm) and reservoir,
respectively; ρ0 and ρoil are the density of crude oil at the surface and reservoir, respectively;
GOR is the gas–oil ratio at the standard condition, which can be calculated by Emera [28].

According to the above description, we calculated the phase velocities and attenuations
as functions of frequency and CO2 saturation. The results are shown in Figures 1 and 2.
Firstly, the P1 and S waves propagate fairly fast and have low attenuation. Thus, the
waves can be observed at the seismic exploration (10–100 Hz) frequency. In contrast, the
P2 and P3 waves propagate slowly and have high attenuation, which is difficult to be
observed at the seismic exploration frequency. Secondly, as frequency increases, the phase
velocities of all four mode waves increase, and the attenuations of P2 and P3 decrease. That
is because the effect of inter-fluid viscosity dominates in the low-frequency range. As the
frequency increases, the inertial effect becomes increasingly dominant. Obviously, due to
the dissolution effect, the phase velocities and attenuations of the four mode waves all
change significantly at the critical saturation (42% in this case). When CO2 saturation is less
than critical saturation, the pore contains only one fluid. At this time, P3 has low velocity
and high attenuation in the entire frequency range, without fluid–fluid interaction. When
the critical saturation is exceeded, two fluids in the porous media interact with each other,
resulting in a decrease in P2 velocity and an increase in P3 velocity. In addition, with the
increase in CO2 saturation, the transition zone between low and high frequencies of P3
moves toward high frequency, while P2 and S move toward low frequency.
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From Figures 1 and 2, we chose a typical seismic frequency (f = 100 Hz) to ensure each
mode wave propagates more clearly. Figure 3 displays the results for the P1 wave and S
wave. It can be observed in Figure 3 that when CO2 saturation increases, the S velocity
increases, while the P1 velocity decreases. At high CO2 saturation, the change in P1 velocity
is not obvious. This results from both the density and velocity of the pore fluid mixture.
The pore fluid velocity significantly impacts the P1 velocity, which decreases as the fluid
velocity decreases. Only the pore fluid density affects S velocity, which increases as the
fluid density decreases. Due to the dissolution effect, the critical saturation marks the point
at which the pore fluid changes from a single phase to two phases. When the free CO2
appears, the attenuations of P1 and S increase rapidly. With the above results, we can
expect that Lo’s model can be used for the seismic monitoring of CO2 migration.
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3.2. Sensitivity Analysis

Numerous factors influence the phase velocities and attenuations of the four mode
waves, including CO2 saturation, porosity, permeability, density, and velocity of pore fluid.
The sensitivity can be used to describe the effect of each parameter on the phase velocities
and attenuations at different frequencies. The sensitivity can be expressed as [29]

Sp(v) =
p∂v
v∂p

, Sp

(
Q−1

)
=

p∂Q−1

Q−1∂p
, (11)

where p denotes the media parameter; Sp denotes the sensitivity of p; and v and Q−1 denote
the velocity and inverse quality factor, respectively.

Sensitivity greater than or less than 0 indicates that the velocities and attenuations
increase or decrease with increasing parameters. The sensitivities of different parameters to
the velocities and attenuations of P1 and S are shown in Figure 4. Among them, the initial
value of CO2 saturation is taken as 0.5, and the initial values of other parameters are taken
from Table 1.

The sensitivity of P1 and S velocities are independent of the frequency to all parameters
in Figure 4. Among them, the increase in porosity increases the velocities of P1 and S,
and the increase in CO2 saturation decreases the velocity of P1 and increases the velocity
of S. At the same time, permeability has almost no effect on the velocities of P1 and S.
Moreover, the attenuations of P1 and S show the same pattern of sensitivity to pore fluid
density, porosity, and permeability. Notably, the sensitivity of P1 and S attenuations to
CO2 saturation is higher than other parameters in Figure 4c,d, and the attenuation of P1
is more sensitive than that of S at seismic frequency. It indicates that using attenuation to
monitor CO2 migration is feasible. In addition, whereas the velocity of CO2 and oil only
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affects the velocity and attenuation of P1 wave, the density has an impact on the velocities
and attenuations of both P1 and S waves, which corresponds to the analysis in Figure 3.
Obviously, the sensitivity of P1 to the pore fluid velocity is higher than that to the pore
fluid density.
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Figure 4. The sensitivities of velocities and attenuations of P1 and S to different parameters, including
CO2 density (ρCO2) and velocity (vCO2), live oil density (ρOil) and velocity (vOil), CO2 saturation (SCO2),
porosity (φ), and permeability (κ): (a) P1 velocity; (b) S velocity; (c) P1 attenuation; (d) S attenuation.

In CGUS, CO2 saturation, the ultimate inversion result of seismic monitoring, is the
underlying cause of the change in acoustic propagation characteristics. Therefore, we
focus on the sensitivity of CO2 saturation to the acoustic response, which represents the
inversion accuracy of monitoring CO2 migration. Figure 5 shows the sensitivity of P1 wave
and S wave phase velocities to different CO2 saturations, corresponding to the change
in Figure 3. With CO2 saturation increases, the sensitivity of the S velocity increases,
while the sensitivity of P1 velocity initially increases and then decreases. Near the critical
CO2 saturation, the P1 velocity is most sensitive. It indicates that the closer to the critical
saturation, the more precise the inversion of P1 velocity. Further, the inversion of P1 velocity
is less reliable, and the inversion of S velocity is more reliable with higher CO2 saturation.
Therefore, the combined inversion of P1 and S can achieve better monitoring results.
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For the porous media with certain porosity, the propagation characteristics of P1 and S
are related to pore fluid parameters. Moreover, the density and velocity of the pore fluid
are affected by various factors, such as temperature, pressure, and CO2 saturation. It is an
effective way to use the more precise fluid parameter model to reduce the uncertainty of
seismic monitoring simulations.

4. Fluid Parameters Model Correction
4.1. Density Correction for the CO2–Oil Mixture

Han developed an empirical model for the density of the gas–oil mixture [30], by
introducing the effective density of the gas. On the basis of Han’s work, we proposed a
density model for the CO2–oil mixture, through the ideal mixing rule and the effective
density of CO2 (Saryazdi [31]). The model is expressed as follows:

ρo,CO2 =
ρ0 + WCO2

1 + WCO2/ρa,CO2
+ ∆ρP,T + ∆ρXCO2 , (12)

where ρa,CO2 denotes the effective density of CO2; WCO2 denotes the dissolved mass of CO2;
∆ρP,T and ∆ρXCO2 are temperature–pressure and solubility correction factors, respectively.
The above parameters can be written as [30,31]



Appl. Sci. 2022, 12, 8899 10 of 19

ρa,CO2 = 2.3349 exp[−0.003157(T + 273.15)]· exp
{

4.12× 10−4P+
[−0.3233 + 0.001897(T + 273.15)]

[
1− exp

(
−1.37× 10−2P

)]}
,

WCO2 = 0.001223 ∗ GOR ∗ G,
∆ρP,T = ∆ρP − ∆ρT + b00 + b01T + b02T2 + (b10 + b11T)P,

∆ρXCO2 = b20 + b21XCO2,

(13)

where P is the reservoir pressure; T is the reservoir temperature; ∆ρP and ∆ρT are given in
Han [30]; bij(i, j = 0, 1, 2) is the fitting parameter, obtained from the experimental data in
Calabrese [32] and given in Table 2; XCO2 denotes the mole fraction of CO2 in crude oil.

Table 2. Fitting correction coefficients of temperature–pressure and solubility correction factors in
Equation (13).

bij j = 0 j = 1 j = 2

i = 0 4.034 × 10−3 1.319 × 10−4 −5.814 × 10−7

i = 1 −7.016 × 10−5 −1.286 × 10−6

i = 2 −5.85 × 10−4 2.477 × 10−2

Figure 6 depicts the measured values (Calabrese [32]) of density in the CO2–oil mixture,
compared with the density of Han’s model [24] and the modified model in this paper.
The correlation coefficient of Han’s model is 0.7548, and the modified model is 0.9807.
As shown in Figure 6, the predicted densities resulting from the modified model are
generally consistent with the experimental data. The modified model achieved better
application results.
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Figure 6. Comparison of model results with experimental data (Calabrese [32]), XCO2 = 0.2 (mole
fractions): (a) Han’s model; (b) the modified model.

To verify the applicability of the modified model, we compare the predicted densities
with measured densities in different oil samples, as shown in Figure 7. Due to the differences
in oil samples, environment, and other factors, the model prediction results may be slight
deviations from the experimental data. In this case, we could fit a correction for bij by
Table 2 and the experimental data. The solid lines in Figure 7 are the results of the corrected
model. In summary, compared with the density model of Han’s model, the modified model
for live oil’s density has a more efficient physical meaning and considers the effect of CO2
solubility. The modified model can be obtained by simple coefficient correction for a certain
oil sample, which has better applicability.
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4.2. Velocity Correction for the CO2–Oil Mixture

Han proposed a model for the velocity of the CO2–oil mixture at various temperatures,
pressures, and CO2 solubilities, expressed as [24]

V = A− BT + C
(

1− DP

1− D

)
+ FTP, (14)

where A, B, C, D, and F are functions of ρv_seu, given in Han [24]. ρv_seu denotes the velocity
pseudo density of live oil, written as [24]

ρa1 = Ms1 + Ms2 API + (Ns1 + Ns2 API) ln(G),
ρa2 =

[
Mg + Ng

(
1+WCO2/ρ0
1+WCO2/ρa1

)]
ρa1,

ρv_seu = ρ0+εWCO2
1+WCO2/ρa2

,
(15)

where API denotes the oil gravity, developed by American Petroleum Institute (API); Ms1,
Ms2, Ns1, Ns2, Mg, and Ng are experimental fitting parameters, which are related to the CO2
gravity (G) and the dissolution effect. ε is the effective gas parameter, which indicates the
contribution of the gas to the pseudo-liquid velocity, ε = 0.113 in this paper [24].

As can be seen in Figure 8a, Han’s model overestimates the velocities of the CO2–oil
mixture, which may result from the overestimation of the contribution of CO2 solubility to
pseudo density. We performed a parameter fitting correction for the parameters related to
CO2 solubility, including Ms1, Ms2, Ns1, Ns2, Mg, and Ng. In order to find the best correction
parameters, a part of the experimental data (Ratnakar [35]) was selected for parameter
fitting correction, and the others were used as the validation data of the corrected model.
The correlation coefficient (R2) was used to evaluate the reliability of the model predictions,
and the results are shown in Table 3. The combination of Mg and Ng has the best correction
effect, which can produce better predictions with fewer data. The fitted parameters of the
modified model are Mg = 8.8680, Ng = −8.5132. The results of the corrected model are
shown in Figure 8b.

In summary, this section proposes a modified method for the density and veloc-
ity models of the CO2–oil mixture, respectively. The density-modified model can be
referred to Equations (12) and (13), and the velocity-modified model can be referred to
Equations (14) and (15). Due to differences in regions and oil samples, there may be devi-
ations between the measured and predicted data. At this time, the parameters could be
corrected according to the specific experimental data (bij for the density model; Mg and Ng
for the velocity model).
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Table 3. Comparison of correlation coefficients (R2) of different correction parameters.

Range of Experimental Data
(46 Data Points in Total)

R2 of Correction
for (Mg, Ng)

R2 of Correction
for (Ms1, Ms2)

R2 of Correction
for (Ns1, Ns2)

P ≤ 40 MPa (22 data points) 0.9927 0.9634 0.9633
T ≤ 40 ◦C (23 data points) 0.9931 0.9629 0.9630

XCO2 ≥ 40% (15 data points) 0.9644 0.9637 0.9637
XCO2 ≥ 8% (31 data points) 0.9943 0.9637 0.9636

Random (20 data points) 0.9940 0.9636 0.9633
Random (10 data points) 0.9896 0.9637 0.9608

5. Propagation Characteristics under the Modified Model

Following the previous section, we obtained the modified models for live oil’s density
and velocity, which are the functions of temperatures, pressures, and CO2 solubility. It
provides a basis to accurately describe the changes of the pore fluid physical parameters
in CGUS. Figure 9 shows the phase velocities and attenuations of P1 and S waves at
different CO2 saturation and frequencies, combining Lo’s model and the modified models
of fluid parameters.

Comparing Figures 1, 2 and 9, it can be seen that the trend of wave velocities and
attenuations with frequency and CO2 saturation in Figure 9 is essentially unchanged, except
for the S velocity. In fact, the velocity of S is almost constant before the critical saturation
because of little change in the live oil’s density due to CO2 dissolution. After the critical
saturation, the velocity of S linearly increases with increasing free CO2. To show the effect
of fluid parameters models more obviously, we calculated the P1 and S phase velocities
and attenuations at the typical seismic frequency (f = 100 Hz), as shown in Figure 10. The
fluid parameters of Batzle’s model overestimate the attenuations of P1 and S. There is a
considerable variation in the prediction of S velocity, with a lower prediction for P velocity
at low CO2 saturation and a higher prediction at high CO2 saturation. The above results
indicate that the fluid parameters of Batzle’s model are inaccurate for characterizing the
physical parameters of the CO2–oil mixture.
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6. Conclusions

In this paper, we proposed Lo’s model to study the effect of CO2 injection on the
acoustic responses of the porous media containing two immiscible fluids. We calculated the
variation of phase velocities and attenuations of waves, with frequency and CO2 saturation.
In addition, we analyzed the sensitivities of phase velocities and attenuations to various
parameters, especially CO2 saturation. Moreover, we proposed a method to modify the
velocity and density models of the CO2–oil mixture based on experimental data. Finally,
the wave propagation was compared between Batzle’s model and the modified model
under Lo’s model. The conclusions are as follows:

1. There are four kinds of mode waves (three compressional waves and one shear wave)
in the unsaturated porous media with pore fluid composed by CO2 and oil. However,
only two mode waves, P1 and S, can be observed at seismic frequencies. The velocity
and attenuation characteristics are sensitive to CO2 saturation, and the combined P1
and S waves can monitor the CO2 migration more accurately.

2. In the analysis of acoustic wave modes, the accuracy of the features of pore fluid is
crucial. The pore fluid density has an effect on both the velocities and attenuations
of P1 and S, while the pore fluid velocity only has an effect on the velocity and
attenuation of P1.

3. The fluid parameter of Batzle’s model is based on hydrocarbon gas, which cannot
accurately describe the physical parameters of the CO2–oil mixture. Compared with
experimental data, the modified model can provide more exact data.

The numerical simulations show that Lo’s model, combined with the modified param-
eters models of live oil, can realistically describe the wave propagation characteristics of
unsaturated porous media. The velocities and attenuations of waves in unsaturated porous
media are closely related to CO2 saturation, considering the effect of dissolution, temper-
ature, and pressure. The model of pore fluid parameters and the theory of unsaturated
porous media in this paper can be used to explore the changing pattern of the acoustic field
after CO2 injection. Meanwhile, this study provides a more accurate basis to monitor the
security of CO2 injection in CGUS.
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Appendix A

The inertial coupling coefficients are expressed as [14]

A11 = −(Fs − 1)ρ1S1φ, A22 = −(Fs − 1)ρ2S2φ,
A12 = −0.1

√
Fs2ρ1S1ρ2S2φ2,

(A1)
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where Fs is the structure factor, which can be expressed as [36]

Fs = 0.5
(

1 +
1
φ

)
. (A2)

The viscous coupling coefficients are expressed as [14]

R11 = − 1+ξ
2ξ

µ1
κkr1

S1
2φ2, R22 = − 1+ξ

2ξ
µ2

κkr2
S2

2φ2,

R12 = 1−ξ
2ξ

µ2
κkr2

S1S2φ2, R12 = 1−ξ
2ξ

µ1
κkr1

S1S2φ2,
(A3)

where ξ denotes coupling coefficient of the fluid–fluid interface, ξ = 1 in this paper [37];
µl denotes the viscosity of fluid phase l, l = 1, 2; κ denotes the absolute permeability of
porous media; and krl denotes the relative permeability of fluid phase l, l = 1, 2, which can
be expressed as [38]

kr1 = S1
η
(

1− S2
1/m
)2m

, kr2 = S2
η
[
1−

(
1− S2

1/m
)m]2

, (A4)

where η and m are model fitting parameters, which can be obtained by experiment, η = 0.5,
m = 0.56 in this paper [39].

With the assumption of homogeneous media, the mass balance equations of unsatu-
rated porous media are expressed as [13]

∂[ρs(1−φ)]
∂t + ρs(1− φ)∇·

→
V

s
= 0,

∂(ρlSlφ)
∂t + ρlSlφ∇·

→
V

l
= 0, l = 1, 2,

(A5)

where
→
V

l
denotes the vibration velocity of phase l, l = s, 1, 2. According to the equation of

state, the mass balance equations can be written as [13]

∂ps
∂t = − Ks

1−φ
∂(1−φ)

∂t − Ks∇·
→
V

s
,

∂pl
∂t = − Ks

Sl φ

(
φ ∂Sl

∂t + Sl
∂φ
∂t

)
− Kl∇·

→
V

l
, l = 1, 2,

(A6)

where Kl refers to the bulk modulus of phase l, l = s, 1, 2; ps is the mean principal dilatational
stress in the solid grain; p1 and p2 are the pressure in nonwetting fluid and wetting fluid,
respectively. In the equations of mass balance (Equation (A6)), ∂Sl/∂t can be expressed
through the capillary pressure (Equation (A7) [40]), and ∂φ/∂t can be expressed through
the closure relation for porosity change (Equation (A8)).

∂S1
∂t = 1

p′c

(
∂p1
∂t −

∂p2
∂t

)
, ∂S2

∂t = − ∂S1
∂t ,

p′c =
ρ2g
mnχ

(
S2
−1/m − 1

)−m
S2
−(1/m+1),

(A7)

where p′c represents the first-order derivative of capillary pressure on the nonwetting fluid
saturation; m, n, and χ model-fitting parameters, m = 1 − 1/n, n = 2.28, χ = 0.69 in this
paper [39].

∂φ

∂t
= δs∇·

→
V

s
+ δ1∇·

→
V

1
+ δ2∇·

→
V

2
, (A8)

where δs, δ1, and δ2 are the nondimensional parameters of the closure relation for porosity
change, which can be obtained by the “unjacked experiment” and “jacked experiment”,
which can be written as [14]

δs =
(1−φ−Km/Ks)Ks

Ks+M2(Km/Ks−1+φ)/M1
,

δ1 = K1

(
S1 +

K2
p′cS2

)
δs/(Ks M1), δ2 = K2

(
S2 +

K1
p′cS1

)
δs/(Ks M1),

(A9)
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where Km denotes the bulk modulus of the solid frame; and M1 and M2 are parameters
related to capillary pressure, which can be written as [14]

M1 = −
(

K1

p′cS1
+

K2

p′cS2
+ 1
)

, M2 =
K1K2

p′cφS1S2
+

K1S1

φ
+

K2S2

φ
. (A10)

Finally, with the assumption of small deformation, the linear stress–strain relations
can be expressed as Equation (A11), after integrating Equation (A6).

−(1− φ)ps
−φS1 p1
−φS2 p2

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

∇·

→
u

s

→
u

1

→
u

2

, (A11)

where aij denotes the elastic coefficient, which can be expressed as Equation (A12) [14].
According to Tuncay’s [20] work, the solid grain’s mean principal dilatational stress (ps)
can be replaced by the macroscopic stress tensor of solid grain (ts).

a11 = Ks(1− φ− δs), a12 = a21 = −Ksδ1, a13 = a31 = −Ksδ2,
a22 = − 1
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(A12)

Appendix B

According to the balance of momentum, the equation of motion of unsaturated porous
media can be written as Equation (A13), under the consideration of inertial coupling and
viscous coupling.
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(A13)

In addition, the linear stress–strain relations can be expressed as

ts
ij = 2Nεij + [(a11 − 2/3N)e− a12θ1 − a13θ2]δij,

φS1 p1 = −a12e− a22θ1 − a23θ2,
φS2 p2 = −a13e− a23θ1 − a33θ2,

(A14)

where εij is the strain component of solid grain; e denotes the volumetric strain of solid
grain, which is the same as ϕs; θl represents the volume content change of phase l, l = 1, 2.
The above parameters can be expressed as

εij =
(

us
i,j + us

j.i

)
/2, e = ε11 + ε22 + ε33,

θ1 = −u1
i,i, θ2 = −u2

i,i.
(A15)

Substituting the stress–strain relationship (Equation (A14)) into the equation of motion
(Equation (A13), the motion equation of displacement form can be obtained. As an example,
we only develop the motion equation of solid grain in the paper, which can be expressed as
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Therefore, the motion equation of the unsaturated porous media is the same in all three direc-
tions. Furthermore, the motion equation of the solid strain (Equation (A16)) can be written as the
vector form
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(A17)

Under the above derivation, the motion equation (Equation (A17)) yields the same result as
Lo’s work [14]. Moreover, the motion equation can be expressed in vector–matrix form, as shown in
Equation (1).

Appendix C

Typically, the injected CO2 is in a supercritical state, which is more soluble, less viscous, and
has a higher density. The phase state of CO2 is sensitive to temperature and pressure, as shown in
Figure A1. The supercritical point of CO2 is 7.38 MPa and 31.1 ◦C. Therefore, with a geothermal
gradient of 30 ◦C/km and a pressure gradient of 10 MPa/km [17], the depth of injection should be
preferably higher than 1000 m (as shown by the black line in Figure A1).
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