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Abstract: In this paper, we propose a novel unsupervised learning-based model for estimating the
depth of monocular images by integrating a simple ResNet-based auto-encoder and some special loss
functions. We use only stereo images obtained from binocular cameras as training data without using
depth ground-truth data. Our model basically outputs a disparity map that is necessary to warp an
input image to an image corresponding to a different viewpoint. When the input image is warped
using the output-disparity map, distortions of various patterns inevitably occur in the reconstructed
image. During the training process, the occurrence frequency and size of these distortions gradually
decrease, while the similarity between the reconstructed and target images increases, which proves
that the accuracy of the predicted disparity maps also increases. Therefore, one of the important
factors in this type of training is an efficient loss function that accurately measures how much the
difference in quality between the reconstructed and target images is and guides the gap to be properly
and quickly closed as the training progresses. In recent related studies, the photometric difference
was calculated through simple methods such as L1 and L2 loss or by combining one of these with a
traditional computer vision-based hand-coded image-quality assessment algorithm such as SSIM.
However, these methods have limitations in modeling various patterns at the level of the human
visual system. Therefore, the proposed model uses a pre-trained perceptual image-quality assessment
model that effectively mimics human-perception mechanisms to measure the quality of distorted
images as image-reconstruction loss. In order to highlight the performance of the proposed loss
functions, a simple ResNet50-based network is adopted in our model. We trained our model using
stereo images of the KITTI 2015 driving dataset to measure the pixel-level depth for 768 × 384 images.
Despite the simplicity of the network structure, thanks to the effectiveness of the proposed image-
reconstruction loss, our model outperformed other state-of-the-art studies that have been trained in
unsupervised methods on a variety of evaluation indicators.

Keywords: monocular depth estimation; perceptual image-quality assessment; PieAPP; KITTI

1. Introduction

Deep neural networks are one of the key components of the self-driving technology
stack. The neural network analyzes the on-car camera feeds for roads, signs, cars, obsta-
cles, and people. However, deep learning also has the potential to err when detecting
objects in images. Most self-driving vehicle companies use LiDAR (Light Detection and
Ranging)s, devices that emit an omni-directional laser beam to create a 3D map of the
car’s surroundings. LiDARs provide sensor-based depth data that supplements the lack of
neural networks, which can be used to avoid or contact objects within the range of motion
of a car or robot. With expensive equipment such as LiDAR, depth data can be obtained
directly through the sensor. However, in a simple monocular camera, it is necessary to
analyze the RGB image to measure the depth. Some researchers have preferred direct
measurement methods, such as a stereo-image set generated from a binocular camera or
laser sensor, rather than depth analysis by monocular images. However, these methods are
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computation-intensive and not cost-effective. There are a lot of limited environments such
as black boxes, CCTVs, smartphones, IoT sensor cameras, and so on where it is not easy
to install two or more cameras physically. In those environments, the direct prediction of
3D-depth data from a monocular 2D image may be more feasible than installing additional
camera sensors and implementing a stereo-based analysis method. Therefore, there is a
growing demand for monocular depth estimation.

Recently, a number of deep-learning-based studies have been published to predict the
depth of monocular images using data taken from images, LiDAR sensors, RGB-D sensors,
and so on. A deep-learning-based depth-estimation network can be trained in a supervised,
unsupervised, or semi-supervised way [1]. In monocular depth estimation, supervised
learning is a method of directly predicting a depth map from an input image, usually using
LiDAR or RGB-D sensor data as a label or target. However, it is difficult to obtain large-
scale image–depth-pair datasets because it requires high-cost equipment such as LiDAR.
Unsupervised learning methods generate disparity maps for monocular images by training
stereo images without ground-truth depth data. They are often called the stereo-supervision
models, but, in this paper, for clarity, we call these USI (Unsupervised models based on
Stereo Images) models. The main advantage of these models is that the training image
data can be easily acquired by calibrated stereo cameras. Some studies have improved the
performance by using the image-synthesis capabilities of GAN (Generative Adversarial
Network)s. Other studies using RNN (Recurrent Neural Network)-based models such
as LSTM; Ref. [2] trained their models to predict an accurate disparity map in order to
generate an image at a specific time point (t) based on time-series image data. They are often
called the monocular-supervision models, but, in this paper, for clarity, we call these UVS
(Unsupervised models based on Video Sequences) models. These models also do not suffer
from the data-shortage issue of the supervised model, but the overall performance is lower
than the USI models. Semi-supervised learning is a hybrid of the previous two methods.
Some studies have employed pixel-level semantic segmentation or instance segmentation
benchmarks to provide additional information for predicting depth [3,4].

In this paper, we propose a new USI model that integrates a simple network structure
and several effective loss functions. Most of the existing related studies have focused on
the development of learning networks and have shown the impact that specific network
architectures can have on depth-prediction performance. They initially calculated the
image-reconstruction loss through simple methods such as L1 and L2 loss, which are
then combined with traditional computer vision-based image quality assessment (IQA)
algorithms. Computer vision-based IQA algorithms such as SSIM [5] have been used
to quantify the similarity between the reconstructed and target images in unsupervised
learning-based monocular depth-estimation models [1,6,7]. However, these methods have
limitations in modeling various patterns at the level of the human visual system. That
is, they behave differently in some environments. IQA algorithms derive feature maps
representing the image structure from the original image and a distorted image. Then,
they measure how similar those images are. Since these methods do not tolerate texture
resampling, they have shown poor performance in images with complex textures, such
as grass [8]. If the loss function for image reconstruction does not accurately evaluate the
image quality, there is a possibility of inducing inefficient learning of the network [6,9] . We
argue that, in order to accurately predict monocular depth in an unsupervised model, it is
essential to use a robust image-reconstruction loss function that accurately quantifies the
difference between the reconstructed image and target images. Recently, perceptual IQA
models that effectively mimic human visual mechanisms have shown that this challenge
could be mitigated [8,10,11]. Therefore, we considered that a human-like perceptual
ability would improve the reconstruction quality in the warping process of the USI model
for monocular depth estimation based on stereo images. Consequently, we propose an
unsupervised learning-based model using PieAPP [11], one of the representative perceptual
IQA algorithms, as an image-reconstruction loss. To the best of our knowledge, there is no
precedent for using these methods for monocular depth prediction. The proposed model is
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a simple ResNet50-based auto-encoder [12], which further highlights the contribution of
the proposed effective loss functions.

We trained our model to generate depth maps for 768 × 384 images using stereo
image pairs of the KITTI 2015 dataset [13]. We applied a variety of metrics to validate the
performance of our approach. We also quantitatively and qualitatively compared our results
with other studies. Our model performed well numerically in various standard evaluation
indicators. Additional experimental results were also performed to verify our model’s
generalization capacity using the CityScapes dataset [14]. Although our model is based on
a simple ResNet-based network, it outperforms other unsupervised learning-based state-
of-the-art studies thanks to the image-reconstruction loss function based on the perceptual
IQA model that effectively mimics the human visual system. The following sections first
describe several studies related to our work. We then describe the proposed approach
in detail in Section 3 and analyze the results of several experiments to demonstrate the
effectiveness of our method in Section 4. Finally, in the conclusion section, we summarize
our suggestions and present limitations, future studies, etc.

2. Related Work
2.1. Supervised Leaning Models for Monocular Depth Estimation

Eigen et al. [15] introduced a deep-learning-based approach for monocular depth predic-
tion using two network stacks to consider both global and local information. Liu et al. [16]
formulated a depth-prediction task on a single image as a discrete-continuous-optimization
problem. They proved the effectiveness of their approach using the Make3D [17] and
NYU v2 [18] datasets. Fu et al. [19] proposed a novel approach (DORN) that discretizes dis-
tance using a spacing-increasing discretization (SID) method instead of learning the distance
measurement as a regression method and converting it into an ordinal regression problem.

The problem with depth-supervised models is that they require large amounts of
labeled data for training. Therefore, they often suffer from a lack of sufficient training data.
Moreover, in the context of monocular depth prediction, it is nearly impossible to obtain an
accurate and dense depth in a dynamic outdoor environment.

2.2. Unsupervised Learning Models for Monocular Depth Estimation Based on Video Sequence
(UVS Models)

Zhou et al. [20] jointly trained two networks using unlabeled video sequences: one
for depth prediction [21] and another for estimating the pose of the camera. They used
the L1 loss for the image synthesis. [22]. Mahjourian et al. [23] proposed a novel un-
supervised approach for learning depth and ego-motion from consecutive video frames.
Yin et al. [24] proposed the GeoNet. They jointly trained three networks: one for monoc-
ular depth, one for optical flow, and one for the ego-motion estimation from consecutive
video frames. They adopted the robust-image-similarity measurement method from [6].
Wang et al. [25] suggested a theory that proposes that learning-based depth prediction is
possible without a pose convolutional neural network. They proposed a novel normal-
ization strategy that circumvented scale ambiguity. They also proposed the incorporation
of a direct visual odometry (DVO) [26] pose predictor into their framework instead of
using the pose-CNN employed by [20]. They used a linear combination of the L1 loss
and the SSIM for the image-reconstruction loss, inspired by [6]. Luo et al. [27] proposed
the every-pixel-counts++ (EPC++) network. They jointly trained three networks: one for
predicting depth (DepthNet), one for camera motion (MotionNet), and one for optical flow
(OptFlowNet). These methods are cost-effective, as they only require a monocular camera
to acquire training data. However, they have the inconvenience of the researcher having to
manually remove some data from the training data when there is little difference between
successive frames, for example, when an experimental shooting car is stopped. These
methods also do not sufficiently solve the issue of invisible occlusion regions in continuous
images [20].
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2.3. Unsupervised Learning Models for Monocular Depth Estimation Based on Stereo Images
(USI Models)

Garg et al. [28] proposed an unsupervised framework for monocular depth prediction
without a pre-training step or annotated depth ground truth. They used the L2 loss between
the reconstructed and target images as a simple image-reconstruction loss. However, the
L2 loss generated blurry images as it converged to a stable value rather than finding an
exact value for each pixel. Therefore, it is not suitable for photorealistic image synthesis,
which limits the accuracy improvement of the depth maps generated by their models.
Godard et al. [6] presented an unsupervised learning-based model training stereo image
pairs of the KITTI 2015 driving dataset. They proposed a novel objective function including
an image-reconstruction loss based on the L1 and SSIM [5], a disparity-smoothness loss,
and specifically a left–right consistency loss. Furthermore, they extended their scope to
monocular supervision by adding a network of learning consecutive video frames [1]. They
also presented a minimal reprojection loss to handle the occlusion problem, a full-resolution
multi-scale sampling approach to reduce visual artifacts and a simple auto-masking method
to filter out pixels that did not change appearance from one frame to the next. Inspired by
recent deep-learning methods for super-resolution, Pillai et al. [29] proposed a sub-pixel
convolutional layer extension for depth super-resolution that accurately synthesized high-
resolution disparities from their corresponding low-resolution features. They used a linear
combination of the L1 loss andsingle-scale SSIM loss as the image-reconstruction loss. They
also introduced a differentiable flip-augmentation layer to accurately fuse predictions from
the image and its horizontally flipped version, which reduced the effect of left and right
shadow regions generated by occlusions. Park et al. [7] used the GMSD [30], one of the
high-performance conventional IQA algorithms, as the image-reconstruction loss function
in a symmetric GAN [31] structure. They proved that GMSD loss effectively contributes
to performance improvement. They also used a relativistic discriminator [32] to solve the
problem of training instability in GANs. The advantage of these models is that the training
image data can be easily acquired by binocular cameras. Therefore, it is more feasible to
easily learn the models in various environments than the supervised models. On the other
hand, these methods have a problem, in that artifacts are generated at occlusion boundaries
due to pixels in the occlusion region that are not visible in both images [6].

Table 1 summarizes the image-reconstruction loss used by the unsupervised learning-
based studies mentioned in Sections 2.2 and 2.3, respectively. The combination of L1 loss
and SSIM is the most widely used.

Table 1. Image-reconstruction loss of each unsupervised learning-based depth prediction study.

Type Method Image-Reconstruction Loss

UVS (M)

Zhou [20] L1 pixel-wise photometric loss
Yang [22] L1 pixel-wise photometric loss
Mahjourian [23] L1 pixel-wise photometric loss
GeoNet [24] A linear combination of L1 photometric loss and sigle scale SSIM loss
DDVO [25] A linear combination of L1 photometric loss and sigle scale SSIM loss
EPC++ [27] L1 pixel-wise photometric loss

USI (S)

Garg [28] L2 pixel-wise photometric loss
Godard [6] A linear combination of L1 photometric loss and sigle scale SSIM loss
SuperDepth [29] A linear combination of L1 photometric loss and sigle scale SSIM loss
Monodepth2 [1] A linear combination of L1 photometric loss and sigle scale SSIM loss
Park+pp [7] A linear combination of L1 photometric loss and sigle scale GMSD loss

3. The Proposed Model

This section describes the structure of the proposed unsupervised learning-based
monocular depth-prediction model. This section also covers the rationale of proposed loss
functions and their details in the learning process.



Appl. Sci. 2022, 12, 8829 5 of 13

3.1. Depth Prediction Network

Our network learns how to predict pixel-wise inverse depth and disparity in a single
image I in an unsupervised approach by training stereo images (i.e., USI model). Although
this method may provide only general training for depth prediction, as compared to the
depth supervision methods, it has the advantage of being able to train with the easily
acquired larger datasets and then improve its accuracy and performance by using good loss
functions. The depth p is calculated according to the formula p = (b× f )/d (b: baseline
distance between two cameras, f : camera focal length, d: disparity map). Figure 1 shows
the structure of the proposed model. The network is a simple ResNet50-based auto-encoder,
which predicts a disparity map as required to simulate an image from a different viewpoint.
The network needs pairs of images (provided from the KITTI dataset) for training. In other
words, it learned how to reconstruct an input left image Il into a target right image Ir.
Our network is inspired by [6], and we used a ResNet50 backbone network as an encoder.
The decoder consists of six up-convolution layers and performs upsampling based on a
bilinear interpolation with a scale-factor of two in each layer. In the decoding process,
three disparity maps d f ,m,c of different sizes (a scale factor of two) are predicted, where f,
m and c represent the fine, medium, and coarse view, respectively. We calculate the loss
(image-reconstruction loss, left–right consistency loss, and smoothness loss) for each of
these three disparity maps. The proposed network generates a disparity map dr used to
synthesize Il into Îr (i.e., warping process w+). In addition, it also predicts another disparity
map dl used to synthesize Ir into Îl (i.e., warping process w−) simultaneously. After that,
the post-processing method suggested by [6] is applied to further improve the accuracy.

Figure 1. Illustration of the detailed framework and loss functions for the proposed unsupervised
depth-estimation model. (Il : left image, Ir: right image, dl : disparity map to warp left, dr: disparity
map to warp right, w+: warping right, w−: warping left, Îl : reconstructed left image, Îr: reconstructed
right image, LL1: L1 loss between the reconstructed and target images, Lpieapp: PieAPP loss between
the reconstructed and target images, Lcon: left–right consistency loss, Lsmooothness: smoothness loss).

3.2. Training Loss

Image-Reconstruction Loss: Figure 1 shows several loss functions required for train-
ing. The network is trained to generate a disparity map used to synthesize an input as
closely as possible to the target. The image-reconstruction loss refers to the numerical
difference between the reconstructed and target images, which is similar to the role of IQA
algorithms. Therefore, if an IQA algorithm as a loss function could accurately quantify
the differences between images, the accuracy of the disparity map could be increased by
gradually decreasing this value. PieAPP [11], one of the learning-based IQA algorithms,
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shows great performance in the IQA field. As compared to manual methods, the PieAPP
model learned to mimic the complexity of human visual systems. While there are other
learning-based studies that train on human-labeled datasets, they have difficulties in ob-
taining large, high-quality datasets. The authors of PieAPP presented a new dataset for a
pairwise learning framework that compares two given images and identifies them accord-
ing to their similarity to a reference, which could be used to achieve better performance.
We trained our network under the assumption that using this excellent IQA algorithm as
the main loss function Lpieapp would contribute to increasing the whole performance. L1
loss LL1 is added to compensate for the quality of the reconstructed image and is used to
minimize the absolute pixel-wise distance between the reconstructed and target images.
Altogether, the image-reconstruction loss Lrec is defined as:

Lpieapp
r = ∑ ||P(I f ,m,c

r )− P( Î f ,m,c
r )|| (1)

Lpieapp
l = ∑ ||P(I f ,m,c

l )− P( Î f ,m,c
l )|| (2)

Lpieapp = Lpieapp
r + Lpieapp

l (3)

LL1
r = ∑ ||I f ,m,c

r − fw+(d
f ,m,c
r , I f ,m,c

l )||

= ∑ ||I f ,m,c
r − Î f ,m,c

r ||
(4)

LL1
l = ∑ ||I f ,m,c

l − fw−(d
f ,m,c
l , I f ,m,c

r )||

= ∑ ||I f ,m,c
l − Î f ,m,c

l ||
(5)

LL1 = LL1
r + LL1

l (6)

Lrec = α ∗ Lpieapp + (1− α) ∗ LL1, (7)

where P(), fw+ , and fw− represent the pre-trained PieAPP model [33], right-warping
function, and left-warping function, respectively. α in Equation (7) represents the weight
ratio of the LL1 loss and Lpieapp loss among the total image-reconstruction loss, and it is
optimally pre-determined through experiments.

Left–Right Consistency Loss: Additionally, we employed the left–right consistency
loss from Godard et al. [6] to reinforce the consistency between the left-to-right disparity
map dle f t2right and the right-to-left disparity map dright2le f t. This contributes to solving
the problem that the inferred disparity has texture-copy artifacts and depth discontinuity
errors, which is defined as follows:

d f ,m,c
le f t2right = fw+(d

f ,m,c
l , d f ,m,c

r ) (8)

d f ,m,c
right2le f t = fw−(d

f ,m,c
r , d f ,m,c

l ) (9)

Lcon
r = ∑ ||d f ,m,c

le f t2right − d f ,m,c
r || (10)

Lcon
l = ∑ ||d f ,m,c

right2le f t − d f ,m,c
l || (11)

Lcon = Lcon
r + Lcon

l . (12)

Smoothness Loss: As suggested in [1,6], we used an edge-aware smoothness loss
Lsmooth to discourage any shrinking of the predicted depth:

Lsmoothness = |∂xd∗t |e−|∂x It | + |∂yd∗t |e−|∂y It |, (13)

where d∗t = dt/d̄t, ∂d, and ∂I represent the mean-normalized disparity [25], the disparity
gradient, and the image gradient, respectively. This loss contributes to making disparities
locally smooth, which ultimately improves the prediction accuracy.
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4. Experiments

In this section, we analyze the performance of our model trained on the KITTI 2015
driving dataset according to standard metrics. We also perform quantitative and qualitative
comparisons with existing studies trained using the same data split as our model (Eigen
split). Our model outperforms other studies in various metrics. This section also provides
a logical analysis of the experimental results.

4.1. Experimental Setup
4.1.1. Datasets

KITTI: We used the left/right image data provided by the KITTI 2015 driving dataset
for the unsupervised learning-based depth-estimation network training. The KITTI dataset
is a challenging real-world computer vision benchmark developed by utilizing an au-
tonomous driving platform. The developers built a standard station wagon equipped with
two high-resolution color/gray-scale video cameras. It is also equipped with a Velodyne
laser scanner and a GPS positioning system to provide accurate ground-truth information.
The raw dataset consisted of 61 scenes and included a total of 42,382 reconciled stereo
image pairs. It also provides 3D point data for each image, which is used as target data in
supervised learning and serves as the ground truth for performance measurements. We
resized the provided image data and Velodyne depth map to a resolution of 768× 384
before training, considering the effect on the batch-size decision according to the GPU
memory size used for training. In addition, we expected that there would be less visual
ambiguity in the training process due to the size of the course view and the medium view
being 192× 96 and 384× 192, respectively.

CityScapes: We also evaluated our model on the CityScapes dataset [14] to verify our
model’s generalization performance. The CityScapes dataset is a large-scale dataset containing
a diverse set of stereo video sequences recorded from street scenes from 50 different cities,
with high-quality pixel-level annotations of 5000 frames (fine annotations) in addition to a
larger set of 20,000 weakly annotated frames (coarse annotations). It consists of 22,900 training
images, 500 validation images, and 1525 test images. Since several images contain artifacts at the
top/bottom of the images, and both left and right cameras unnecessarily captured some parts
of the experimental car, the top 50 and bottom 224 rows of pixels are cropped to compensate.
Cropping is also performed at the sides of the images to maintain the width–height ratio.

4.1.2. Implementation Details and Parameter Settings

Our model has been implemented using PyTorch [34]. We trained our model for 100 epochs
with a batch size of 14. In the training process, each epoch takes 1 hour when using a single
GeForce GTX TITAN X GPU. The resolution of the input/output images and disparity maps
is 768× 384.

The output disparities are the values passed through the sigmoid activation function. These
are bound between 0 and dlimit using sigmoid nonlinearity, where dlimit = 0.15 × image width.
We use a ResNet50-based auto-encoder for depth prediction. Our model outputs three
disparity maps of different sizes in the decoder. The first predicted disparity map is
upscaled and concatenated with a larger one in the channel direction, which is repeated
once more in the following step. We compute the suggested losses for each of the three
disparity maps. An Adam optimizer [35] is used to optimize our model with β1 = 0.5 and
β2 = 0.999. The initial learning rate is 1 × 10−4. It decreases by one half from the 15th to
the 29th epoch, by one half again from the 30th to the 39th epoch, and by one fifth from the
40th epoch to the end.

We also performed several data-augmentation techniques to prevent over-fitting
and enrich the training data: we randomly performed (1) horizontal flips, (2) gamma,
(3) brightness, and (4) color transformation with a 50 percent probability and ±0.15 range
value. We set α of Equation (7) to 0.5. In addition, we set the weight of the image-
reconstruction loss to 1, the left–right consistency loss to 1 and the smoothness loss to
0.05 for the total loss. Based on the general principle of hyperparameter setting, we have
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repeatedly evaluated the network accuracy with randomly sampled validation data to set
the optimal values.

Table 2. Quantitative Results: Comparison with unsupervised learning-based monocular depth-
estimation models. Unsupervised monocular depth-estimation models are divided into the following
categories: (M) Unsupervised model based on video sequence (Monocular supervision; USI model),
(S) Unsupervised model based on stereo images (Stereo supervision; USV model), and (MS): Monocu-
lar + stereo supervision.

Type Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

M

Zhou [20] 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang [22] 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian [23] 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet [24] 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [25] 0.151 1.257 5.583 0.228 0.810 0.933 0.974
EPC++ [27] 0.141 1.029 5.350 0.216 0.816 0.941 0.979

S

Garg [28] 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Godard [6] 0.148 1.344 5.927 0.247 0.803 0.922 0.964
SuperDepth+pp [29] (1024× 382) 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 [1] (640× 192) 0.109 0.873 4.960 0.209 0.864 0.948 0.975
Park+pp [7] 0.121 0.836 4.808 0.194 0.859 0.957 0.982
Ours 0.116 0.873 4.805 0.198 0.869 0.953 0.977
Ours+pp 0.112 0.832 4.741 0.192 0.876 0.957 0.980

MS EPC++ [27] 0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 [1] 0.106 0.818 4.750 0.196 0.874 0.957 0.979

4.2. Evaluation on KITTI Dataset

We trained the network using an Eigen split [15] for fair performance comparisons with
other studies. The Eigen split consisted of 22, 600 image pairs for training and 697 image pairs
for testing. The depth ground-truth data were used to measure performance during testing.

4.2.1. Quantitative Results

We compared the test results of our model with other works trained with different
types of unsupervised models. All models have been trained on the Eigen split of the KITTI
2015 driving dataset. Table 2 shows the quantitative results. N, d̂i, and di represent the
total number of pixels, predicted depth value, and ground-truth depth value for pixel i,
respectively. For the quantitative evaluation, we used several standard evaluation metrics,
which are as follow.

(1) Absolute relative error (Abs Rel): 1
N ∑N

i=1
||d̂i−di ||

di
.

(2) Squared relative error (Sq Rel): 1
N ∑N

i=1
||d̂i−di ||2

di
.

(3) Root-mean-squared error (RMSE):
√

1
N ∑N

i=1(d̂i − di)2.

(4) Mean log10 error (RMSE log):
√

1
N ∑N

i=1 ||log(d̂i)− log(di)||2.

(5) Accuracy with threshold t, that is, the percentage of d̂i such that δ = max( di
d̂i

, d̂i
di
) < t,

where t ∈ [1.25, 1.252, 1.253].

For (1)–(4), the lower the score, the better the results. For (5), the higher the score, the
better the outcome. In category S, the category of our model, the best results are highlighted
in bold red. The second-best results are underlined blue.

Our model learns how to generate disparity maps needed for the image-to-image
transformation process in an unsupervised model based on stereo images (S). As compared
to models that were similarly trained, our model has superior performance on all metrics,
except for absolute relative error, and achieved second-best in the last metric. In particular,
it shows better results than Monodepth [6], which has a similar network structure to our
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model. This demonstrates the importance of a effective loss function, such as a pre-trained
PieAPP model. As compared to unsupervised models based on video sequences (M), our
model’s performance is better. As compared to models that have sufficient advantages
by using both learning methods (MS) together, our model has superior performance in
all metrics, except absolute relative error and squared relative error. It is more robust
even in cases that are sensitive to large depth errors, such as a root-mean-squared error.
Considering that unsupervised methods are relatively advantageous for large-scale data
acquisition, they have ample potential for further improvement in the future. By training
more data, the performance of the current model can be further improved. In addition, the
mechanism of operating effective perceptual IQAs as an image-reconstruction loss can be
applied for semi-supervised learning.

4.2.2. Qualitative Results

Figure 2 shows the depth maps predicted by the various models for several images. Our
model outperforms the other models. In particular, it shows better results than Monodepth [6],
which has a network structure similar to ours. In depth-map images, areas are brighter when
closer to the camera position and darker when further away. The depth-map images of our
model do not have as sharp edges as Monodepth2 [1,7]. The boundaries between objects are
relatively blurry. However, the overall predicted depth values appear more accurate. Areas
inside objects are likely to have similar depth values, which means that the color values of
the areas inside the object are uniform. In addition, the nearest and farthest areas should be
represented with the lightest and darkest colors (excluding the sky), respectively. In the first
image, our model accurately identifies the pixel area of the left truck. In addition, the depth
values within the truck contour are constant. In the third image, the top right depth values of
the ready-mixed concrete truck are well predicted. In the fourth image, the car on the right is
the brightest. The depth values of the upper view of the sign located on the right-hand side of
the sixth image are well measured. The absolute distance between the building in the seventh
picture and the parked vehicle is not significant. Except for our model and Monodepth [6], the
other models predict large differences in brightness, such as large differences in the distance
between two objects. Our model correctly predicts the sign on the left and the building on the
right in the last image. Although we do not use depth data for training, our model shows good
results by using a powerful loss function.

4.2.3. Ablation Study

We performed an ablation study to analyze the effects of the proposed loss functions.
In (a) and (b) of Table 3, the base model computes only the image-reconstruction loss. Our
network shows the lowest performance when using only the L1 loss and shows better
performance when it is replaced with PieAPP. However, as in (c)–(e), when the left–right
consistency loss and smoothness loss are applied together, there is a noticeable performance
improvement. This is because each loss contributes to increasing the overall accuracy by
removing the texture-copy artifacts of the disparity maps and making the disparities
locally smooth. The experimental model (e) calculates all the losses (L1, PieAPP, left–right
consistency loss, and smoothness loss) presented in this paper. (c) shows the perceptual
loss, that is, the performance when PieAPP is removed. As compared to (d) and (e), the
overall performance degradation is quite large. According to the table, the perceptual loss
has a very large effect on the performance improvement.
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Figure 2. Qualitative results: comparison with several representative unsupervised learning-based
models (Wang et al. (2018) [25], Yin et al. (2018) [24], Godard et al. (2017) [6], Godard et al. (2019) [1],
Park et al. (2020) [7]).

Table 3. Ablation study for analyzing the effectiveness of our perceptual loss. (In the table, "Smooth"
represents the smoothness loss.

Method L1 PieAPP Left–Right Smooth Abs Sq RMSE RMSE δ < δ < δ <
Consistency Rel Rel log 1.25 1.252 1.253

(a) Base (L1) X 0.197 1.849 6.104 0.278 0.722 0.887 0.944
(b) Base (PieAPP) X 0.190 1.678 6.224 0.300 0.729 0.892 0.947

(c) Ours without PieAPP X X X 0.149 1.134 5.559 0.227 0.799 0.937 0.973
(d) Ours without L1 X X X 0.137 1.014 5.212 0.211 0.835 0.950 0.975
(e) Ours (full) X X X X 0.116 0.873 4.805 0.198 0.869 0.953 0.977
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4.3. Evaluation on CityScapes Dataset

To verify the generalization performance of our model, we tested the model on the
CityScapes dataset with 1525 test images. For experimentation, we cropped the bottom
part of each image and resized it to 768× 384, which is similar to the process performed on
the KITTI dataset. Figure 3 shows the qualitative results of the test images of Cityscapes.
Considering that various objects, such as cars, signs, people, trees, and bicycles, in the
images were well represented in the depth maps, our model demonstrated its generalization
performance by successfully predicting depth maps for different types of untrained images.

Figure 3. Qualitative results on CityScapes dataset for verifying our model’s generalization performance.

5. Conclusions

In this paper, we present an unsupervised learning-based neural network model
that predicts the 3D depth of a monocular image using a stereo image as training data.
Our model integrates a simple ResNet-based network with several loss functions. The net-
work reconstructs the input image into images from different viewpoints, outputting an
inverse depth or disparity map. As training progresses, it synthesizes the input image as
closely as possible to the target image, proving that the model’s ability to accurately predict
depth will evolve progressively. Therefore, the image-reconstruction loss function should
give an exact figure for the difference between the reconstructed image and the target image.
We hypothesize that using a perceptual IQA model that effectively mimics the human visual
system as an image-reconstruction loss function can significantly improve image-synthesis
performance. As a result, we select PieAPP, which achieved a high ranking in the IQA
algorithm-performance competition, as the image-reconstruction loss. Our model uses
stereo images from the KITTI 2015 driving data set for training. For a fair comparison with
existing studies, training is performed according to the Eigen split. Although our model
adopts a simple ResNet50-based network structure, it shows surprising results that out-
perform other models in various evaluation indicators thanks to its effective loss function.
In addition, the generalization performance of the model was verified through testing on
the CityScapes dataset. In particular, our model shows better results than Monodepth [6],
while having a similar network structure. Through ablation studies, we specifically found
that using a perceptual image-error-evaluation algorithm as an image-reconstruction loss
function effectively improves the performance of unsupervised learning-based monocular
depth prediction. Although the proposed perceptual IQA model mimics the human visual
system, there is still room for improvement, and computer vision-based IQA methods are
superior in some areas. In future research, it is necessary to analyze the effect of various
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IQA methods on depth-prediction performance in the same network or to consider network
structures and technologies that can complement them.
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