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Abstract: The violent vibration of truss structures may cause fatigue, faults, or even an accident.
Aiming to analyze the vibration power flow and transfer path of two-dimensional truss structures in
the mid and high-frequency domain, this paper proposed a fast dynamic calculation method—the
impedance synthesis method (ISM)—which is based on an analytical equation with litter elements.
Firstly, the global coordination vibration impedance of a Timoshenko beam truss is derived; Secondly,
a dynamic model of a two-dimensional truss structure is built up with a single truss beam by force
balance and geometric continuity; then, real and imaginary parts of dynamic responses and force
in simple and periodically truss structures are verified by compared with FEM results, respectively;
finally, the transfer path analysis (TPA) method is applied to separate the contribution of different
transfer paths of power flow in periodical truss structures. The results show that the TPA method can
easily find the line spectrum frequency of power flow, which should be considered in vibration control.
This method can also be expanded to three-dimensional, honeycomb, and other truss beam structures.

Keywords: truss structure; power flow; transfer path analysis; impedance synthesis method;
vibration transmission

1. Introduction

Truss-like structures are widely used in the practical engineering field, such as space-
craft [1], ships and underwater vehicles [2], and civil engineering [3], because of their high
stiffness-to-weight ratio. Due to the higher configuration flexibility of truss structures, the
wave propagation characteristics of truss structures are complex. Hence, there is inevitably
a strong demand to establish an accurate prediction method, especially in mid- and high-
frequency ranges, and analyze the vibration power flow transfer paths of the complex truss
structure. Based on the above background, numerous studies have been carried out on the
dynamics of truss structures, such as the differential transfer method [4], Rayleigh–Ritz
method [5,6], transfer matrix method [7–9], dynamic stiffness method [10,11], and so on.
Tho [12] investigated the free vibration and vibration response of the space frame system
under an external random load. They also developed a novel third-order shear deformation
beam theory to simulate the static bending and free vibration responses of piezoelectric
nanobeams [13]. Nguyen [14] and Thai [15] used a two-node beam element and finite
element to analyze the static bend of FGM beam. Abbas [16,17] used the finite element
to solve the temperature, displacement, redial stress and hoop stress of a cylinder with
thermal conductivity and cavity. Vasilyeva [18] established a mathematical model and
finite element implementation of heat transfer and mechanics of soils with phase change.

Because most truss structures are arranged periodically in two or three dimensions,
bandgap characteristics and wave propagation analysis of truss structures were studied by
many researchers [19–21]. Zhen [22] analyzed the bandgap characteristics of the flexural
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wave of a two-dimensional periodic frame structure with a multi-material composite and
local resonance by the spectral element method. Zuo [23] and Wu [24,25] also used the
spectral element method to study the vibration band gap characteristics of periodic rigid-
frame structures. Xiao [26] combined periodic structure theory and the finite element
method to study free wave propagation and forced response in periodic truss beams with
and without material periodicity. Band gaps were found to match well with the attenuation
frequency ranges of the forced response.

From the above, many works have been paid to the attention of band gaps, and litter
works are focused on the vibration power flow analysis of truss structure, which can also be
viewed as the wave propagation analysis point. The analysis of power flow in a vibration
structure has been recognized as an important tool for controlling vibrations [27,28]. Wang
et al. [29] presented a general power flow analysis of simple and complex rod/beam
systems based on the concepts of the subsystem structural dynamics method. The results
show that the power flow in each rod may be larger than the input power of excitation due
to resonance. J. Signorelli [30] based their work upon the transfer matrix of a single bay
of the structure to investigate wave propagation, power flow, and resonance in a periodic
truss beam. L.S. Beale [31] investigated the power flow in two- and three-dimensional
frames using a wave scattering approach, including axial, torsional, and flexural wave
modes. They pointed out that the convenient FEM software can also be used to calculate
the power flow, but a large number of elements are required at mid and high frequencies.
Developing a fast and accurate calculation method for the power flow of a truss structure
is also the purpose of this paper.

The impedance synthesis method (ISM) is one kind of substructure method [32],
which uses the interface force balance and geometrical compatibility to establish the whole
dynamic model. It can be used for fluid-filled pipe systems [33,34], pipe–plate coupled
structures [35], and so on. The impedance matrix is derived from an analytical equation
in the frequency domain, so the correctness of this solution is very high, especially in
high-frequency ranges.

To develop a fast and accurate power flow analysis method for a truss structure, the
present paper is organized as follows. In Section 2, the mechanical impedance matrix of
an individual truss beam for all three types of vibration is derived. In addition, with the
combined force balance of the connecting point and coordinate transfer, the complex truss
structure in practical engineering can be built up. In Section 3, vibration power flows of
simple and periodically two-dimensional truss structures are verified and analyzed. Finally,
transfer path analysis (TPA) is used to investigate the transfer path of different kinds of
power flow.

2. Dynamic Response of Truss Structure
2.1. Impedance Matrix of Truss Beam

The nodal forces, moments and displacements, and rotations for vibration motions are
shown in Figure 1. Points at each end have three forces, three moments, and correspondence
displacements and rotations. Since this paper is intended to be used for mid- and high-
frequency analysis, Timoshenko beam theory, which is considered shear deformation and
rotatory, is adopted. The total variable for a single Timoshenko beam truss structure is 12.
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Each truss beam has flexural, axial, and torsional vibration governing equations. To
obtain the exact solutions in the frequency domain, the impedance matrix should be derived
first. For example, the flexural vibration governing equation in the yoz plane can be written
as [36]: 

fy − kpGAp

(
∂uy
∂y − ϕx

)
= 0

mx − EIp
∂ϕx
∂y = 0

∂ fy
∂y − ρp Ap

∂2uz
∂t2 = 0

∂mx
∂y + fy − ρp Ip

∂2 ϕx
∂t2 = 0

(1)

By separating variables method, the solution for Equation (1) can be written as:
uy(z, t) = Uy(z)ejωt

ϕx(z, t) = Φx(z)ejωt

fy(z, t) = Fy(z)ejωt

mx(z, t) = Mx(z)ejωt

(2)

Submitting Equation (2) into Equation (1), it can be simplified to only one variable Φx
in the frequency domain:

∂4Φx(y)
∂y4 +

(
ρA

kpGA
+

ρI
EIp

)
ω2 ∂2Φx(y)

∂y2 +

(
ρA

kpGA
ρI

EIp
ω4 − ρI

EIp
ω2
)

Φx(y) = 0 (3)

The solution to Equation (3) can be expressed as:

Φx(y) =
4

∑
n=1

Aneλny (4)

where An represents amplitude constants, which are decided by the boundary condition,
and the flexural wave number λn represents the four complex roots of the following
equation:

λ4 +

(
ρA

kpGA
+

ρI
EIp

)
ω2λ2 +

(
ρA

kpGA
ρI

EIp
ω4 − ρI

EIp
ω2
)
= 0 (5)

By solving Equation (5), the four wavenumbers of the flexural truss beam can be
obtained as:

λn = ±
√
−α±
√

α2−4β
2 , n = 1, 2, 3, 4

α =
(

ρA
kpGA + ρI

EIp

)
ω2, β = ρA

kpGA
ρI

EIp
ω4 − ρI

EIp
ω2

(6)

where substituting four wavenumbers λn into Equation (2), the functions can be written in
the matrix form as follows:

Uy
Φx
Mx
Fy

 =


B1eλ1y B2eλ2y B3eλ3y B4eλ4y

eλ1y eλ2y eλ3y eλ4y

C1eλ1y C2eλ2y C3eλ3y C4eλ4y

D1eλ1y D2eλ2y D3eλ3y D4eλ4y




A1
A2
A3
A4

 (7)

where:

Bn = 1
λn

[
1− EIp

kpGA

(
λ2

n +
ρI

EIp
ω2
)]

Cn = EIpλn

Dn = −EIp

(
λ2

n +
ρI

EIp
ω2
) (8)
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Up until now, the four amplitude An constants are still unknown. If the length of a
single truss beam is L, both ends of the truss beam should satisfy the impedance matrix
Equation (7), which can be written as:

U0
Φ0
M0
F0

 =


B1 B2 B3 B4
1 1 1 1

C1 C2 C3 C4
D1 D2 D3 D4




A1
A2
A3
A4

 (9)


UL
ΦL
ML
FL

 =


B1eλ1L B2eλ2L B3eλ3L B4eλ4L

eλ1L eλ2L eλ3L eλ4L

C1eλ1L C2eλ2L C3eλ3L C4eλ4L

D1eλ1L D2eλ2L D3eλ3L D4eλ4L




A1
A2
A3
A4

 (10)

Combining Equations (9) and (10), eliminating the An , we can obtain the whole
transfer matrix of a single truss beam as follows:


U0
Φ0
M0
F0

 =


B1 B2 B3 B4
1 1 1 1

C1 C2 C3 C4
D1 D2 D3 D4




B1eλ1L B2eλ2L B3eλ3L B4eλ4L

eλ1L eλ2L eλ3L eλ4L

C1eλ1L C2eλ2L C3eλ3L C4eλ4L

D1eλ1L D2eλ2L D3eλ3L D4eλ4L


−1

UL
ΦL
ML
FL

 (11)

which can be abbreviated as: [_
U0
_
F 0

]
=

[
T11 T11
T11 T11

][_
UL
_
F L

]
(12)

where
_
U0 =

[
U0 Φ0

]T ,
_
F 0 =

[
M0 F0

]T ; according to the relationship between the
transfer matrix and impedance matrix [37,38], we can obtain the impedance matrix of truss
beam in the frequency domain as follows:

Z(ω) =

[
T−1

12 T11 −T−1
12

T21 − T22T−1
12 T11 T22T−1

12

]
(13)

Thus, the flexural vibration impedance matrix in the yoz plane can be written as:
F0

y
M0

x
FL

y
ML

x

 =


Z11

yoz Z12
yoz Z13

yoz Z14
yoz

Z21
yoz Z22

yoz Z23
yoz Z24

yoz
Z31

yoz Z32
yoz Z33

yoz Z34
yoz

Z41
yoz Z42

yoz Z43
yoz Z44

yoz




U0
y

Φ0
x

UL
y

ΦL
x

 (14)

The flexural vibration impedance in the xoz plane can also be written as:
F0

x
M0

y
FL

x
ML

y

 =


Z11

xoz Z12
xoz Z13

xoz Z14
xoz

Z21
xoz Z22

xoz Z23
xoz Z24

xoz
Z31

xoz Z32
xoz Z33

xoz Z34
xoz

Z41
xoz Z42

xoz Z43
xoz Z44

xoz




U0
x

Φ0
y

UL
x

ΦL
y

 (15)

The longitudinal and torsional can be written as:{
fz − EA ∂uz

∂z = 0
∂ fz
∂z − ρA ∂2uz

∂t2 = 0
(16)

{
∂mz
∂z − ρJp

∂2 ϕz
∂t2 = 0

mz − GJp
∂ϕz
∂z = 0

(17)
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According to the same method as flexural vibration, we can also obtain the torsional
and longitudinal vibration impedance matrix of a single truss element.[

F0
Z

FL
Z

]
=

[
Z11

axial Z12
axial

Z21
axial Z22

axial

][
U0

Z
UL

Z

]
(18)

[
M0

Z
ML

Z

]
=

[
Z11

torsional Z12
torsional

Z21
torsional Z22

torsional

][
Φ0

Z
ΦL

Z

]
(19)

So, the total impedance matrix of a single truss structure is:

[
F̃
]
=


Zyoz

f lexural
Zxoz

f lexural
Zaxial

Ztor sin al

[Ũ] = Z
[
Ũ
]

(20)

where vectors of impedance matrix are:[
F̃
]
=
[

F0
y M0

x FL
y ML

x F0
x M0

y FL
x ML

y F0
z FL

z M0
z ML

z

]T
,
[
Ũ
]
=
[
U0

y Φ0
x UL

y ΦL
x

U0
x Φ0

y UL
x ΦL

y U0
z UL

z Φ0
z ΦL

z

]T
, Z is the total impedance matrix of the truss beam.

2.2. Locally and Global Coordinate Transfer and Assemble

The above-derived impedance matrix of the truss beam structure is in a local coordinate
system, but the truss structure is also complex in two and three dimensions, so we need
to transfer the local coordinate system to a global coordinate system. The transfer matrix
between global and local coordinates can be written as:

[
∼
R] =

cos(x,
∼
x) cos(y,

∼
x) cos(z,

∼
x)

cos(x,
∼
y) cos(y,

∼
y) cos(z,

∼
y)

cos(x,
∼
z) cos(y,

∼
z) cos(z,

∼
z)

 (21)

where (x̃, ỹ, z̃) is the globally coordinated system, (x, y, z) is the local coordinate system,
and cos(x,

∼
x) is the cosine function of the angle between global and local coordinate system.

The total coordinate transfer matrix can be written as:

R =


[
∼
R]

[
∼
R]

[
∼
R]

[
∼
R]

 (22)

The impedance matrix in the global coordinate system can be obtained from the fol-
lowing:

Z = inv
(

R
)
∗ Z ∗ R (23)

This coordinate transfer matrix can be used both in two- and three-dimensional truss
structures. The boundary condition is easier to understand than the wave propagation
approach, and ISM can be used for arbitrary boundary conditions. For example, the
freedom of which point is clamped modified the stiffness of the corresponding point to a
larger number. For example, the simple truss beam as shown in Figure 1, when point A is
clamped in the Z-direction, assigned the total impedance matrix Z (3, 3) to a larger number.
It can also be used for different kinds of boundary conditions.
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3. Numerical Discussion
3.1. Simple Truss Structure

According to the force balance and geometric conditions at the connection point, the
impedance matrix of a single truss can be used to build up the two-dimensional truss
structure. For example, the simple truss structure as shown in Figure 2, consisted of
five sub-structures (truss A, B, C, D, E) and four connected points (P1/P2/P3/P4). The
cross-section of the beam is a pipe, and the outer radius and inner radius are 80 mm and
71 mm, respectively. Young’s modulus, density, and Poisson’s ratio of a truss are 210 GPa,
7800 kg/m3 and 0.3, respectively.
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There are four connection points, each point connected with two or three beams.
According to the assemble rule, the impedance matrix of the above truss structure can be
written as follows:

F1
F2
F3
F4

 =


ZA

11 + ZD
11 ZA

12 0 ZD
12

ZA
21 ZA

22 + ZB
11 + ZE

11 ZB
12 ZE

12
0 ZB

21 ZB
22 + ZC

11 ZC
12

ZD
21 ZE

21 ZC
21 ZC

22 + ZD
22 + ZE

22




V1
V2
V3
V4

 (24)

where:
Fi =

[
Fx

i Fy
i Fz

i Mx
i My

i Mz
i
]T

Vi =
[
Vx

i Vy
i Vz

i

.
θ

x
i

.
θ

y
i

.
θ

z
i

]T
(i = 1, 2, 3, 4)

(25)

The total impedance matrix of this simple two-dimensional truss is 24 × 24. By
solving Equation (24), we can obtain the dynamic response of the truss structure. When
you obtain the dynamic responses of each single truss beam, substituting them into their
global impedance matrix, the dynamic forces on the left side of Equation (20) can easily be
obtained. To verify the present method, the dynamic results are compared with FEM under
a unit harmonic force applied on point P1 in the z-direction. The finite element model
is made of the beam element, and the mesh size is 0.01 m. The element number of this
simple truss is 541. The frequency analysis step is 1 Hz, and calculation frequency range is
1–1000 Hz.

The amplitude and imaginary part of dynamic displacement on point P1 in the z-
direction are compared in Figure 3. It can be seen that the two results are in good agreement.
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Figure 3. Displacement comparison of ISM and FEM of point P1 on the Z direction.

The amplitude and imaginary part of displacement of point P1 in Y direction in
1~1000 Hz domain is compared with FEM in Figure 4. We can see that both the amplitude
and imaginary parts of this displacement are in good agreement too.

Appl. Sci. 2022, 12, 8863 8 of 15 
 

obtained. To verify the present method, the dynamic results are compared with FEM 
under a unit harmonic force applied on point P1 in the z-direction. The finite element 
model is made of the beam element, and the mesh size is 0.01 m. The element number of 
this simple truss is 541. The frequency analysis step is 1 Hz, and calculation frequency 
range is 1–1000 Hz.  

The amplitude and imaginary part of dynamic displacement on point P1 in the z-
direction are compared in Figure 3. It can be seen that the two results are in good 
agreement. 

  

Figure 3. Displacement comparison of ISM and FEM of point P1 on the Z direction. 

The amplitude and imaginary part of displacement of point P1 in Y direction in 
1~1000 Hz domain is compared with FEM in Figure 4. We can see that both the amplitude 
and imaginary parts of this displacement are in good agreement too. 

  

Figure 4. Displacement comparison of ISM and FEM of point P1 in Y direction. 

The vibration power flow is multiplied by the displacement and force, from the 
energy flow viewpoint in physics. Thus, the correctness of calculation forces also needs to 
be verified. Real and imaginary parts of the force on point P2 in the Z direction are 
compared with FEM in Figure 5. It can be seen that both real and imaginary parts of the 
force are in good agreement with FEM results. 

0 200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

Frequency(Hz)

 A
m

pl
itu

de
 o

f d
isp

la
ce

m
en

t(m
)

 

 
FEM
ISM

0 200 400 600 800 1000
-14

-12

-10

-8

-6

-4

-2

0

x 10
-8

Frequency(Hz)

Im
ag

 p
ar

t o
f d

isp
la

ce
m

en
t(m

)

 

 

FEM
ISM

0 200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

Frequency(Hz)

 A
m

pl
itu

de
 o

f d
isp

la
ce

m
en

t(m
)

 

 
FEM
ISM

0 200 400 600 800 1000
-15

-10

-5

0

5 x 10
-8

Frequency(Hz)

Im
ag

 p
ar

t o
f d

isp
la

ce
m

en
t(m

)

 

 

FEM
ISM

Figure 4. Displacement comparison of ISM and FEM of point P1 in Y direction.

The vibration power flow is multiplied by the displacement and force, from the energy
flow viewpoint in physics. Thus, the correctness of calculation forces also needs to be
verified. Real and imaginary parts of the force on point P2 in the Z direction are compared
with FEM in Figure 5. It can be seen that both real and imaginary parts of the force are in
good agreement with FEM results.

From the above comparison results, one can find that the impedance synthesis method
(ISM) can be used for the truss structure and has high accuracy at mid and high frequency.
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3.2. Periodic Frame Structure

The periodically two-dimensional truss structure is shown in Figure 6. The whole
calculation structure should be divided into 15 sub-structures, A1–A15, and the boundary
is points P9 and P10 are clamped. The cross-section of each truss is a pipe, and the inner
radius is 80 mm and 79 mm, respectively. A harmonic excitation is applied on point
P1 in the z-direction. The Young’s modulus, density, and Poisson’s ratio are 210 GPa,
7800 kg/m3 and 0.3, respectively. The mesh size of the finite element model is 0.01 m, there
are 1864 beam elements in total, and the mass is 155.33 kg.
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Figure 6. Scheme periodic frame structure.

The y- and z-direction displacements of point P2 in the 1~1000 Hz domain are com-
pared with FEM results in Figure 7. The two results are in excellent agreement.
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Figure 7. Dynamic responses of point P2 compared with FEM: (A) in z direction, (B) in y direction.

In addition, the real and imaginary parts of force on point P7 in the z-direction are
compared with FEM in Figure 8. It can be seen that both real and imaginary forces vary in
the low-frequency range. This also means the vibration power flow is almost located in the
low-frequency band.

In addition, we also compared the natural frequencies of the truss structure with
results from the literature [16]. The truss structure consists of twenty substructures as
shown in Figure 2. The mesh size of each beam in the finite element model is 0.01 m.

The frequency comparison results in Table 1 further verify the correctness of the
calculation method in this paper.
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Figure 8. Force comparison of ISM and FEM of point P7 in the Z direction.

Table 1. Comparison of the natural frequency with literature.

Modes No. 1 2 3 4 5 6 7 8

Zuo [23] 4.71 27.58 70.09 85.58 122.55 176.45 224.25 232.45
FEM (400 elements) 4.71 27.58 70.16 85.68 122.94 177.81 228.60 236.88
FEM (800 elements) 4.71 27.58 70.11 85.60 122.65 176.73 225.24 233.45

The present 4.71 27.58 70.08 85.57 122.55 176.38 224.10 232.30

3.3. Analysis of Vibration Power Flow

The vibration power flow of the beam can be expressed as [39]:

P =
1
2

Re{FV∗} = 1
2
[Re{F}Re{V}+ Im{F}Im{V}] (26)

Because the real and imaginary parts of dynamic displacement and force are all verified
above, the vibration power flow is assumed correct here. Due to the excitation force in
the plane, there are only three kinds of power flow in the X, Y, and rotate Z direction. The
in-plane three kinds of vibration power flow of point P2 are shown in Figure 9. They have
some common peak frequencies, and in the low and high-frequency domains, power flow
in the Z direction is the largest. In the middle-frequency range, all three kinds of power
flow are almost the same level.

Appl. Sci. 2022, 12, 8863 11 of 15 
 

3.3. Analysis of Vibration Power Flow 
The vibration power flow of the beam can be expressed as [39]: 

{ } { } { } { } { }1 1Re Re Re Im Im
2 2

P FV F V F V∗= = +    (26)

Because the real and imaginary parts of dynamic displacement and force are all 
verified above, the vibration power flow is assumed correct here. Due to the excitation 
force in the plane, there are only three kinds of power flow in the X, Y, and rotate Z 
direction. The in-plane three kinds of vibration power flow of point P2 are shown in 
Figure 9. They have some common peak frequencies, and in the low and high-frequency 
domains, power flow in the Z direction is the largest. In the middle-frequency range, all 
three kinds of power flow are almost the same level. 

 
Figure 9. Vibration power flow of P2 in the z-direction. 

The vibration power flow of point P2 can also be divided into three sub-structure 
beams, A1/A2 and A5. The vibration power flow of three substructures in the Z direction 
is compared in Figure 10. The harmonic excitation force is applied at point P1 in the z-
direction, so the input vibration power for beam A1 is mainly the axial direction. 
However, there exists a vibration wave transfer phenomenon on point P2; due to the 
geometry discontinue, we can easily see that the axial vibration power of beam A2 is 
smaller than the other two, especially in the low-frequency domain. 

 
Figure 10. Vibration power flow of P2 in the Z direction. 

0 200 400 600 800 1000
Frequency(Hz)

10-14

10-12

10-10

10-8

10-6

10-4

lo
g(

Po
w

er
)

Y
Z
MX

0 200 400 600 800 1000
Frequency(Hz)

10-14

10-12

10-10

10-8

10-6

10-4

lo
g(

Po
w

er
) o

f P
2 

in
 th

re
e 

tru
ss

A1
A2
A5

Figure 9. Vibration power flow of P2 in the z-direction.
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The vibration power flow of point P2 can also be divided into three sub-structure
beams, A1/A2 and A5. The vibration power flow of three substructures in the Z direction
is compared in Figure 10. The harmonic excitation force is applied at point P1 in the z-
direction, so the input vibration power for beam A1 is mainly the axial direction. However,
there exists a vibration wave transfer phenomenon on point P2; due to the geometry
discontinue, we can easily see that the axial vibration power of beam A2 is smaller than the
other two, especially in the low-frequency domain.
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On the contract, the compared three flexural vibration power flows in the Y direction
are shown in Figure 11. The vibration power flow in beam A1 is the smallest, almost in
the whole frequency range. However, the vibration powers of points A2 and A5 in the Y
direction are almost overlapped.
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Figure 11. Vibration power flow of P2 in Y direction.

Figure 12 shows the in-plane torsional vibration power flow. We can see that the three
beams are almost at the same level.
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Compared to the above three figures, there are some common peak frequencies in all
three kinds of vibration power flow; these are the natural frequencies of the whole dynamic
truss-like model.

3.4. Transfer Path Analysis of Power Flow

Because the transfer path of the truss structure is complex, to reduce the unwanted
vibration of the truss, we first should know the most important transfer path in the truss
structure. For example, connecting point P2, there are three beams (A1, A2, and A5, as
shown in Figure 6) connected at the same point P2, and each beam has its own three
in-plane directions; in fact, there are a total of nine transfer paths of power flow for point
P2. According to transfer path analysis (TPA) theory [40], the vibration power flow transfer
path analysis of point P2 is shown in Figure 13. The more highlighted in red, the larger the
vibration power flow. On the contrary, with more blue highlights, the vibration power flow
is smaller.
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From the contribution contour plot, we can easily find which path is the most im-
portant and transfer by which line frequency spectrum. In the low-frequency domain
(1–100 Hz), this is a line spectrum of 46 Hz for all transfer paths, but A1Z, A5Z, and A5Y
are the main transfer paths; these results can also be verified by Figures 10 and 11. In the
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mid-frequency domain, the torsional vibration power flow is the main transfer path as
A1MX and A2MX.

There are four beams connected to point P8; each beam also has three kinds of power
flow, so there is a total of 12 vibration power flow transfer paths for point P8. The vibration
power flow transfer path analysis of point P8 is shown in Figure 14.
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There exist two obvious vibration line spectrums in low-frequency ranges, and A16Z is
the highest contributing transfer path. The vibration power flows are basically distributed
in the low- and mid-frequency domain. The results of this section can give significant
advice for which frequency and which location should be considered for vibration control.

4. Conclusions

In this paper, the impedance synthesis method is proposed to build up a dynamic
calculation model of a two-dimensional truss structure. The analytical method is verified by
comparing with FEM results and literature. In addition, the vibration power flow of typical
pints in periodic truss is analyzed. From the present investigations, the main conclusions
can be drawn as follows:

(1) The ISM can be effectively applied to investigate the dynamic responses and vibration
power flow of truss-like structures, especially in mid- and high-frequency ranges;

(2) Cross-section of the truss beam has a litter effect on the dynamic responses of the
whole structure in the low-frequency domain, but can affect the dynamic responses in
mid- and high-frequency ranges;

(3) Transfer path analysis can find the main transfer path and line spectrum frequency of
complex truss-like structures.

The results of this paper can give the power flow physic viewpoint of the truss
structure, and this method can also be expanded to three-dimensional, honeycomb, and
other truss beam structures.
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