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Abstract: We examine the nonlinear response of two planar pendula under external and kinematic
excitations, which are very relevant as paradigmatic models in nonlinear dynamics. These pendula act
under the action of an additional constant torque, and are subjected to one of the following excitations:
a further external periodic torque, and a vertically periodic forcing of the point of suspension. Here,
we show the influence of the constant torque strength on the transition to chaotic motions of the
pendulum using both Melnikov analysis and the computation of the basins of attraction. The global
bifurcations are illustrated by the erosion of the corresponding basins of attraction.

Keywords: nonlinear oscillations; pendulum; Melnikov’s method; chaos

1. Introduction

There are dynamical systems that are very sensitive to small changes in the initial
conditions. Therefore, subtle changes in the initial parameters may lead to a large deviation
in the path, hindering the long-term predictions of the systems. This kind of systems
are called chaotic, and their equations of motion have no analytical solutions. For this
reason, geometrical tools are used to provide accurate information of the dynamics of the
systems. A very useful geometrical technique is the basin of attraction [1], i.e., the set of
initial conditions leading to the long-time behavior of a dynamical system that approaches
an attractor. Precisely the basins of attraction help in visualizing whether the system has
chaotic or regular behavior. On the other hand, the Melnikov method [2-6] constitutes an
analytical method that provides the threshold parameter for which homoclinic intersections
and hence chaos occur. To better understand the previous statement, we recall that a phase
space orbit of a dynamical system, which joins two different saddle points, is called a
heteroclinic orbit. If a phase space orbit connects the same point, then the orbit is called
a homoclinic orbit. Furthermore, the stable manifold of a saddle point, x*, is defined as
the set of initial conditions xy such that x(t) — x* as t — oo. In the same manner, the
unstable manifold of a saddle point, x*, is defined as the set of initial conditions xy such
that x(t) — x* as t — —oo. The Melnikov method is a first-order perturbative method
that gives the condition for the crossing of the stable and unstable manifold. When this
happens, the intersection constitutes a homoclinic point, and the Smale-Birkhoff theorem
implies the existence of infinitely many homoclinic intersections that indicate the presence
of horseshoe-type chaos in its dynamics. The method provides a general expression for
the critical parameters for the occurrence of horseshoe type chaotic dynamics. This implies
that the dynamics is associated with the phenomenon of transient chaos, and although
chaos might not be permanent, it can leave its fingerprint in the phase space by showing
fractality in the basins of attraction [7].

Since Galileo’s time, the pendulum [8,9] has fascinated physicists and has become one
of the paradigms in the study of physics and natural phenomena. Furthermore, it is one of
the simplest nonlinear systems having chaotic dynamics, and it constitutes a good model
to illustrate the transition from regular to chaotic dynamics. To summarize, the interest in
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the pendulum comes from its value as a notable example to research for new phenomena
and from its wide range of applicability [10-13]. Recently, pendulum systems have been
examined under the influence of the external magnetic field [14-16]. The organization of
this paper is as follows. In Section 2, we describe our pendula systems. The study of the
vibration of the pendula in the limit of very fast excitation is presented in Section 3. The
Melnikov method as a tool to understand the transition to chaotic behavior of these systems
is discussed in Section 4. The basins of attractions and their structures are studied in detail
in Section 5. Lastly, a thorough discussion of the paper with the main results is presented
in Section 6.

2. Description of the Models

In the next case, we deal with is to study the dynamics and topology of the classical
pendulum by using nonlinear tools of dynamical systems described by ODEs [17-19],
many of them appearing in any standard course on classical mechanics for undergraduate
students [20]. The main hallmark of these systems is that they can present chaotic behavior
for certain parameter values and therefore their dynamics become very complex. Equations
of motion are also typically nonintegrable, and the analysis of their dynamics and topology
becomes quite complicated.

2.1. Periodically Driven Pendulum with a Torque
By simply applying Newton’s second law, a periodically driven pendulum with a
torque (Figure 1) is given by the equation of motion [8].

ml?$ + k¢ + mglsing = N + Fsin wt, 1)

where m and | denote the mass of the bob and the length of the pendulum, k is the damping
coefficient, g is the gravity constant, and N is the extra constant torque [21]. The external
periodic forcing is F sin wt, which from now on we call harmonic torque component with
frequency w. The term mgl sin ¢ is the y—vertical component of the gravity. For simulation
convenience, we consider the dimensionless version of this equation by using the following
transformation: & = ﬁ, f= ﬁ, V= % (see Coullet et al. [22]), wy = +/g/I where wy is
the natural frequency, that we fix as wg = 1. Therefore, the dimensionless equation of the
pendulum reads as follows:

¢+ ad +sing = v + fsin wt. 2)

N

Fsin(ot) ~_| ~

Figure 1. A schematic of a periodically driven pendulum.

In order to provide information on the dynamics of our pendulum, we plot some
pictures of the trajectories and the stroboscopic map [8].

Our stroboscopic map corresponds to the Poincaré map with periodic excitation. This
can be defined as the intersection of a periodic orbit in the space of a continuous dynamical
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system with a certain lower-dimensional subspace, called the Poincaré section, transversal
to the flow of the system. A Poincaré map can be interpreted as a discrete dynamical system
with a state space that is one dimension smaller than the original continuous dynamical
system. This map qualitatively shows if the system is chaotic or not depending on the
state points distribution. To define a stroboscopic map, we can consider a periodic orbit,
with initial conditions within a section of the physical space. The periodic orbit leaves
that section afterwards and we record the point at which it returns after one period. We
repeat this procedure n times where n — co and therefore we complete the stroboscopic
map. If the whole intersection is a set of r discrete points, where r is an integer and less
than 7, the trajectory is periodic of period equal to r. Otherwise, the trajectory is chaotic. A
stroboscopic map is indeed a special case of a Poincaré map for periodic systems as in the
case of pendulum oscillations. The distinguishing feature is that a given phase of the driver
period is used for mapping (instead of some other marker event like a local maximum or a
zero crossing). In our case, as the driving term is a sin(wt) term, we build the stroboscopic
map by mapping the state of the system in intervals of 27t time units.

Figure 2a,b,a’,b’ represent the numerical trajectories and the stroboscopic maps of the
periodically driven pendulum with a torque. We observed different dynamical behaviors
depending on the parameter values showing in phase portrait size and x mirror symmetry.
We fixed the parameter values as « = 0.15, f = 0.25, w = 1 for both cases, while v = 0
in Figure 2a,a” and v = 0.55 in Figure 2b,b’. Figure 2b,b’ clearly notes the external torque
influence where periodic motions are present.

g @ 1 @
> 0 > 0
A -1
-1 0 1 1 0 1
= X
1 (b) \ )
> 0 >0
-1 1
4 0 1 | 0 1
X X

Figure 2. Numerical plots of the periodically driven pendulum with a torque, which equation is
¢+ ad+sing = v+ fsinwt. We chose the parameter values « = 0.15, w = 1, and different values
of v. (a,b) Trajectories; (a’,b’) stroboscopic maps. The effect of the torque is observed in (a,a’), where
v = 0, and in (b,b"), where v = 0.55. Here, X and Y represent angular displacement and velocity,
respectively.

2.2. Vertically Excited Parametric Pendulum with a Torque

In the next case, we present the vertically excited parametric pendulum with a torque
that has a suspension point subjected to a vertical periodic kinematic excitation. This kind



Appl. Sci. 2022,12, 8876

4 of 14

of pendulum is also a classical example of chaotic system induced by the motion of the
suspension point [9,23]; therefore, its dynamics is very rich and complex.
Figure 3 is given by the equation of motion [24]:

mi?$ + k¢ + m(gl — %) sing = N, @)

where m and I denote the mass of the bob and the length of the pendulum, k is the damping
coefficient, g is the gravity constant, and N is the extra constant torque. Additionally,
x(t) = asinwt represents the vertical periodic forcing of the suspension point of amplitude
a and frequency w. The dimensionless form of this equation obtained dividing both sides
of Equation (3) by mi?, is the following:

¢+ ap + (1+yw?sinwt) sing = v, (4)

where wy = +/g/I and as in the first model, its value is taken as wy = 1, & = k/(mi?),
v =a/land v = N/(ml?).

In the case of the absence of the excitation terms (in Equations (2) and (4)) the shape of
the potential can be expressed as:

V(gp) =1—cos¢ +ve. )

Figure 3. A schematic of the vertically excited parametric pendulum.

This potential function is plotted in Figure 4 for different values of the torque v = 0.0,0.2,
and 0.4. Term v breaks mirror symmetry V(¢) = V(—¢).

Figure 5a,b,a’, b’ represent the numerical trajectories and the stroboscopic map of the
vertically excited parametric pendulum with a torque. Again, on the basis of corresponding
phase portraits, we observed some differences in dynamical responses depending on
the parameter values. However, the Poincaré maps are represented by singular points
informing about the agreement between system input and output periodicity (similarly as
in Figure 2). We fixed the parameter values as « = 0.15, ¥ = 1, w = 1 for all cases, while
v = 0in Figure 5a,a’, and v = 0.6 in Figure 5b,b’.

Both pendula are often used as paradigmatic models of chaotic systems. This means
that a tiny change in the initial parameters can cause huge changes in the dynamics of the
system after a short period of time, as we show later. Then, after introducing the models of
the pendula, we start the study of the excited pendulum with a torque in the limit of fast
vertical kinematic oscillations to show how this kind of oscillations can affect the dynamics
of the system and the potential shape.
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Figure 4. Plot of the potential function V(¢) = 1 — cos ¢ + v¢ for v = 0.0, 0.2 and 0.5. Note that v > 0
(denoted with the dashed line) makes the potential assymetric with respect to the axis ¢ = 0.
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Figure 5. Numerical plots of the vertically excited parametric pendulum with a torque (Equation (4))
with parameter values « = 0.15, v = 1, w = 1, respectively. (a,b) Trajectories, (a’,b") stroboscopic
maps. The effect of the torque can also be observed, since v = 0 in (a,a’), and v = 0.6 in (b,b”). X and
Y represent angular displacement and velocity, respectively.

3. Vibration of the Parametrically Excited Pendulum with a Torque in the Limit of Very
Fast Excitation

Here, we examine the limit of fast kinematic vertical excitations of the vertically excited
parametric pendulum with a torque (Equation (4)). Namely, the small amplitude v < 1
and large frequency w/wyp >> 1 enable to perform the system averaging. Using the method
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of direct separation of motions [25], we introduce slow z(7) and fast coordinates ¥(7, 1),
where T = wt is the dimensionless time that we use in order to simplify the equations:

#(w) =) + (5 )w(m ), ©

where a slow time 1y = 7, while 7y is a fast time 71 = (1/w)T and the time derivatives are
defined respectively

dr _oxdn  oxdn ox  1ox . 1, @
dt 91 0T 0T 9T 0Ty wITf w”’

where dx/d7) = % and dx/d1y = x’. Additionally, the fast coordinate should fulfil the
vanishing average condition:

27
90 =5 [ wrmdr=0 ®

By substituting Equations (6)—(8) into Equation (4) with the Taylor expansion of
sin(z + L) and some algebra, we obtain:

" = ywsint — (3}) (Z+2¢' +a(z+¢') +sinz — ywpcoszsinz —v) + O(w).  (9)

After averaging (and using Equation (8)), the final equation of motion for a slow
motion can be expressed as (see [25], where v = 0):

1
Z+az+ (1 + E(’yw)2 cos z) sinz =0, (10)

producing new equilibria at z = %7t corresponding to an inverted pendulum.
In our more general case, the effective potential V,¢(z) in the limit of very high
frequency w can be written as:

(yw)?

Verp(z) =1 —cosz — cos2z — vz, (11)

which is plotted in Figure 6b.

N

(a)

N W

0 . 5
d/r zln

Figure 6. The unperturbed (Equation (5)) potential V (¢) is shown in panel (a), and in panel (b) the
effective potential V¢ (z) of the vertically excited parametric pendulum with a torque (Equation (11))
in the limit of large w (for yw = 3) and v = 0.2. In that case, the fast oscillations stabilize the motion
around z ~ 0 and +¢ (inverted pendulum). The effective potential is asymmetric because of a
nonzero torque v # 0. z; and zp ~ 7t (modulo 277) denote the new minima for the effective potential
corresponding to the inverted pendulum.
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4. Melnikov Analysis

Here, we continue the study of our physical systems by applying Melnikov analysis
in order to find the threshold parameter values for which the systems possess homoclinic
chaos. The first step to begin with Melnikov analysis is to assume that damping param-
eter « and excitation amplitudes f (in the periodically driven pendulum with a torque)
and 7 (in the vertically excited parametric pendulum with a torque) are fairly small, and
a first-order perturbation could be used. By introducing a small parameter €, we pro-
duce the substitutions &« = e& and v = €%, and we can rewrite the equations of motion
(Equations (2) and (4)) as the two differential equations that we can find in Table 1, in which
vy is the angular velocity.

The corresponding Hamiltonian of the unperturbed system (¢ = 0) is

2
Ho(¢) = L +Vv(9), (12)

where V(¢) = 1 — cos ¢ + v¢ is the unperturbed potential plotted in Figure 4. For v = 0,
V(¢) corresponds to the potential of the pendulum. In that case, we can find the heteroclinic
orbit connecting the saddle fixed points ¢ = £ as shown in Figure 7. In order to
evaluate the variation in the period, we obtain the reciprocal of Equation (12) and write
vy = 1/2V(¢) in the function of the unperturbed potential. Thus, the equation reads

dt 1 1
- - = - 13
dp  vp 2V(¢) 1

and its integral is

(14)

o :/difl’
0 V/2—2cos¢ '

where 1y absorbs the integration constant.

Table 1. The equations of the two pendulum models rewritten after the introduction of small
parameter €. The tilde is neglected in further notation.

Periodically Driven Pendulum with a Torque  Vertically Excited Parametric Pendulum with a Torque

p=vp P=vp
0y = —exp —sing + v+ ef sinwt vy = —ead — (1 + eyw?sinwt)sing + v

(a)

Figure 7. Schematic plots of the stable W;s and unstable W,, manifolds as perturbed heteroclinic (for
v = 0, Figure 4, red curve (a)) and homoclinic orbits (for v > 0 Figure 4, blue curve (b)). The points in
phase space p1, p2, and p denote the corresponding saddle fixed points. Dashed lines correspond to
unperturbed cases. d defines the shortest distances the stable and unstable manifolds. d = 0 implies
their cross-section and mixing of solutions.
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It is possible to integrate the above expression, and after some algebra, we obtain the
heteroclinic orbits

¢* = £2arctan(sinh 7)

2
p=f————. 15
% cosh(t — 19) (15
In Figure 8, we integrate numerically the equation
d
T—T= / ¢ . (16)
J /2 —2cos¢p +2vp

This expression corresponds to the case of the asymmetric potential with a nonzero
torque, v # 0.

(b)

0 0.5 1 =1 =05 0 0.5 1
o/n o/n

Figure 8. Computation of the heteroclinic (for the torque v = 0.0) and homoclinic (for the torques
v =0.2,0.4, 0.6) orbits in (a), and v = 0.02, 0.04, 0.06) in (b).

After adding perturbations, there is a split of the stable and the unstable manifolds,
denoted by Ws and Wy, so that they might intersect themselves creating a homoclinic point
and generating the appearance of Smale’s horseshoe chaos. The distance d(7) between the
stable and unstable manifolds of the perturbed system is calculated along a direction that
is perpendicular to the unperturbed homoclinic orbit. Then, the critical value for which
the transition from periodic motions to chaos appears is found by setting the distance d(7)
to zero. This distance is related to the first order to the Melnikov function M(7) in the
following manner d(7) = ¢(M(7) 4+ O(e)), where M(7) is given by:

M) = /jo ho(”,05) Al (9%, 03)d, (17)

where A defines the wedge product (d¢ A dvy = —dovy Ad¢, dp A d¢p = doy Adoy = 0),
hg is the gradient of the unperturbed Hamiltonian

hg = (—sin¢” +v)d¢ + vgdo, (18)
and h; is a perturbation form to the same Hamiltonian which can be written as
hy = (—avy — Yw? sin wt) sin p*d¢. (19)

It is important that h and /17 are defined on the homoclinic orbits (¢, vg) = (¢*, v5).
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Thus, Melnikov function M(t) reads:

[ee]
M(t) = Lw vf;)("r — TO)(ocv;;(T — 79) — yw? sinwT) sin ¢* (T — 19)dr. (20)

The condition for the intersection between the stable and unstable manifolds to happen
is clearly d(7) = 0, what implies that M(7) = 0. Hence, we can write that the condition for
the global homoclinic transition can be written as:

oM(T)
JaT

\/ M(1) =0 and #0. (21)

Lastly, for v = 0, the mathematical expression for the critical parameter is:

;o 4 w7
Ne=f/a= p—p smh(—2 ) (22)
"o 4 wr
N, =vy/a= Py smh(—2 ) (23)

We represent the corresponding Melnikov critical curves in Figure 9. In particular,
Melnikov critical curves 5, = f/a versus frequency w for the applied torques v = 0,
0.02, 0.04, 0.06 for the periodically driven pendulum with a torque, are represented in
Figure 9a—d. On the other hand, Melnikov critical curves 1 = v/« versus frequency w, for
v =0,0.2,0.4, 0.6, for the vertically excited parametric pendulum with a torque are plotted
in Figure 9e-h. For values of the parameters above the critical values represented in the
curve, the motion are chaotic, while become periodic otherwise. Interestingly, the curves
that are shown in Figure 9¢,f-h, for v # 0, could be caused by the more important influence
of longer homoclinic orbits comparing to the heteroclinic orbits. In fact, the asymmetric
potential makes the phenomenon of the resonance due to external perturbations are more
probable. Therefore, the motion of the system could suffer a direct transition to a rotation
regime, instead of showing chaotic solutions. The curves are reliable in the limit of small
forcing and damping parameters.

(a) il

: d b © \ /] | &)
v=0.0 | v=0.02/
36 3 o) / 36 v=0.04 | B
= &= || / = S
4 4 4 4f
2 N 2 2
05 1 15 2 0.5 1 15 2 0.5 1 15 2 0.5 1 15 2
(O] () [ (O]
T T 8 ] T E (h)
=0. v=0. v#0.4
3 v=00 3 g 36 36
= = = =
4 4 4 4
2 2 2 2
T 2 3 4 5 6 1 2 3 4 s 6 1 2 3 2 5 6 K T 2 3 ) 5
(O] (O] () (O]

Figure 9. Melnikov critical curves 7. = f/a (a-d) and % = v/« (e-h) versus frequency w for the
applied torques. (a—d) Periodically driven pendulum with a torque for the parameter values v = 0,
0.02, 0.04, 0.06. (e-h) Parametrically excited pendulum with a torque for the parameter values v = 0,
0.2, 0.4, 0.6. (c,f-h) It is possible to appreciate the effect of the torque in an asymmetric potential. In
fact, there are some regions for which chaos does not appear. In these regions, the effect of the torque
makes the motions of the pendula change from oscillations to rotations and vice versa. The curves
are reliable in the limit of small forcing and damping.

5. Evolution of the Basins of Attraction

The basins of attraction provide relevant information on both the topology and the
dynamics of the pendula. A basin of attraction [1] is the set of initial conditions that leads
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to a certain attractor of the system. When two or more attractors are present in the same
region of phase space, obviously we need to use different colors, each one for each basin.
Here, each basin is related with either a different mode of oscillation or rotation. The blue
and pink basins correspond to oscillations for lower values of the torque v. The darker
blue basins correspond to rotations for higher values of the torque v. We plot the basins of
attraction using the software DYNAMICS [26] for the pendula by setting the parameter
accordingly to the results of Figure 9. Figure 10a—d show the basins of attraction for the fixed
values of the parameter, « = 0.15 and w = wy = 1 and different values of the parameters
fand v. It is possible to see that the choice of these two last parameters is crucial for the
dynamics of the system. In particular, in Figure 10c, for f = 2.5 and v = 0, the typical
chaotic attractor, denoted by the green dots, shows up in the phase space and corresponds
with chaotic motions, as predicted in Figure 9a—d. Then, in order to better understand the
different behaviors shown in the previous section, we are going to analyze the evolution of
the basins of attraction of the vertically excited parametric pendulum system with a torque
for different values of the parameters v and <y in two different situations, w = 2 (Figure 11)
and w = 3 (Figure 12), again varying the parameters according to the results shown in
Figure 9e-h. In Figures 11 and 12 the effect of the torque is relevant in the sense that the
new basins appear insofar we vary v.

Figure 10. Plots of the basins of attraction of the periodically driven pendulum with a torque for
a« =015 w=1(a)f =025andv =0, (b) f = 025and v = 0.55, (c) f = 25 and v = 0 and

(d) f = 2.5 and v = 0.55. The blue and pink represent two different basins, and the green dots
in (c) represent the chaotic attractor. In (a—c), the green dots are located in the singular points and

3

-2 0
X

corresponds to periodic oscillations. The red dots in (b) represent the attractor of the rotational
solution. We clearly see the effects of the external torque on both the dynamics and the topology of
phase space, showing the appearance and destruction of the attractors. When the external torque is
quite large the motion becomes periodic.
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0 0 0

X X X
Figure 11. Plots of the basins of attraction of the vertically excited parametric pendulum with a torque.
We use the parameters w =2, & = 0.1, ¥y = 0.1, ¥ = 0.2 and 7y = 0.3, from left to right respectively,
and vary v = 0, v = 0.2 and v = 0.4, from top to bottom respectively. Each color represents a different
basin. When the external torque varies, new attractors appear and the basin topology is modified, so
that the motion can be transformed from periodic into chaotic or vice versa, as shown in (a-i).

3 3 3

-2

1
N
(=]
N

Figure 12. Cont.
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Figure 12. Plots of the basins of attraction of the vertically excited parametric pendulum with a torque.
We use parameters w = 3, « = 0.1,y = 0.1, v = 0.2 and y = 0.3, from left to right respectively, and
vary v =0, v = 0.2 and v = 0.4, from top to bottom respectively. As in the previous figure, we can
observe the effect of varying the external torque by the changes observed in the basins (a-i).

6. Conclusions

To summarize, we analyzed the nonlinear response of two planar pendula under a
constant torque and various variable excitations. For better insight into their dynamics, we
used typical approaches to nonlinear systems, such as the stroboscopic map, the Melnikov
method, and the basins of attraction. For the Melnikov application, we used the semiana-
lytical approach. Namely, we used the analytic forms of the Melnikov function, and the
numerical homoclinic and heteroclinic orbits to improve the computational accuracy of
critical conditions. Additionally, the vibration of pendula with a torque was studied in
the limit of very fast excitation. Our results are the essential supplement to the available
published materials and textbooks on the pendulum [27-33].

We proved that all these results faithfully correspond with the numerical simulations.
In particular, escapes from the potential wells are accompanied by destructions of basins
attractions corresponding to different multiple solutions.

Furthermore, using the dedicated nonlinear tools, we report characteristics of the
complex dynamics that cannot be obtained from the direct integration of the equations
of motions. In the next step, we would study the extended systems with the influence of
magnetic field interactions and different models of friction.
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