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Jiří Pospíchal * , Martin Kubovčík * and Iveta Dirgová Luptáková

Department of Applied Informatics, Faculty of Natural Sciences, University of Ss. Cyril and Methodius,
J. Herdu 2, 917 01 Trnava, Slovakia
* Correspondence: jiri.pospichal@ucm.sk (J.P.); kubovcik1@ucm.sk (M.K.)

Abstract: Solar energy is one of the most popular sources of renewable energy today. It is therefore
essential to be able to predict solar power generation and adapt energy needs to these predictions.
This paper uses the Transformer deep neural network model, in which the attention mechanism is
typically applied in NLP or vision problems. Here, it is extended by combining features based on
their spatiotemporal properties in solar irradiance prediction. The results were predicted for arbitrary
long-time horizons since the prediction is always 1 day ahead, which can be included at the end along
the timestep axis of the input data and the first timestep representing the oldest timestep removed. A
maximum worst-case mean absolute percentage error of 3.45% for the one-day-ahead prediction was
obtained, which gave better results than the directly competing methods.

Keywords: transformer; solar irradiance; weather; renewable energy; sequence-to-sequence prediction;
correlations; NASA POWER

1. Introduction

Solar energy belongs to the primary sources of renewable energy, and its efficient use
is a key factor in protecting the planet by reducing CO2 emissions. For future construction
of solar farms as well as the placement of solar collectors on buildings, it is essential to
know the ideal positions of these farms and collectors on the Earth’s surface [1]. Equally
important for the regulation of energy networks is the ability to forecast solar power
generation. For this purpose, the NASA POWER project focused on satellite measurements
of solar radiation anywhere on Earth, which provides the data from 1984 to 2022 used in
this article [2]. These data include both solar radiation and meteorological data for a given
location. Meteorological conditions are correlated with the amount of sunlight [3].

The goal of this paper is to estimate the daily amount of solar radiation in various
time horizons for a specified set of coordinates from regional data covering a square
area of 2.5 × 2.5 degrees. This square dimension represents the local area from which the
measurements are directly fed to the input of the neural network model used for prediction.
By selecting a number of these smaller areas spread over a wider region, the model obtains
a global view when predicting solar irradiance. The advantage of this combined solution is
not only to obtain more inputs to the neural network, but the network learns to associate
different combinations of local areas for more accurate solar irradiance prediction due to
the attention mechanism built into the network. From the knowledge acquired during the
learning process, this model can exclude irrelevant correlations between local areas’ data
by suppressing information to higher layers and also learn to amplify information that
is, in turn, essential to prediction. Point forecast data always represent the center of the
area square.

A special type of deep neural network, the Transformer model [4], is used to predict
how much solar energy will be produced in the near future. Transformer can find both
temporal and spatial linkages in the input data and use them to predict the next-day solar
photovoltaic power. The Python language and the TensorFlow [5] framework were used to
implement the model (see Supplementary Materials).
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In contrast to the research [6–8], the attention mechanism is implemented here using a
Multi-head Attention layer rather than an LSTM or Bi-LSTM layer for temporal context
features’ understanding. In the paper by Premalatha et al. [9], a classical ANN model with
fully connected layers is described, which does not learn to contextualize features in long
time series, as opposed to, e.g., the attention matrix. The papers [10–12] show the potential
to break down the learning process into sunny and cloudy days. The studies [13,14] also
show the advantage of using weather data as the input and describe the correlations
between weather features and solar irradiance. The work [15] shows the possibility of
segmenting clouds from an image and then expressing solar irradiance, thus opening
the possibility of exploiting the very strong correlation between cloud cover and solar
irradiance. The research [16] highlights several methods for processing satellite data to
make very short-term forecasts of solar irradiance.

The Transformer deep neural network model has been specially adapted here to
process all of the following intrinsically linked signals from different domains: solar
irradiation, weather conditions, and position on Earth. These innovative space-time links
between features, as well as point and regional data signal processing, enabled us to achieve
a better one-day-ahead prediction. This was expressed by the maximum worst-case mean
absolute percentage error of 3.45%, which is substantially smaller than that of directly
competing methods.

2. Dataset and Methods

The following section is divided into two main parts. Firstly, a detailed description
of the used dataset is provided, including solar irradiance signals, positions of the used
regions on the Earth, where the signals were used, and their weather data, together with the
necessary preprocessing. Secondly, the Transformer model for solar irradiance is specified,
with its encoder and decoder parts, and spatial–temporal encoding. The limiting factor in
forecasting solar irradiance is primarily weather, which strongly influences the performance,
although the Transformer model used here is not directly focused on weather forecast.
Though India is only ranked fifth in the publication Solar Power Capacity by Country [17],
there have been many recent works predicting solar irradiance in this country [9,18–20];
hence, its dataset has been used in this paper to enable comparison with state-of-the-art
prediction methods.

2.1. Dataset

For more accurate predictions of the amount of solar radiation, two types of data are
fed to the input of the neural network. One source is regional data, and the other source
is point-in-time data. Forecast is only for point data, while regional data are used as local
areas around the point data.

To compare our results with state-of-the-art research, data from India were used. A
total of 6 regions were selected with solar collectors located on buildings and 34 regions
with large solar farms.

The entire process of downloading the dataset from NASA, as well as its preprocessing
and subsequent export to CSV datasets, was ensured by a separate NASA POWER bot
application. The bot application was implemented in the Julia language, which provided
parallelism during download as well as data preprocessing. The CSV datasets, created in
the previous step, were fed to the learning process in the Google Colab environment.

The dataset was split into training, validation, and testing sets. When the first 80%
of the dataset ordered in time was used for training, the next 10% was used for model
validation, and the last 10% created the test set. This particular time-ordered distribution
of training, validation, and test sets resulted in tests that aimed to predict the future and,
consequently, the learning pushed the model towards forecasting.

The biggest problem with the NASA POWER dataset is the lack of data to train the
complicated Transformer model more accurately. After splitting the dataset into train-
ing, validation, and testing sets, only 11,136 examples are reserved for training, which
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makes training such a complicated model significantly more challenging. However, in the
following years, by obtaining new data, this deficiency can be substantially compensated.

2.2. Region Pruning

Since too many regions were selected, they had to be reduced. Many of the regions
overlapped by a substantial area, and thus, following the results of the intersection over
union algorithm [21], a number of these regions were excluded. If the regions overlapped
by more than 25%, they had to go through the exclusion process. The removal was based
on the comparison of the power and area of the solar collectors in the regions. If a region
performed better, its “opponent” was excluded from the list of regions. If the power was
not specified, the region with the smaller area of solar collectors was excluded. If neither
power nor area was given, the decision was based on random choice, when each region had
the same chance of exclusion. The exception was the regions marked as permanent, which
excluded their non-permanent opponent automatically. If both regions were permanent,
none were excluded. Figure 1 shows an example of such thinning of regions. It is evident
that this thinning not only reduced the number of regions but also spread them over the
surface of India to account for the largest possible global surface in global solar irradiance
prediction. The total number of regions after thinning was 18.
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Figure 1. Visualization of the thinning of regions on the world map from Google Earth. (a) Initial
map of regions on the left. (b) On the right, the resulting thinned-out map of the regions.

2.3. Weather Characteristics

In addition to the data on the amount of solar radiation, the dataset also contained
information about the weather. This information consisted of average, maximum, and
minimum temperature; air humidity; atmospheric pressure; average, maximum, and
minimum wind speed; and wind direction on a given day in the selected location. Figure 2
shows these measured variables over a period of 4 years, where it is possible to see the
correlations between the temporal behavior of the individual variables during a day. It was
therefore meaningful to include the weather as the input to the neural network. Another
important feature for understanding the periodicity of weather and solar irradiance is the
day of the year, which should not be directly fed into the input of the neural network and
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is transformed prior by Equations (1) and (2). Its preprocessing consists of converting the
day of the year to sin and cos features, from which the network can more easily deduce the
relationship between the period of the year and the repetition of patterns in weather and
solar irradiance [22,23].

DaySin = sin
2πday

366
(1)

DayCos = cos
2πday

366
(2)
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Information about wind direction and its speed also cannot be directly fed to the input
of the neural network [22]. It is necessary to convert them to a wind vector [24] and then use
the resulting vector as input features. The wind vector is defined by Equations (3) and (4),
where ws is the wind speed in meters per second, and wd represents the direction of the
wind in radians.

wind vectorx = ws× cos(wd) (3)

wind vectory = ws× sin(wd) (4)

For the illustrative purposes of depicting the correlations between weather and the
obtained solar irradiance, the years from 1984 to 1987 were used in Figure 2, which neatly
captures the relationship between weather and solar irradiance. (The chosen 4-year range
covers the initial period of training data; its selection from the available data does not have
any deeper significance.) As can be seen from Figure 2, humidity is directly related to the
amount of obtainable solar irradiance in such a way that, as humidity increases, cloud
cover increases and thus shadows the sun’s rays. Therefore, it is also possible to derive
the amount of the produced solar irradiance from the humidity. The orange curve in the
time-of-year signal represents the DayCos, and the blue curve represents the DaySin as
defined by Equations (1) and (2).

Figure 3 shows the relationship of wind speed to its direction, using a heatmap of
the frequency of wind occurrence with a given speed at a certain angle. The graph shows
that fast southwesterly winds are the most frequent; they also bring monsoons with them.
Figure 4, on the other hand, shows the frequency of the occurrence of wind in the wind
vector. As the figures show, the wind direction does not describe the whole circle, and thus,
there are no winds blowing directly from the north.
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2.4. Transformer Model for Solar Irradiance

The Transformer model is a neural network architecture used typically for natural
language translation. Its basic element is the attention mechanism, which links related
features in sequential data. Transformer is composed of basic parts, which are self-attention
blocks and position-wise fully connected feed-forward network blocks. Self-attention
blocks are formed by a normalization layer, a Multi-head Attention layer, a dropout layer,
and finally a residual connection. Position-wise fully connected feed-forward network
blocks are composed of a normalization layer, a pair of fully connected (dense) layers, a
dropout layer, and finish with a residual connection. By stacking these basic blocks, two
main parts of the model are created, the encoder and decoder. Self-attention block maps
query and key-value inputs to one output from this block. The output is expressed as a
weighted sum of the input value, where the weight is formed by the query input function
with the corresponding key input, according to Equation (5). To improve the accuracy of
the model, a combination of several attention matrices into one output was used according
to Equation (6). The principle of the position-wise fully connected feed-forward network
block is expressed by Equation (7) [4].

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (5)

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i )

(6)

Here, the matrix Q represents the query input, the matrix K represents the key input,
and the matrix V represents the value input to the attention block. The value dk expresses the
size of the key input. Matrices WQ

i , WK
i , WV

i , and WO represent trained model parameters
for the projection of features [4].

FFN(x) = GeLU(xW1 + b1)W2 + b2 (7)

The GeLU (Gaussian Error Linear Unit) in Equation (7) represents nonlinearity in the
model [25], and matrices W and b represent weights and bias.

In the model used in this work (see Figure 5), unlike the original Transformer model [4],
there are normalization layers before each block, and each block is terminated only by
a residual connection, as is the case with the Vision Transformer, which, similarly to
the problem of solar irradiance prediction, works on the input of the model with a real
signal [25]. The truncated normal method with a standard deviation of 0.02 (as in the
case of BEIT [26]) is used to initialize the training parameters of the model. The first
input layer consists of a normalization layer adapted to training data, the task of which
is to transform various measured physical variables with different ranges of values into
variables with zero mean and unit standard deviation. The output from the model consists
of a fully connected (dense) layer with the linear activation function that is followed by the
denormalization layer, which helps to maintain a zero mean and one standard deviation of
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targets. The denormalization layer works in the same manner as the normalization layer
but in the inverse.
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The normalization layers and the denormalization layer are adapted to training exam-
ples only, and this is done before the training process. Their memorized values of means
and standard deviations are also applied to both the validation and test datasets. The
advantage of the last layer being linear is that the gradients are unaffected by the activation
function of the neurons during the backpropagation since the first derivative of the linear
function equals one. A learning rate cosine scheduler was also used for training, which
optimizes the learning process [27] and allows the model only to warm up in the first steps
of the learning process while the gradients are too high.
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In the later steps of the cosine scheduler, the learning rate reaches a maximum from
which it then only decreases until the end of the learning process, due to fine-tuning of the
error of the model.

The input to the model is regional daily data, which contains a combination of past
solar irradiance and past weather. Moreover, the model is fed with point solar irradiance
data, which are shifted in a sequence during the prediction process of data points, in the
sense that the oldest measurement is removed, and the last predicted measurement is lined
up at the end of the data timeline.

2.5. Encoder

The encoder part of the model is used to convert the solar irradiance, weather, and
day of the year into the latent space position. The goal of the encoder block is to look for
mutual space–time bonds in the historical input data and convert them to latent space,
which is the input to the next part of the model. Latent space is expressed for each timestep
and location independently, as shown in Figure 6.
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2.6. Decoder

In the present case, the decoder block of the model works as a simulator of the future,
which, by combining the historical point data, day of year, and latent space from the
encoder, predicts solar irradiance 1 day ahead. This predicted day value can be brought
back to the input of the model by connecting it to the original data shifted by one day to the
right to obtain the next day. Figure 7 shows how the Transformer model predicts the next
day. At every timestep, the decoder tries to estimate the next timestep. Future predictions
are independently expressed for all of the Indian locations used.
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2.7. Positional Encoding

Positional encoding is an essential part of every Transformer model, as this kind
of neural network does not “recognize” the sequential order of the data, and the order
within the data sequence could be mixed up. Therefore, it is necessary to add this kind of
information to the input features at the beginning of the encoder and decoder parts of the
model [4].

2.7.1. Temporal Information

The temporal order of features at the input of the network is identified through
1D trained positions expressed by a vector added to the input of the model. This time
information is essential to correctly understand the order of the timesteps and prevents the
Transformer from mixing them up. As shown in Figure 8, the trained Transformer model
clustered 1 day in the vicinity with the most similar properties. The days that are far apart
in time have mostly a negative value of similarity in positional encoding of the decoder
block. The encoder finds the strongest similarity in several days “around”.
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2.7.2. Spatial Information

Like the sequence of timesteps, for the identification of the location of the measured
region, the Transformer model also needs additional information expressing the unique
1D code of the given location. These identification codes are also expressed by a vector
that is added to the input features. The network trains these identifiers by itself; thus, it
can mark sites with similar meanings with a similar vector and, conversely, mark sites
with no direct correlation with significantly different vector values. From Figure 9, it is
possible to see the related regions, which, in most cases, overlap on the map of India. From
this, it can be concluded that the trained Transformer model “understood” the spatial
similarities and grouped them together according to their importance in predicting future
solar irradiance. For a better explanation, Figure 10 shows similarity between the 0th patch
and other patches on the world map. Here, it can be seen that the strongest similarity is in
the neighboring regions, which have a reddish color corresponding to positive similarity.
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2.8. Loss Function

The log-cosh function (see Equation (8)) was used as an error function in solving this
type of regression problem. Its advantage over the typically used L2 loss function is its
robustness against noise and outliers in the training data. With L2, it would be easier to
become stuck in a local minimum. In comparison with another popular error function L1,
which is robust to noise in the data, the log-cosh error function is smooth, which is better
for the smoothness of the training process [28]. The log-cosh error function has proven to
be a robust error function for the task of solar irradiance prediction.

f (t, a) =
1
a

log(cosh(at)) =
1
a

log
(

eat + e−at

2

)
(8)

2.9. Metrics

For estimation of the quality of the predicted solar irradiance, several metrics are
typically used, such as mean squared error, root mean squared error, mean absolute error,
mean absolute percentage error, and R squared. The emphasis should be put on the last
predicted timestep, which represents the future solar irradiance, one day ahead. This
practice is effective for selecting a model that best predicts the future. Mean absolute
error expresses the error of solar irradiance directly in kWh/m2/day. During metrics
calculation, timesteps before the last (future) timestep are not included, but, during training,
all timesteps are used to calculate the gradients and provide important information to
the model.

2.10. Simulation Phase

A trained model can be used to predict different time horizons, which is an advantage
of this solution. The output of the model consists of the solar irradiance of the next day
and can thus be fed repeatedly to the input of the model, making it possible to predict
2, 3, 4, 5, etc. days ahead. The problem is that the model input consists of day-of-year
features, DaySin, and DayCos, in addition to solar irradiance. Thus, it is necessary to
transform these features from the last timestep in the window to day of year, according to
Equation (9). Then, add 1 day to this day and convert it back to the DaySin and DayCos
features, according to Equations (10) and (11). The newly created DaySin and DayCos are
merged with the predicted solar irradiance for the next day. The vector thus created can be
fed to the model input. It does not make sense to train the model to predict DaySin and
DayCos since it is designed to be fully focused on predicting only solar irradiance.

dayt =

round( atan2(DaySint, DayCost)∗ 183
π + 366), x ≤ 0

round( atan2(DaySint, DayCost)∗ 183
π ), x > 0

(9)

DaySint+1 = sin
2π(dayt + 1)

366
(10)

DayCost+1 = cos
2π(dayt + 1)

366
(11)

In Figure 11, we can see the significance of the hyperparameters in affecting the
best validation mean squared error metric and also their correlation with this metric. The
hyperparameters are ranked in order of importance from most significant to least significant.
The green correlation represents a positive relationship, which means that as the value of
the hyperparameter increases, the error of the model increases. A red correlation represents
the opposite, and thus the best mean squared error metric decreases as the value of the
hyperparameter increases.
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3. Results

Figure 12 shows the solar irradiance prediction for 7 days ahead. The orange points
represent the predicted solar irradiance values by the model, and the green points depict
the measured values from the dataset. As can be seen in the graph, the model is, on the
whole, accurate in predicting the future. It was also found that it is not advisable to make
longer predictions than the specified window size of the model.
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The results show that the smallest average solar irradiance prediction error is about
131.49326 Wh/m2/day, which is a good result when the average daily solar irradiance
is 5.3070946 kWh/m2/day (the error is less than 2.5% of the mean solar irradiance). The
MAPE error results are presented in Table 1.

Table 1. Mean absolute percentage error results.

Paper Location MAPE (%)

[29] Abha (Saudi Arabia) 11.8
[30] Sirt (Turkey) 6.78
[31] Mugla (Turkey) 6.73
[32] Cyprus and USA 4.7
[9] Mumbai (India) 4.24

This paper Chennai Metropolitan Area (India) 3.45

As shown in Table 1, the model proposed in this paper achieved a smaller worst-case
error than those of the competing models. It must be emphasized that for the proposed
model, Table 1 shows the result for the region, where the solar irradiance proved to be the
most difficult to predict. It is the densely populated Chennai Metropolitan Area located on
the east coast of India with a tropical savanna climate where the temperature reaches 45 ◦C
in extremes. When comparing results across the various areas predicted by the proposed
model, Bitta Solar Power Plant, located in a sparsely populated area in western India off
the Arabian Sea coast, proved the easiest to predict with a MAPE error of only 1.86%.

Optimal Hyperparameters

The optimization of the model hyperparameters was performed through the W&B
Sweep environment. Tuning of the hyperparameters was aimed at minimizing the valida-
tion mean squared error, i.e., the most optimal model settings in terms of minimizing this
metric were sought. The resulting model (see Table 2) contained large numbers of both
encoder and decoder blocks due to the amount of training data producing the smallest
overfit. This advantageous result could also be due to the appropriate setup and use of the
dropout technique as well as residual connection [33,34].
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Table 2. The optimized hyperparameters.

Name Description Value

Attention dropout Dropout applied to the attention matrix 0.25
Batch size Number of examples per one training batch 32
Dropout Dropout applied between hidden layers 0.15

Embed layer size Size of the Key, Value, Query matrices 64
Epochs Number of training epochs 1000

FC layer size Size of the fully connected feed-forward network block 256
Global clipnorm Global clipnorm for the optimizer 2

Learning rate Learning rate for the optimizer 0.005
No. decoder layers Number of decoder blocks 6
No. encoder layers Number of encoder blocks 3

No. heads Number of heads in every Multi-head Attention block in
the model 6

Optimizer Optimizer used during training AdamW [35]
Warmup steps Warmup steps of the learning rate cosine scheduler 70
Weight decay Weight decay for the optimizer 0.00001
Window size Windows size defines the size of known history 7

4. Discussion

Currently, the decoder (simulator) part of the model is used to predict the future
in the form of daily data. In the future, a partition of the latent space among several
independent decoder blocks will be possible. In this way, each of the independent decoder
blocks could predict a different time unit. In addition to daily data, NASA POWER also
provides monthly data containing the annual average and hourly data. The disadvantage
of hourly data is that it does not contain regional data and thus cannot be used on the
encoder input side. Using independent decoder blocks architecture, the Transformer can
be used to aggregate gradients from multiple nodes (decoders) in the encoder part, thus
strengthening the accuracy of the training process of the encoder part, assuming there is a
replenishment of data in each time category. It is also a prerequisite to have synchronized
windows across all time categories.

5. Conclusions

The results show that it is advantageous to use space–time bonds between features as
well as point and regional data in solar irradiance prediction. The paper also resulted in
a model capable of predicting a specified number of timesteps ahead based on historical
data as well as its own prediction of the future. The Transformer model proved to be a
convenient solution not only for tasks dealing with images or natural language but also for
tasks related to predicting the future values of a physical quantity. The basis for this method
is a rich knowledge of historical data, which the model can draw on during learning and
thus adapt not only to the average weather. Given a sufficiently long time, the dataset
could include several dramatic natural events, such as volcanic activity, large-scale fires, or
global warming. Another advantage of the Transformer model proved to be the coupling of
regional data to predict point (target) solar irradiance. This feature of the proposed model
is based on the idea of translation from one natural language to another natural language.
Moreover, the property of matching words with the same or similar meaning from two
different dictionaries is reflected by linking the local regions across India according to their
influence in predicting future solar irradiance. The Transformer model has proved to be a
suitable solution for finding the correlations, with the advantage that its computation is
massively parallelized.
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Supplementary Materials: The Solar Transformer code and further description can be downloaded
at: https://github.com/markub3327/Solar-Transformer (accessed on 1 July 2022). The NASA Power
bot code and further description can be downloaded at: https://github.com/markub3327/NASA-
POWER-BOT (accessed on 1 July 2022). The online interactive charts at: https://wandb.ai/markub/
solar-transformer?workspace=user-markub (accessed on 1 July 2022).
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