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Abstract: Visible-infrared person re-identification (VIPR) has great potential for intelligent video
surveillance systems at night, but it is challenging due to the huge modal gap between visible and
infrared modalities. For that, this paper proposes a minimizing maximum feature space deviation
(MMFSD) method for VIPR. First, this paper calculates visible and infrared feature centers of each
identity. Second, this paper defines feature space deviations based on these feature centers to measure
the modal gap between visible and infrared modalities. Third, this paper minimizes the maximum
feature space deviation to significantly reduce the modal gap between visible and infrared modalities.
Experimental results show the superiority of the proposed method, e.g., on the RegDB dataset, the
rank-1 accuracy reaches 92.19%.
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1. Introduction

Given a visible (or infrared) query image of a specified person, the goal of Visible-
infrared person re-identification [1–6] is to retrieve infrared (or visible) images of the
same person from a gallery set, as shown in Figure 1. VIPR has received more and
more attention due to its importance to intelligent surveillance systems and intelligent
transportation systems in light-less environments. In these application scenarios, visible
images are captured by color cameras and infrared images usually are captured by near-
infrared [7] or thermal [8] cameras. Just as with the traditional single-modal (i.e., visible)
re-identification task [9–11], VIPR meets the great challenges of pose variation, viewpoint
variation, and occlusions. Furthermore, VIPR suffers from a huge modal gap between
visible and infrared modalities. Therefore, VIPR is a meaningful but challenging topic that
is worthy of intensive study.

visible 
query image

infrared 
query image

infrared gallery set visible gallery set

retrieval results retrieval results

Figure 1. The schematic diagram of visible-infrared person re-identification.

Existing VIPR works can be roughly divided into three types: (1) metric learning-based
methods [3,12–14], (2) feature extraction-based methods [2,15–21], and (3) generation-
based methods [22–25]. Many metric learning-based methods usually design specific
triplet loss functions to optimize cross-modal samples. However, metric learning-based
methods focus on identity-level discrimination, underestimating threats of outliers raised
by the gap between visible and infrared modalities. Feature extraction-based methods are
often dedicated to designing additional special feature learning architectures (e.g., visual
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attention modules) to enhance general deep networks (e.g., residual networks [26]) to map
different modal features into a common feature space. However, extra computations caused
by additional special feature learning architectures are required.

Generation-based methods use generation adversarial networks (GAN) for modal
conversion to eliminate modal gaps. For example, in addition to using ResNet-50 [26],
Zhong et al. [22] designed a GAN to produce synthetic color images from infrared and gray
images. The GAN contains a generator of five convolutional layers and five convolution-
transpose layers, and each layer is followed by a batch normalization layer, a leaky rectified
linear unit, and a residual connection. The discriminator is a fully convolutional network,
mainly consisting of a series of 3 × 3 convolutional layers, where each convolutional
layer is followed by a max-pooling layer, and the number of channels doubles after each
max-pooling layer. The generator is applied to generate synthetic color images, while the
discriminator is used to discriminate an image is synthetic or real. Through the antagonism
between generator and discriminator, the generator could generate realistic synthetic color
images to reduce modal gaps. GANs of generators and discriminators are commonly used,
such as [24,25,27,28]. In [24,25,27], multiple GANs are applied to realize more delicate
adversarial learning. Leaving aside GAN’s architecture complexities, in practice, GAN’s
training process is complex and involves many hyper-parameters that require stage-wise
training or alternate training. Therefore, GAN-based methods require a lot of skill to avoid
model collapses.

In this paper, we propose a minimizing maximum feature space deviation (MMFSD)
method for VIPR. For modeling the modal gap between visible and infrared modalities,
we define feature space deviations (FSD) based on each identity’s visible and infrared
feature centers. Their centers are calculated by averaging multiple samples on the same
modality of the same identity. Furthermore, for reducing the modal gap between visible
and infrared modalities, we design a minimizing maximum FSD loss function, which
optimizes deviations from the most severe feature dimensions.

The main contributions of this paper can be summarized as follows. (1) A novel feature
space deviation measurement is designed to measure the modal gap between visible and
infrared modalities. (2) A minimizing maximum feature space deviation loss function
is designed to significantly reduce modal gap between visible and infrared modalities.
(3) Experimental results on SYSU-MM01 [7] and RegDB [8] datasets demonstrate that our
method outperforms many state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
describes the proposed method in detail. Section 4 presents experimental results to analyze
our method’s superiority. Section 5 concludes this paper.

2. Related Work
2.1. Metric Learning-Based Method

Some works [1,14,16,23,25] directly use the traditional triplet loss function [12,29],
which suffers from the huge cross-modal gap in VIPR. Furthermore, many
methods [5,13,30] are dedicated to designing new triplet loss functions that optimize
cross-modal positive and negative pairs for VIPR. For example, Liu et al. [5] designed
a hero-center triplet loss function to pull close positive feature centers from different
modalities and push away negative feature centers from different and same modalities.

2.2. Feature Extraction-Based Method

Deep learning feature extraction architectures have been widely used in many com-
puter vision tasks, such as image super-resolution [31], image detection [32], and live
searching [33]. For VIPR, the common feature extraction method is to modify general deep
learning feature extraction architectures into two-stream networks [1,2,14,16,34,35] whose
shallow layers are independent to learn features from different modalities, and whose deep
layers are shared to align cross-modal features. For example, Ye et al. [2] first introduced
the two-stream network for deep cross-modal shareable feature learning, which contains a
visible image stream and infrared image stream. Still, there are some methods [1,34] that
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introduced an attention mechanism to the two-stream network, which learned intra-modal
discrepancy and inter-modal correlation to achieve better feature alignment. Furthermore,
Zhang et al. [18] used an attention module to aggregate part features to global features
to enhance discrimination ability of feature learning. Such a part-level feature learning
method is also applied in [14,16,17]. Nevertheless, these methods improve feature learning
architecture via extra modules (e.g., attention [1,18,34,36] and transformer [35]) that usually
consume additional computations.

2.3. Generation-Based Method

The main idea of the generation-based method [6,22,24,25,27,28] is to use generation
adversarial network (GAN) for modal conversion, i.e., generating related modality or
unified modal information. For example, Hu et al. [24] generated cross-modal paired-
images for effective feature alignment. Wang et al. [27] translated the visible and infrared
images to their infrared and visible counterpart, respectively, and then combined the
original images and generated images to form multi-spectral images for feature learning.
Wang et al. [28] directly obtained fake infrared images from visible images by GAN, which
alleviated the modality discrepancy. The GAN-based method achieves style transfer for
reducing modal variations. However, methods with GAN usually converge slowly and
make re-identification module complex.

3. Proposed Method

In this section, we describe our minimizing maximum feature space deviation (MMFSD)
method in detail, including: (1) feature space deviation modeling; (2) feature learning ar-
chitecture; (3) total loss function design.

3.1. Feature Space Deviation Modeling

Let {xk,i|xk,i ∈ Rd×1, k ∈ 1, 2, · · · , K, i = 1, 2, · · · , N} and {yk,i|yk,i ∈ Rd×1,
k ∈ 1, 2, · · · , K, i = 1, 2, · · · , N} denote features extracted from visible and infrared images,
respectively, where K is the number of classes in the mini-batch, and N is the number of
images in each class, and d represents the number of feature dimensions. The feature space
deviation modeling progress is described as follows.

(1) Calculating visible and infrared centers of each class to construct the visible feature
space X and the infrared feature space Y as follows.

X = [x1, x2, . . . , xk, . . . , xK]
T ∈ RK×d, (1)

Y = [y1, y2, . . . , yk, . . . , yK]
T ∈ RK×d, (2)

where

xk =
1
N

N
∑

i=1
xk,i ∈ R1×d, (3)

yk =
1
N

N
∑

i=1
yk,i ∈ R1×d. (4)

(2) Calculating distances of visible and infrared feature spaces on each single dimen-
sion as deviations. Let us re-symbolize the visible feature space X and the infrared feature
space Y as follows.

X = [p1, p2, . . . , pj, . . . , pd] ∈ RK×d, (5)

Y = [q1, q2, . . . , qj, . . . , qd] ∈ RK×d, (6)
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where pj ∈ RK×1 and qj ∈ RK×1 represent the column vectors of X and Y , respectively.
Then, the distance of visible and infrared feature spaces on each single dimension defined
as a feature space deviation as follows.

dj =
∥∥ p̂j − q̂j

∥∥
2 =

√√√√ K

∑
k=1

( p̂j,k − q̂j,k)
2, (7)

(3) Designing a minimizing maximum feature space deviation (MMFSD) loss function.
The MMFSD loss function is calculated as follows:

LMMFSD = max
k∈[1,2,...,d]

‖ p̂j − q̂j‖2, (8)

where p̂j =
p̂j√
K
∑

k=1
p̂2

j,k

and q̂j =
q̂j√
K
∑

k=1
q̂2

j,k

are L2 normalized features of pj and qj, respectively.

Based on the MMFSD loss function, distance of the corresponding column vectors in the
cross-modal feature spaces is narrowed, so that the maximum feature space deviation
is optimized.

3.2. Feature Learning Architecture

Figure 2 shows the overall framework of VIPR. The two-branch network is used as
the feature learning network, which adopts ResNet-50 [26] as a backbone, as performed in
many existing works [1,5,37]. As shown in Figure 2, shallow layers of each branch, i.e., the
first convolutional layer (Conv), the first residual group (Layer-1), and the second residual
group (Layer-2), are un-shared to learning modal-specific features, which means that
shallow layers of each modal feature have the same structure but independent parameters.
There deep layers, i.e., the third residual group (Layer-3), the forth residual group (Layer-4),
the generalized-mean pooling (GeM) layer, and the batch normalization (BN) layer are
shared to exploit the modal-shared features. In the inference phase, L2 normalized features
from GeM and BN layers are added to be final features for VIPR.
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Figure 2. The overall framework of visible-infrared person re-identification.

3.3. Total Loss Function Design

In this paper, we combine the proposed MMFSD loss function with two commonly
used loss functions, i.e., the hard-mining triplet (HMT) loss function [38] and the cross-
entropy (CE) loss function [39], to supervise the training process. The total loss function is
formulated as follows:

LTotal = λLMMFSD + LHMT + LCE, (9)
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where λ > 0 is a hyper-parameter used to control the contribution of MMFSD loss function;
LHMT and LCE denotes HMT and CE loss functions, which are formulated as follows:

LHMT = 1
M

M
∑

m=1
log[1 + exp( max

fi∈F+
m

‖ fm − fi‖2 − min
f j∈F−m

‖ fm − f j‖2)], (10)

LCE = − 1
M

M
∑

m=1

K
∑

k=1
εm,klog(pm,k), (11)

where M = 2× N × K represents the total number of samples in a mini-batch; K denotes
the number of classes; N denotes the number of visible (or infrared) samples of each class;
fm represents the feature of m-th sample; F+

m and F−m denotes the positive set and the
negative set of the m-th sample fm; pm,k represents the posterior probability of the m-th
sample belongs to the k-th class (i.e., Classk), which is calculated with the Softmax function;
εm,k is the indicator function of smoothed class labels, which is formulated as follows.

εm,k = {
1− (K−1)ζ

K , xm ∈ Classk,
ζ
K , xm /∈ Classk,

(12)

where ζ is the regularized parameter for label smoothing, and it is set to 0.1 as a common
setting. Furthermore, as shown in Figure 2, the MMFSD loss function and the HMT loss
function are assigned to the GeM layer, while the CE loss function is arranged on the BN
layer, which is so-called batch normalization neck (BNNeck) [29].

4. Experiments and Analysis

In this paper, we evaluate our method on two popular datasets, i.e., SYSU-MM01 [7]
and RegDB [8] datasets. Following existing works [5,12,34], mean average precision (mAP),
mean inverse negative penalty (mINP), and cumulative match characteristic (CMC) curve
are applied as the VIPR’s performance metrics. Rank1 represents the rank-1 accuracy in a
CMC curve.

4.1. Datasets

The SYSU-MM01 dataset [7] contains 491 pedestrian subjects captured by four vis-
ible cameras and two infrared cameras. The training set includes 22,258 visible images
and 11,909 infrared images of 395 subjects. In the testing processing, there are two test
modes, i.e., all-search mode and indoor search mode. In the all-search mode, the query
set contains 3803 infrared images of 96 subjects to search from a gallery subset containing
301 visible images of the same subjects. In the indoor-search mode, the query set contains
3803 infrared images of 96 subjects which is same as all-search mode, while the gallery set
includes 112 visible images of the same subjects. Following [7], the single-shot evaluation
protocol is used, and the final results are based on an average of 10 tests with randomly
selected gallery images.

The RegDB dataset [8] includes 412 pedestrian classes, and each class contains ten
visible images and ten infrared images captured by the overlapping visible and infrared
cameras. Following [1,12,17], this dataset is randomly split into ten trials. In each trial,
the training set contains 206 classes, while the testing set includes the non-overlapping
206 classes. The final results are based on an average of 10 tests with 10 trials. Both
visible-to-infrared and infrared-to-visible retrieval are evaluated.

4.2. Implementation Details

We employ one GeForce RTX 3090 GPU and the Pytorch [40] deep learning tool to
implement our VIPR method. The batch size is set 40, which contains four subjects and
each subject has five visible images and five infrared images. All images are resized to
144× 288 pixels in the training and testing process. The ImageNet [41] pre-trained ResNet-
50 is applied as a backbone. We used the mini-batch stochastic gradient descent (SGD)
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optimizer [42] with the weight decays set to 0.0005 and the momentum set to 0.9 for training.
There are 90 epochs in the training process. The initial learning rate is set 0.001. In the first
10 epochs, the learning rate is linearly warmed up to 0.01. After warming up, the learning
rate is maintained at 0.01 from the 11st to 30th epochs. The learning rate is decayed to 10%
every 20 epochs.

4.3. Comparison with State-of-the-Arts Methods

In this section, we make a comparison with several state-of-the-arts methods to val-
idate the superiority of the proposed method. The comparison results are shown in
Tables 1 and 2.

Table 1. The performance comparison on the SYSU-MM01 dataset.

Method
All-Search Mode Indoor-Search Mode

Reference
Rank1 (%) mAP (%) Rank1 (%) mAP (%)

BDTR [3] 17.01 19.66 N/A N/A IJCAI 2018
cmGAN [6] 26.97 27.80 31.63 42.19 IJCAI 2018

D-HSME [43] 20.68 23.12 N/A N/A AAAI 2019
D2RL [27] 28.9 29.2 N/A N/A CVPR 2019

AlignGAN [28] 42.4 40.7 45.9 54.3 ICCV 2019
eBDTR [13] 27.82 28.42 N/A N/A TIFS 2020

CE2L [4] 29.52 28.4 N/A N/A ICPR 2020
Hi-CMD [25] 34.9 35.9 N/A N/A CVPR 2020

DGD+MSR [44] 37.35 38.11 39.64 50.88 TIP 2020
JSIA-ReID [23] 38.1 36.9 43.8 52.9 AAAI 2020

MSPAC-MeCen [18] 46.62 47.26 51.63 61.54 ICPR 2020
X modality [20] 49.92 50.73 N/A N/A AAAI 2020

MACE [37] 51.64 50.11 57.35 64.79 TIP 2020
LAND [14] 53.6 52.0 57.0 63.2 IOT 2020
DDAG [1] 54.75 53.02 61.02 68.0 ECCV 2020

FBP-AL [17] 43.78 42.91 N/A N/A TNNLS 2021
AGW [12] 47.50 47.65 54.17 62.97 TPAMI 2021
LLM [30] 55.25 52.96 59.65 65.46 SPL 2021

ADCNet [24] 55.9 59.6 58.8 65.6 ICME 2021
DMiR [45] 50.54 49.29 53.92 62.49 TCSVT 2022

GECNet [22] 53.37 51.83 60.60 62.89 TCSVT 2022
DFLN-ViT [35] 59.84 57.70 62.13 69.03 TMM 2022

MMFSD 60.64 57.54 62.93 69.27 Ours

4.3.1. Comparison on SYSU-MM01

As shown in Table 1, we can see the experimental results on SYSU-MM01 dataset
show that the proposed FSMD method obtains the great results in both all-search and
indoor-search mode. Specifically, the proposed FSMD method obtains 60.64% Rank1 and
57.54% mAP in all-search mode, while obtains 62.93% Rank1 and 69.27% mAP in indoor-
search mode. Compared with the feature extracting method DFLN-ViT [35], the proposed
method obtains 0.80% higher Rank1 in both all-search and indoor-search mode. Compared
with GAN-based method GECNet [22], the proposed method defeats GECNet [22] by
7.27% in terms of Rank1 and 5.71% in terms of mAP in all-search mode. The improvement
demonstrates the superiority of the proposed FSMD method.
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Table 2. The performance comparison on RegDB dataset.

Method
Visible-to-Infrared Retrieval Infrared-to-Visible Retrieval

Reference
Rank1 (%) mAP (%) Rank1 (%) mAP (%)

BDTR [3] 33.47 31.83 N/A N/A IJCAI 2018
D2RL [27] 43.3 44.1 N/A N/A CVPR 2019

D-HSME [43] 50.85 47.00 50.15 46.16 AAAI 2019
AlignGAN [28] 57.9 53.6 56.3 53.4 ICCV 2019

eBDTR [13] 31.83 33.18 N/A N/A TIFS 2020
CE2L [4] 47.50 44.21 N/A N/A ICPR 2020

DGD+MSR [44] 48.43 48.67 N/A N/A TIP 2020
JSIA-ReID [23] 48.5 49.3 48.1 48.9 AAAI 2020

MSPAC-MeCen [18] 49.61 53.64 N/A N/A ICPR 2020
X modality [20] 62.21 60.18 N/A N/A AAAI 2020

DDAG [1] 69.34 63.46 68.06 61.80 ECCV 2020
Hi-CMD [25] 70.93 66.04 N/A N/A CVPR 2020
cm-SSFT [15] 72.3 72.9 71.0 71.7 CVPR 2020
MACE [37] 72.37 69.09 72.12 68.57 TIP 2020
LADN [14] 75.7 72.9 75.3 73.0 IoT 2020
AGW [12] 70.05 66.37 N/A N/A TPAMI 2021

ADCNet [24] 72.9 66.5 72.4 65.3 ICME 2021
FBP-AL [17] 73.98 68.24 70.05 66.61 TNNLS 2021

LLM [30] 74.85 71.32 N/A N/A SPL 2021
SFANet [19] 76.31 68.00 70.15 63.77 TNNLS 2021
GECNet [22] 82.33 78.45 78.93 75.58 TCSVT 2021
MPANet [46] 83.7 80.9 82.8 80.7 CVPR 2021

MSA [21] 84.86 82.16 N/A N/A IJCAI 2021
HC-Triplet [5] 91.05 83.28 89.30 81.46 TMM 2021

GLMC [16] 91.84 81.42 91.12 81.06 TNNLS 2021
DMiR [45] 75.79 69.97 73.93 68.22 TCSVT 2022
DTRM [34] 79.09 70.09 78.02 69.56 TIFS 2022

DFLN-ViT [35] 92.10 82.11 91.21 81.62 TMM 2022

MMFSD 92.19 85.95 90.65 84.38 Ours

4.3.2. Comparison on RegDB

The experimental results on the RegDB dataset in Table 2 demonstrate the proposed
FSMD method achieves competitive performance in both visible-to-infrared and infrared-
to-visible retrieval. In visible-to-infrared retrieval, the proposed FSMD method obtains
92.19% Rank1 and 85.95% mAP, defeating attention-based method DTRM [34] by 13.10%
Rank1 and 15.68% mAP. In infrared-to-visible retrieval, the proposed FSMD method obtains
90.65% Rank1 and 84.38% mAP, defeating id-level loss function HC-triplet [5] by 1.35%
Rank1 and 2.74% mAP. These comparative results validate the effectiveness of the proposed
FSMD method.

4.4. Role of Minimizing Feature Space Maximum Deviation Loss Function

We adjust the λ in Equation (9) to evaluate the role of the MFSMD loss function. Table 3
and Figure 3 show the performance on SYSU-MM01 dataset, and Table 4 and Figure 4 show
the performance on RegDB dataset.

Table 3. The performance comparison of using different weights of MMFSD loss function (i.e., λ in
Equation (9)) on the SYSU-MM01 dataset.

λ
All Search Indoor Search

Rank1 (%) mAP (%) mINP (%) Rank1 (%) mAP (%) mINP (%)

0 56.04 54.71 41.96 59.95 67.23 63.35
0.25 60.64 57.54 43.31 62.93 69.27 64.89
0.5 57.96 54.64 40.15 61.87 67.66 62.82
1 59.52 55.97 41.31 63.00 69.08 64.32
2 55.27 51.42 35.66 54.21 61.92 57.09
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Figure 3. The CMC curves in different MMFSD’s weights (i.e., λ in Equation (9)) on SYSU-MM01
dataset of (a) all-search mode and (b) indoor-search mode.

Table 4. The performance comparison of using different weights of MMFSD loss function (i.e., λ in
Equation (9)) on the RegDB dataset.

λ
Visible to Infrared Infrared to Visible

Rank1 (%) mAP (%) mINP (%) Rank1 (%) mAP (%) mINP (%)

0 85.12 80.44 68.67 84.22 79.16 65.75
0.25 90.94 85.25 73.26 89.81 83.72 69.58
0.5 92.19 85.95 73.86 90.65 84.38 70.73
1 90.18 81.49 65.46 88.27 79.23 61.65
2 88.02 79.71 63.97 86.45 78.48 61.48
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Figure 4. The CMC curves in different MMFSD’s weights (i.e., λ in Equation (9)) on RegDB dataset
of (a) visible-to-infrared retrieval and (b) infrared-to-visible retrieval.

On the SYSU-MM01 dataset, from Table 3 and Figure 3, it can be found that the
proposed FSMD loss function achieves great performance. For example, compared with
the case without FSMD loss function (i.e., λ = 0), the Rank1, mAP and mINP obtain better
results when λ = 0.25 on all-search mode (i.e., 60.64% Rank1, 57.54% mAP, and 43.31%
mINP). It demonstrates the effectiveness of the FSMD loss function.

On the RegDB dataset, Table 4 and Figure 4 also show the effectiveness of the FSMD
loss function. Specifically, when adjusting λ from 0.25 to 2, the Rank1, mAP, and mINP
are higher than those as λ = 0 on both visible-to-infrared retrieval and infrared-to-visible
retrieval. Among them, when λ = 0.5, it obtains the best performance, i.e., 92.19% Rank1,
85.95% mAP and 72.86% mINP on visible-to-infrared retrieval, and 90.65% Rank1, 84.38%
mAP and 70.73% mINP on infrared-to-visible retrieval.
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By comparing with the results on the SYSU-MM01 and RegDB datasets, one can see
that the best λ value of RegDB is bigger than that of SYSU-MM01. Furthermore, comparing
with Figures 3 and 4, we can find that the CMC curves’ variation on RegDB dataset is larger
than that on SYSU-MM01 dataset with adjusting the λ. This is because, compared with
SYSU-MM01 dataset which suffer from multiple intra-class variation (e.g., pose variation,
view variation and modal variation), the modal discrepancy on RegDB dataset is the
most significant problem. Therefore, it further demonstrates the FSMD’s outstanding
performance on deal with modal discrepancy.

5. Conclusions

In this paper, we design a novel feature space deviation measurement for modeling
the huge modal gap between visible and infrared images. Furthermore, a minimizing maxi-
mum feature space deviation loss function is designed to reduce modal gap between visible
and infrared modalities. Experiments on the SYSU-MM01 and RegDB datasets demon-
strate that the proposed MMFSD loss function is helpful to improve VIPR performance,
outperforming many state-of-the-arts methods.

In the future work, we will study how to deal with partially occluded person images
caused by over-saturating infrared sensors in high temperature environments, e.g., we will
try to design an automatic data augmentation method to eliminate the adverse effects of
high temperatures on infrared sensor imaging. Moreover, we will explore the application
of feature space deviation measurements, e.g., extracting modal-common features from
infrared and visible images via suppressing feature space deviations and then decoding
modal-common features back to image spaces for infrared-visible image fusion to enhance
imaging effect.
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VIPR Visible-infrared person re-identification
FSD Feature space deviation
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GeM Generalized-mean pooling
BN Batch normalization
HMT Hard-mining triplet
CE Cross-entropy
BNNeck Batch normalization neck
mAP Mean average precision
CMC Cumulative match characteristic
Rank1 rank-1 accuracy
SGD Stochastic gradient descent
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