
Citation: Wang, L.; Song, T.; Song,

H.-N.; Zhang, S. Research on Design

Pattern Detection Method Based on

UML Model with Extended Image

Information and Deep Learning.

Appl. Sci. 2022, 12, 8718. https://

doi.org/10.3390/app12178718

Academic Editor:

Antonio Fernández-Caballero

Received: 3 August 2022

Accepted: 25 August 2022

Published: 30 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on Design Pattern Detection Method Based on UML
Model with Extended Image Information and Deep Learning
Lei Wang 1,2,3, Tian Song 1, Hui-Na Song 2,3 and Shuai Zhang 2,3,*

1 School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China
2 College of Mathematics and Computer Science, Yan’an University, Yan’an 716000, China
3 Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan’an 716000, China
* Correspondence: zhangshuai0416@yau.edu.cn

Abstract: Detecting relevant design patterns from system design or source code helps software
developers and maintainers understand the ideas behind the design of large-scale, highly complicated
software systems, thereby improving the quality of software systems. Currently, design pattern
detection based on machine learning has become a hot research direction. Scholars have proposed
many design pattern detection methods based on machine learning. However, most of the existing
literature only reports the utilization of traditional machine learning algorithms such as KNN,
decision trees, ANN, SVM, etc., which require manual feature extraction and feature selection. It is
very difficult to find suitable and effective features for the detection of design patterns. In the previous
research, we have initially explored a design pattern detection method based on graph theory and
ANN. Based on the research work done, we speculate that if we can realize the end-to-end design
pattern detection from system design or source code to design pattern with the help of the powerful
automatic feature extraction and other advantages of deep learning, the detection effect can be further
improved. This paper intends to first explore a UML model that extends image information, called
colored UML, so as to transform the design pattern detection problem into an image classification
problem; on this basis, the positive and negative sample sets and the system to be recognized are all
expressed in the form of colored UML models, the convolutional neural network VGGNet is used
to train the data set to extract features, and the extracted features are trained by the SVM for binary
classification to judge the pattern instances. Experiments were carried out on three open-source
projects. We used three non-machine learning design pattern detection methods and five design
pattern detection methods based on traditional machine learning algorithms, as well as the method in
this paper. In general, the method proposed in this paper achieved higher precision and recall, and for
different programs and their patterns, the precision and recall were stable at more than 85% in most
cases. The experimental results demonstrate that this paper can achieve a better effect in recognizing
design patterns. The research is, therefore, of both theoretical significance and application value.

Keywords: design pattern detection; precision; colored UML model; deep learning; software
reverse engineering

1. Introduction

A design pattern [1–3] is a specific method to solve a specific object-oriented software
problem, realizing a more simple and convenient reuse of successful designs and archi-
tectures. Design patterns are widely used in the modern software industry to reuse best
practices and improve the quality of software systems.

However, records on the use of design patterns are frequently lacking in systems amid
the real-world software development process. When a system is lacking in information
related to patterns, the system’s comprehensibility and maintainability will be significantly
lowered, posing a constraint on potential benefits that would otherwise be brought by
design patterns. Using computer algorithms to automatically or semi-automatically detect
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relevant design patterns (also known as recognize, identify, mine, discover, or recover
relevant design patterns) from system design or source code, helps software developers
and maintainers understand the ideas behind the design of large-scale, highly complicated
software systems [4]. Soon after the GoF design patterns were proposed, a small number of
scholars conducted research on the identification of design patterns. For example, in 1996,
Krämer et al. [5] proposed a method to automatically search for structural design patterns in
object-oriented software. These early works provide useful research directions and ideas for
later researchers. At present, many scholars have incorporated such technologies as logical
reasoning [5,6], graph theory [7–9], extensible markup language (XML) [10–12], abstract
syntax tree (AST) [13,14], ontology technology [12,15], abstract semantic graph (ASG) [16],
formal technologies [17], rules [18–20] into the research of design pattern recognition.

The emergence of machine learning technology in recent years has opened up a new
route toward design pattern detection. As a central field of AI research, machine learning
enables computers to simulate humans’ learning behaviors, acquire knowledge and life
skills through spontaneous learning and constantly upgrade their performance in the learn-
ing process, thereby achieving self-improvement [21]. Design pattern detection in itself is a
process of classifying numerous candidate pattern instances, while classification happens
to be the main strength of machine learning, making it highly suitable for solving design
pattern detection problems. Therefore, machine learning-based design pattern detection
(also known as design pattern recognition, identification, mining, discovery, recovery) has
become an intensively studied area in research of software reverse engineering.

At present, mainstream design pattern detection technologies can be roughly divided
into two categories: non-machine learning design pattern detection methods and machine
learning design pattern detection methods. Non-machine learning design pattern detection
methods extract detection rules from theoretical descriptions of design patterns, limiting
the effectiveness of these methods. Comparatively, existing literatures on machine learning
design pattern detection methods are largely concerned with traditional machine learning
algorithms such as k-nearest neighbor (KNN), decision trees, artificial neural network
(ANN), and support vector machine (SVM), where deep learning cannot be directly applied
to design pattern detection.

To address the above problems, this paper aims to explore a design pattern detec-
tion method based on the unified modeling language (UML) model with extended graph
information and deep learning by building upon precedent works conducted by the au-
thors [22–24]. In this paper, the traditional UML model is first extended to propose an
extended UML model called colored UML, which extends graph information. On this basis,
the positive and negative samples of pattern instances collected are converted to colored
UML models in graph form; then, the convolutional neural network VGGNet is employed
to train the dataset and extract features, and SVM are used to train the extracted features
to obtain the binary classifier for each design pattern. After the classification models are
generated, design pattern detection can be performed on unknown systems based on
the binary classifier of each pattern. Deep learning technology has advantages, such as
powerful automatic feature extraction, while SVM classifiers excel at binary classification
problems. Pioneeringly, this paper converts the design pattern detection problem into
a graph classification problem and leverages deep learning technology in combination
with the SVM to recognize design patterns. In this way, we can realize the end-to-end
design pattern detection from system design (here, mainly referring to the system UML
model) or source code to design patterns. The experimental results show that the proposed
method has a better detection effect compared with non-machine learning design pattern
detection methods and the ones based on traditional machine learning algorithms, and
can distinguish behavioral patterns with similar structural features. This paper breaks
through the effective bottleneck of design pattern detection methods based on graph theory,
formal techniques, XML, and other non-machine learning techniques, as well as KNN,
decision trees, SVM, and other traditional machine learning algorithms, providing a brand-
new idea and direction for future research and development in the field of design pattern
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detection. In addition, this paper also provides a reference idea and solution for UML
model correctness and consistency checking, data flow diagram description and checking,
software architecture description and checking, and other similar problems. Expanding
to the field of reliability and safety of software systems, this paper can introduce the most
cutting-edge machine learning technology—deep learning into various aspects such as
program correctness proof, automatic testing and BUG repair, code automatic completion,
and code analysis, etc., making the field of reliability and safety of software systems truly
enter the “intelligence era”.

At present, we have developed a prototype supporting tool system for the above
design pattern recognition theory and method. The achievement of this paper can be
applied to the detection of design patterns in the software development process of software
companies or individuals. Users can more conveniently and quickly detect the correspond-
ing design patterns from software systems, which can improve the quality of the software
systems on the basis of saving a lot of human, financial, and material costs. Therefore, this
study has both theoretical significance and broad application prospects. Processes such as
system division and training of deep learning models are transparent to users. Users only
need to master the preliminary knowledge of the object-oriented language or UML and
design patterns, and then they can use this method and its supporting tool.

2. Research Status of Design Pattern Detection
2.1. Non-Machine Learning Design Pattern Detection Methods

As mentioned above, at present, scholars have proposed many design pattern detection
methods based on non-machine learning technologies. These non-machine learning tech-
nologies include logical reasoning [5,6], graph theory [7–9], extensible markup language
(XML) [10–12], abstract syntax tree (AST) [13,14], ontology technology [12,15], abstract
semantic graph (ASG) [16], formal technologies [17], rules [18–20], etc.

Non-machine learning design pattern detection methods are generally divided into
two stages: detection rule acquisition stage and pattern detection stage. The detection
rule acquisition stage acquires detection rules from the theoretical description of design
patterns and stores them in advance. The general process of the pattern detection stage
is first extract the relevant information of the system to be recognized from the source
code or system design, such as classes, attributes, operations, and different relationships
between classes; then, according to the extracted system information, convert the system
into a certain form with strict semantics; after the system is converted into a form with
strict semantics, the system is divided into smaller units to be recognized, and the units to
be recognized can be matched with the template design patterns according to the detection
rules. If a to-be-identified unit matches a template design pattern successfully, the unit is
considered to be a (candidate) instance of this pattern, otherwise, it is excluded (as shown
in Figure 1).

These methods have had some success. However, the identification rules for these
methods are all derived from theoretical descriptions of design patterns. The use of design
patterns is very flexible, and there are often various pattern variants in practical engineering
projects. It is difficult for the rules derived from the theoretical description of design patterns
to take into account all situations. In addition, there are also cases where multiple classes
in a pattern instance are associated with the same pattern role or a subsystem contains
multiple instances of the same pattern, while these rules are often only for cases where one
class is associated with the same pattern role and a subsystem contains only one instance
of the same pattern. Therefore, using rules derived from theoretical descriptions of design
patterns for design pattern detection will introduce a large number of false-negative or
false-positive instances, limiting the precision and recall of these methods.
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2.2. Machine Learning Design Pattern Detection Methods

In recent years, machine learning has increased, providing a new way to design pattern
detection. Design pattern detection rules are very complex and flexible, while machine
learning algorithms can learn rules from design pattern instances implemented in practical
applications. Scholars have used machine learning techniques such as decision trees [25–27],
clustering [25,26], KNN [27], SVM [27–29], linear regression [29], ANN [30–32], association
analysis [33], and ensemble learning [34–36] to identify design patterns.

Design pattern detection methods based on machine learning are generally divided
into two stages: model training stage and pattern detection stage. The general process of the
model training stage is: first construct positive and negative samples from actual software
systems; after obtaining positive and negative samples, perform feature extraction and
feature selection, as well as feature transformation; finally, use machine learning algorithms
to learn feature vectors to obtain design pattern classifier models and stored. The general
process of the pattern detection stage is: first input the design models or source code of
the system to be recognized; then extract the design model or source code information
and construct smaller units to be recognized; and finally, use the trained design pattern
classifier models to classify the to-be-identified units and output the classification results
(as shown in Figure 2).

Traditional machine learning algorithms require manual feature extraction and feature
selection. For the design pattern recognition problem with extremely flexible and complex
rules, finding the most suitable and effective features is a very difficult task. Therefore, the
design pattern recognition technologies based on traditional machine learning algorithms
are difficult to popularize and develop. Deep learning, as the most concerned branch in
the field of machine learning at present, is a key technology for realizing artificial intelli-
gence [37]. Deep learning is a method in machine learning based on the representation
learning of data without manual extraction and selection of features. It has been widely
used in computer vision, target detection, natural language processing, sentiment analysis,
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and recommendation systems and has achieved very good results. However, deep learning
is mainly applicable to continuous dense data forms [38] with local correlation, such as
images [39–41], texts [42–44], and speech [45–47], and cannot be directly applied to design
pattern recognition problems. The current literature on machine learning design pattern
detection still mainly uses traditional machine learning methods such as KNN, decision
trees, SVM, and ANN. Thaller et al. [34] presented Feature Maps, a flexible human- and
machine-comprehensible software representation based on micro-structures, and repre-
sented pattern instances as feature maps and used them as input to train convolutional
neural networks (CNNs). However, feature maps themselves are not in the form of con-
tinuous dense data, so this paper is actually still equivalent to using traditional ANN
algorithm, and the trained CNNs do not give full play to the advantages of deep learning.
The experimental results show that the detection effect of the CNN classifiers trained by
Thaller et al. [43] is not significantly improved compared to the traditional ANN.
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3. Extended UML Model with Graph Information—Colored UML

In this paper, information and features in the traditional UML model are expressed
by different colors, different geometric shapes and different line types. This information
and characteristics include classes, operations, relationships between different classes, call
relationships between different methods, class names and operation names, and so on.
This provides graph-based semantics to the UML model and makes it possible to use
deep learning technology to recognize design patterns. In this paper, such an extended
UML model with graph information is called colored UML. Here, only the extension of
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traditional UML class diagram and sequence diagram is discussed, and the extension of
other UML diagrams will be explored in future studies.

3.1. Extension of Traditional UML Class Diagram

A class diagram is composed of classes and the relationships between classes, which
are used to describe classes and the static relationship between classes. The structural
features and information of the system are one of the important bases for identifying design
patterns, mainly referring to entities (classes/interfaces/objects) and the relationships
between entities.

3.1.1. Representation of Classes in Colored UML

A class encapsulates name, attributes, and operations. Attributes are temporarily not
considered in this paper. In the colored UML, the graph symbol of class is a rectangle filled
with yellow color (RGB: (255, 255, 0)), the border of the rectangle is 5 pixels thick, colored
red (RGB: (255, 0, 0)) and drawn as solid lines. The rectangle is divided by a 3 pixel thick,
blue (RGB: (0, 0, 255)) horizontal and solid line into the upper and lower parts. Within the
upper area is a smaller rectangle with a 1 pixel thick, black (RGB: (0, 0, 0)) border, which is
used to store a class name. The smaller rectangle has a dashed border if the class is abstract
and a solid border if otherwise. Within the lower area are several smaller rectangles with
1 pixel thick, black (RGB: (0, 0, 0)) borders, with each smaller rectangle storing an operation.
A smaller rectangle has a dashed border if the operation is abstract and a solid border if
otherwise. For the representation of class name, access control modifiers of operations and
operation names, see Section 3.3.

3.1.2. Representation of Classes in Colored UML

In UML, the relationships between classes include generalization (also known as
inheritancy), association, aggregation, composition, and dependency; additionally, a solid
circle is also defined to denote “more than one”. Both aggregation and composition are
special cases of association, which specify a whole-part relationship between classes, which
will not be separately defined by a graph in colored UML.

In the colored UML representation, class inheritance is denoted as a triangle and
a connecting line from a subclass to a superclass filled with green (RGB: (0, 255, 0)).
Specifically, the connecting line is 3 pixels thick and solid. Composition is represented by
an arrow with a purple (RGB: (160, 32, 240)) solid rhombus at the root, from the combining
class to the combined class, and the thickness and line type of the connecting line are
the same as the inheritance relationship. Aggregation is represented by an arrow with a
purple (RGB: (160, 32, 240)) hollow rhombus at the root, from the aggregating class to the
aggregated class, and the thickness and line type of the connecting line are the same as the
inheritance relationship. “More than one” is represented by a solid dot with a diameter of
5 pixels. When the dot is at the head of the arrow, it means to combine or aggregate multiple
objects. Dependency is represented by a pink-filled (RGB: (255, 192, 203)) dashed arrow
with a sharp angle from the depending class to the depended class, and the thickness of the
connecting line is the same as the inheritance relationship.

3.2. Expansion of Traditional UML Sequence Diagram

The static structure of the system is described by a class diagram. Besides, it is necessary
to describe the dynamic interaction between objects. A sequence diagram is one of the most
common dynamic interaction diagrams. It is used to show the inter-object interaction, with
a focus on the time sequence of message transmission between objects. Behavioral patterns
are distinguished from each other mainly by the interaction between classes and objects and
the assignment of their responsibilities, so the detection of behavioral patterns may require a
consideration of behavioral characteristics, which refer to the execution behaviors of a program,
including both static and dynamic behavior characteristics. Behavioral characteristics can be
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reflected by the invocation relationships between operations in a sequence diagram, so such
relationships is due to be focused on here.

In the colored UML, the invocation relationships between operations are integrated
into the color-block representation of operation names, as detailed in Section 3.3.2.

3.3. Expansion of Traditional UML Names

Program code resembles natural language to a certain degree since the identifiers in
code, like words in natural language, have rich semantic information [48]. Such information
is useful for distinguishing patterns that have similar structural and behavioral properties,
such as the State pattern, the Strategy pattern, and the Bridge pattern.

3.3.1. Representation of Class Names in Colored UML

In the colored UML, each character of the class name is represented by a color block
with a height and width of 5 pixels. Let there be two classes, i.e., X and Y. The class name
of X is x1x2x3 · · · xn, where xi (i = 1, 2, · · · n) represents the i-th character of the class name
and n is the number of characters in the class name. Similarly, the class name of Y is set as
y1y2y3 · · · ym. Let the function ASCII(x) denote the ASCII code value of character x. The
names in the programming language are composed of uppercase letters, lowercase letters,
numbers, and underscores, and the ASCII code takes values in the range of 48 to 122. The
following formula is used to map the ASCII value of character x to [0, 256], noted as:

ASCII′(x) = 0 +
255− 0

122− 48
× (ASCII(x)− 48) = b3.45× (ASCII(x)− 48)c

Suppose there is no creation relationship between class X and class Y (and no such
relationship with other classes), i.e., no object of class Y is created in class X and no object of
class X is created in class Y. Then, the values of the pixel points in the RGB’s first channel (red)
of the color blocks for the class names in class X, from left to right are, respectively, as follows:

ASCII′(x1), ASCII′(x2), · · · , ASCII′(xn)

The values of the pixel points in the second channel (green) from left to right are as follows:

0, 0, · · · , 0

The values of the pixel points in the third channel (blue) from left to right are as follows:

255, 255, · · · , 255

The representation of class names of class Y adopts a similar way.

With x =
n
∑

i=1
ASCII′(xi) and y =

m
∑

i=1
ASCII′(yi), the pixel values in the second channel

(green) are used to indicate which class objects are created by the class, and those in the
third channel (blue) are to show which classes create objects for the class. If objects of class
Y are created in class X, the values of the pixel points in the second channel (green) of class
X, from left to right, are the ones in the original second channel (green) (initially 0, 0, · · · , 0),
plus y, respectively, and then modulo with 255 as follows:

(0 + y) MOD 255, (0 + y) MOD 255, · · · , (0 + y) MOD 255

where MOD indicates the remainder operation.
The values of the pixel points in the third channel (blue) of class Y are the ones in the

original third channel (blue) from left to right, respectively, minus x to take the absolute
value and then modulo with 255 as follows:

|255− x|MOD 255, |255− x|MOD 255, · · · , |255− x|MOD 255
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If there are other creation relationships, the above formula shall be applied for addition
and subtraction according to the order of creation.

The class names of SelectionTool and Tool, which are classes in the second-level
subsystem (see Section 6.3) s′14 in Figure 3, are shown in the colored UML representation in
Figure 4.
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3.3.2. Representation of Operation Names in Colored UML

In the colored UML, each character of the operation name is represented by a color
block with a height and width of 5 pixels, and there is an additional color block at the
top for the access control character. Let there be an operation in class X with the name
c1a1a2a3 · · · ap, where c1 denotes the operation as visible (i.e., public (denoted by the
character ‘+’), protected (denoted by the character ‘#’) and private (denoted by the character
‘−’)). Furthermore, ai (i = 1, 2, · · · p) represents the i-th character of the operation name,
and p is the number of characters in the operation name. Similarly, let the name of an
operation in class Y be c2b1b2b3 · · · bq.

Suppose that there is no invocation relationship between the operation c1a1a2a3 · · · ap
of class X and the operation c2b1b2b3 · · · bq of class Y (and no such relationship with other
operations), i.e., the operation c1a1a2a3 · · · ap of class X does not invocate the operation
c2b1b2b3 · · · bq of class Y, and the operation c2b1b2b3 · · · bq of class Y does not invocate the
operation c1a1a2a3 · · · ap of class X. Then, the values of the pixel points in the RGB’s first
channel (red) of the color blocks for the operation name of the operation c1a1a2a3 · · · ap in
class X, from left to right are, respectively, as follows:

ASCII(c1), ASCII′(a1), ASCII′(a2), · · · , ASCII′(ap)

The values of the pixel points in the second channel (green) from left to right are as follows:

0, 0, · · · , 0

The values of the pixel points in the third channel (blue) from left to right are as follows:

255, 255, · · · , 255

The representation of the operation name of the operation c2b1b2b3 · · · bq in class Y
adopts a similar way.

With x =
n
∑

i=1
ASCII′(xi) and y =

m
∑

i=1
ASCII′(yi), the pixel values in the second channel

(green) are used to indicate which operations are invocated by the operation, and those in
the third channel (blue) are to show which operations have invocated the operation. If the
operation c1a1a2a3 · · · ap of class X invocates the operation c2b1b2b3 · · · bq of class Y, then
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the value of the first pixel in the second channel (green) for the operation c1a1a2a3 · · · ap of
class X is as follows:

(0 + y) MOD 255

The values of the pixel points from the second to the last are the ones in the original
second channel (green) (initially 0, 0, · · · , 0) from left to right, plus b, respectively, and then
modulo with 255 as follows:

(0 + b) MOD 255, (0 + b) MOD 255, · · · , (0 + b) MOD 255

where MOD indicates the remainder operation.
The value of the first pixel in the third channel (blue) for the operation c2b1b2b3 · · · bq

of class Y is as follows:
|255− x|MOD 255

The values of the pixel points from the second to the last, from left to right, are the
ones in the original third channel (blue), minus a, respectively, to take the absolute value
and then modulo with 255 as follows:

|255− a|MOD 255, |255− a|MOD 255, · · · , |255− a|MOD 255

where || indicates the operation of taking the absolute value.
If there are other invocation relationships, the above formula shall be applied for

addition and subtraction according to the order of invocation.
The operation names of the three operations of the class SelectionTool, which is a class

in the second-level subsystem (see Section 6.3) s′14 in Figure 3, are shown in the colored
UML representation in Figure 5.

Appl. Sci. 2022, 12, 8718 12 of 29 
 

 
Figure 5. Schematic diagram of the colored UML representation for the operation names of the 
three operations of the class Selection Tool. 

Based on the above discussion, it can be seen that the colored UML model of the 
second-level subsystem  in Figure 3 is as shown in Figure 6. 

 

Figure 6. Second-level subsystem 14s′  represented by colored UML model. 

4. Construction of the Sample Set 
After extending graph information for the traditional UML, it is needed to construct 

a high-quality (balanced positive and negative samples, low ratios of null and missing 

+mouseDown

+mouseDrag

+mouseUp

R 43 210 217 238 231 182 69 217 244 213

G 0 79 79 79 79 79 79 79 79 79

B 255 255 255 255 255 255 255 255 255 255

R 43 210 217 238 231 182 69 227 169 189

G 0 245 245 245 245 245 245 245 245 245

B 255 255 255 255 255 255 255 255 255 255

R 43 210 217 238 231 182 127 220

G 0 0 0 0 0 0 0 0

B 255 255 255 255 255 255 255 255

14s′

Figure 5. Schematic diagram of the colored UML representation for the operation names of the three
operations of the class Selection Tool.

Based on the above discussion, it can be seen that the colored UML model of the
second-level subsystem s′14 in Figure 3 is as shown in Figure 6.
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4. Construction of the Sample Set

After extending graph information for the traditional UML, it is needed to construct
a high-quality (balanced positive and negative samples, low ratios of null and missing
values, and low percentage of noise samples) and large-scale sample set in the form of
colored UML, which lays a foundation for the training of the classification models.

4.1. Acquisition of Positive and Negative Samples

To construct a positive sample set, a large multitude of design pattern instances need
to be acquired. Some open design pattern instance libraries, such as the P-Mart [49],
DPB [50], and Percerons [51], have been provided by scholars. Nazar et al. [52] also openly
published their design pattern library DPDF-Corpus on GitHub. In this paper, pattern
instances extracted from these publicly available design pattern instance libraries are used
to construct the positive sample set.

For design pattern detection problems, it is easier to obtain positive samples (design
pattern instances can be extracted from readily available instance libraries as positive
samples), while it is more difficult to obtain negative samples. This is because if all to-be-
identified units that do not fall in a certain pattern in a project are regarded as negative
samples of this pattern, too many negative samples will be generated and these negative
samples are not representative enough either. In this paper, six non-machine learning
existing design pattern detection methods, including the method previously developed
by the authors of this paper, are employed to acquire negative pattern instances. We
used these methods to recognize design patterns from many open source projects and
treated recognized false-positive instances as negative ones. In addition, a number of
to-be-identified units that do not belong to a certain pattern are randomly selected as
negative samples of this pattern. Negative samples composed of such two parts are not
numerous but are highly representative. For selection of these open source projects, see
literature [22,23].

We try to select detection methods based on different types of techniques. Based on
this principle, the following six design pattern detection methods are selected:
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(1) Design pattern detection methods based on logical reasoning: we selected the method
proposed by Hayashi et al. [6].

(2) Design pattern detection methods based on XML matching: we selected the method
proposed by Balanyi et al. [10].

(3) Design pattern detection methods based on ontology technology: we selected the
method proposed by Di Martino et al. [12].

(4) Design pattern detection methods based on formal technologies: we selected the
method proposed by Bernardi et al. [17].

(5) Design pattern detection methods based on rules: we selected the method proposed
by Aladib et al. [18].

(6) Design pattern detection methods based on graph theory: we selected the method
previously developed by the authors [24].

After obtaining the positive and negative samples, we represent the positive and
negative samples in the form of images of the colored UML model and store them.

4.2. Data Augmentation

From the discussion in Section 4.1, it can be seen that constructing sample sets aiming
to solve the design pattern detection problem can take much time and manpower, and
thus these sample sets are usually not sizable. In addition, differing from conventional
graph classification problems such as facial classification, cat and dog classification and
medical image classification, the problem addressed in this research is mainly solved by
using colors, line types, and geometric shapes to represent information of design patterns
as well as of the system to be recognized. Thus, overfitting can easily occur in this research,
that is, a very good recognition performance on the training set may fare poorly on the test
set or new data. Then, it is imperative to perform data augmentation before model training.

In this paper, the sample set is first expanded by conventional data augmentation
techniques such as horizontal flip, vertical flip, and translation. In addition, the position of
the class in the image of an instance of a design pattern does not affect whether the instance
belongs to this pattern. Therefore, we also use the method of moving each class by pixel for
data enhancement. The algorithm is as follows:

Step 1: Let Csample = {C1, C2, · · · , Cn} as the set composed of all classes of the positive
and negative pattern instance i in the sample library, where n is the number of classes in
instance i.

Step 2: First, take the first Class C1 from the set Csample, with the locations of other
classes remaining unchanged; new samples will be generated by moving the location of C1
from left to right and from top to bottom within the graph area one unit distance a time
(which is set as 5 pixels here).

Step 3: Repeat the above process, and sequentially take the Classes C2, C3, · · · , Cn
from the set Csample and move locations to construct new samples.

Step 4: At each time, take 2 classes from the set Csample to form different combinations
of classes, and keep the relative locations of these 2 classes unchanged and the locations of
other classes unchanged, then move in accordance with the above-mentioned method to
construct new samples.

Step 5: Repeat the above process, take 2, 3, . . . , n − 1 classes from the set Csample
respectively to form different combinations of classes, and move locations to construct new
samples.

4.3. Dataset Splitting

At present, we have separately constructed positive and negative sample sets for
12 patterns, including Adapter, Command, Composite, Decorator, Factory Method, Ob-
server, Prototype, Singleton, State, Strategy, Template Method, and Visitor, with each
pattern having about 80,000 positive samples and 80,000 negative samples constructed after
data augmentation. Eighty percent of these samples constitute the training set and twenty
percent the test set.
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5. Deep Learning Model Combining VGGNet and SVM for Design
Pattern Identification

According to the characteristics of the design pattern recognition problem, combined
with the powerful automatic feature extraction ability of deep learning and the advantages
of SVM in the binary classification problem, this paper designs and trains end-to-end
design pattern classification models from system design (here mainly refers to the system
UML model) or source code to design pattern, which has better detection effect.

5.1. Model Design

VGGNet, as one of the most popular CNN models currently, was proposed by Si-
monyan and Zisserman in 2014 [53]. VGGNet performs better by constructing a deep
convolutional neural network through a series of small-sized convolutional kernels of size
3× 3 and pooling layers, enabling a larger perceptive field to extract more complex features
and combinations of these features [54,55]. In this paper, a 16-layer VGGNet is combined
with an SVM to train model, and the designed model structure is shown in Figure 7.
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The model structure is specified as follows:
(1) The first 16 layers in the model are the VGGNet network, where layers 1~13 involve

5 groups of convolutional operations, and between every two groups, Max-Pooling is used
to reduce spatial dimensionality. Multiple successive 3× 3 convolutions are adopted within
the same group. The number of convolution kernels increase from 64 in the shallower
group to 512 in the deepest group, and the number of convolution kernels is the same
within the same group.

(2) Layers 14~16 are fully connected, and the output of the 16th layer get a feature
quantity sized at 1000.

(3) The 17th layer is the support vector machine, which trains the features extracted by
the VGG convolutional neural network for binary classification, and outputs the judgment
result, that is, a pattern instance or a non-pattern instance.

5.2. Model Configuration

In VGG, the back propagation (BP) network and Adam optimizer are used to optimize
the parameters of neural network bias and weights, etc., with a degenerate learning rate
being added, and the initial value of the learning rate is set to 0.0005. The loss function is
set as cross-entropy loss. The activation function relu and L2 regularization are added to
the convolutional layer to enhance the model’s nonlinear expression ability and prevent
the model from overfitting. Batch Normalization (BN) is added to alleviate the network
gradient dispersion and accelerate the convergence of the model. The VGG for each pattern
is trained for 70 cycles. Figure 7 shows the loss rate and accuracy rate of the training and
validation sets for the State pattern.

The loss curve in Figure 8a shows that the loss rate reached the maximum convergence
after 27 cycles of training. Meanwhile, the loss rate of the training set was 0.1180 and that of
the validation set was 1.0236. When the training was continued, the loss rate of the validation
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set increased slightly and overfitting occurred in the training. Figure 8b shows that, after
27 cycles of training, the accuracy rate of the training set was basically unchanged, while the
accuracy of the validation set decreased with fluctuation. At the 27th cycle, the accuracy rate
of the training set was 99.31% and that of the validation set was 92.73%.
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After the training of extracted features in the convolutional neural network, the
trained one-dimensional features are further trained for binary classification by SVM with a
regularization model learned by stochastic gradient descent (SGD). While using hinge_loss
as the loss function and adding the L2 penalty parameter, the training enters the phase
of batch learning with batch_size = 100, 200, 300, 400, and 500. With the highest accuracy
rate of 92.79% for the validation set at batch_size = 400, the final SVM results for the State
pattern classifier are shown in Table 1.

Table 1. SVM training results of different batches for the State pattern classifier.

Batch_Size Accuracy Rate of Validation Set

100 90.56%
200 91.23%
300 91.78%
400 92.79%
500 91.93%
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5.3. Model Training

Baidu’s PaddlePaddle deep learning framework and Scikit-learn machine learning
library are adopted to build the model structure designed above, with the input of con-
structed positive and negative sample sets to train the classifiers. This paper has trained
VGGNet + SVM classifiers for 12 patterns: Adapter, Command, Composite, Decorator, Factory
method, Observer, Prototype, Singleton, State, Strategy, Template Method, and Visitor.

6. Extraction of System Information and Division of Subsystems and Second-Level
Subsystems

After the model training is completed, the system to be recognized can be input into
the models to find pattern instances. The next work to do is to extract the information from
the system. In addition, the subsystem and the second-level subsystem division method
are introduced to divide a complete large-scale system into second-level subsystems that
can be independently judged so that the system to be recognized can be expressed in the
form of single images like a traditional image classification problem, and then the trained
classification models can be used to judge whether the second-level subsystems belongs to
a certain pattern.

6.1. Extraction of System Information

To detect the design patterns included in the system, the information of the system
needs to be extracted first. In this study, the XML files of the UML class diagrams and the
XML files of the UML sequence diagrams of the system are parsed to obtain information,
and the information was stored. The information of the UML class diagrams includes
classes, operations, abstract classes, abstract operations, generalization, composition, aggre-
gation, and dependency between classes, creation relationship between classes, naming,
and so on, while the information of the UML sequence diagrams mainly includes the calling
relationship between the operations of the classes.

For systems that lack UML design documents and only have source codes, this study
converts the source codes into a UML model (this article mainly focuses on class diagrams
and sequence diagrams) using the reverse engineering function of UML modeling tools
such as Visio and programming language development environments such as IntelliJ IDEA,
and then parses the converted UML model to obtain relevant information.

6.2. Division of Subsystems

Firstly, the system to be examined is divided into several subsystems in this study. For
the division method of subsystems, please refer to the author’s previous studies [22–24],
which will not be repeated here.

Here is a subsystem of JHotDraw 5.1 (Version number: 5.1; Creator: Erich Gamma;
Location: Unknown) for design patterns containing no layer of inheritance or containing
only one layer of inheritance, which was marked as s1. The UML class diagram of the
subsystem s1 is shown in Figure A1 in Appendix A. This subsystem consists of 38 classes
(interfaces) and one layer of inheritance.
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6.3. Division of Second-Level Subsystems

There may be multiple classes associated with the same pattern role in a subsystem
or a subsystem containing multiple instances of the same pattern. Therefore, after the
subsystems are divided, the colored UML images of the subsystems cannot be directly
input into the classification model for prediction. In addition, there may be some classes
in subsystems belonging to pattern instances that are not associated with any pattern role.
When a subsystem is fed directly into a classification model for prediction, most of the time,
the subsystem is identified as a non-pattern instance. Therefore, on the basis of the divided
subsystems, this paper further divides each subsystem into several second-level subsystems
with clearer targets and more precise scope. In this paper, by combining the classes in the
subsystem, the subsystem is further divided into several second-level subsystems with the
number of classes ranging from the minimum number of classes required by the pattern to
be recognized to the number of classes contained in the subsystem minus 1. The algorithm
for constructing the second-level subsystems of the pattern p for a subsystem s is as follows:

Step 1: Let Csubsystem = {C1, C2, · · · , Cn} as the set composed of all classes of the
subsystem s, where n is the number of classes in the subsystem s.

Step 2: Every time, take t classes from the set Csubsystem to form a new set, where t is
the minimum number of roles in the pattern p, and a total of Ct

n = n!
t!·(n−t)! different subsets

could be formed.
Step 3: Each subset corresponds to a second-level subsystem. The classes in the

second-level subsystem are the classes in this subset, and the relationship of classes in the
second-level subsystem is the relationship of classes in the original subsystem. Operations
in a class only retain operations that have a call/callee relationship with other classes in the
second-level subsystem (or indirectly have a call/callee relationship with other classes in
the second-level subsystem through other operations in the class), and properties hold only
created objects of other classes in the second-level subsystem.

Step 4: The second-level subsystems containing no generalization and second-level
subsystems with two classes that have no relationship (and are not related through other
classes, such as the second-level composed of the classes ActionTool, BorderTool and
PolygonTool in the subsystem s1, of which BorderTool and PolygonTool are not related) are
removed, and the other second-level subsystems are the final second-level subsystems.

Step 5: The above process is repeated, and t, t + 1, · · · , n− 1 classes are sequentially
taken from the set Csubsystem to build second-level subsystems.

The Singleton pattern contains only one role, so a second-level subsystem contains
only one class.

Here, 4 second-level subsystems for the State pattern of the subsystem s1 of JHot-
Draw 5.1 shown in Figure A1 were considered, which were marked as s′11, s′12, s′13 and
s′14, respectively. Among them, the second-level subsystem s′11 is composed of the classes
Tool, AbstractTool, CreationTool and DragTracker in the subsystem s1, s′12 is composed
of the classes Tool, AbstractTool, DragTracker, HandleTracker and SelectionTool, s′13 is
composed of the classes Tool, AbstractTool, HandleTracker, SelectAreaTracker and Selec-
tionTool, and s′14 is composed of the classes Tool, AbstractTool, DragTracker, HandleTracker,
SelectAreaTracker and SelectionTool. The UML class diagrams of the four second-level
subsystems are shown in Figure 3.

7. Pattern Instance Acquisition Based on Deep Learning Model

After dividing the system into second-level subsystems, it is necessary to input the
colored UML models of each second-level subsystem into the corresponding design pattern
classifier to judge whether the second-level subsystem is a pattern instance, and combine
the judgment results.
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7.1. Image Resizing

We represent the constructed second-level subsystems in the form of images in colored
UML and convert the images to the same size as the training set, i.e., 150 × 150 pixels. If the
size of an image is smaller than 150 × 150 pixels, the size will be enlarged to 150 × 150 pixels
by filling the blank area around. If the size of the image is larger than 150 × 150 pixels, the
size will be reduced to 150 × 150 pixels by scaling.

7.2. Judgment of Whether a Second-Level Subsystem Is a Pattern Instance

After adjusting the size of the image of a second-level subsystem to the same size
as the training set, it can be input to the VGGNet + SVM classifier of the corresponding
pattern trained in Section 5, and the classifier outputs the judgment result, that is, whether
it is an instance of this pattern or not. After inputting the four second-level subsystems
shown in Figure 8 into the State pattern classifier respectively, it can be obtained that s′11 is
not a State pattern instance, and s′12, s′13, and s′14 are the State pattern instances.

7.3. Merging of Judgment Results

For a pattern instance in the system, there are often multiple classes associated with
the same pattern role. For example, in the State pattern, the role ConcreteState is often
associated with multiple classes representing specific states. Therefore, sometimes multiple
second-level subsystems judged as pattern instances actually correspond to the same
pattern instance and need to be merged. The algorithm for merging the second-level
subsystems of the subsystem s for the pattern p is as follows:

Step 1: If only one of all second-level subsystems is judged as the instance of the
pattern p, it means that the subsystem s contains only one instance of this design pattern,
and each pattern role is associated with one class in the subsystem. Otherwise, go to step 2.

Step 2: If l (l ≥ 2) second-level subsystems judged as instances of the pattern p have
no public class, it indicates that the subsystem s contains l instances of this design pattern.
Otherwise, go to step 3.

Step 3: Suppose the set of the l (l ≥ 2) second-level subsystems judged as instances
of the pattern p is I = {I1, I2, · · · , Il}. For any two second-level subsystems s′p and s′q with
public classes in the set I, they are processed as follows:

(1) If these two second-level subsystems have (a) common class(es), and there is a
subclass of a certain class in the non-public classes, the two instances are merged into
one instance. Then the two instances before merging in the set I are deleted, and the new
instance obtained by merging is added to I.

(2) If all non-public classes are not subclasses, merging is not required.
The above process is repeated until there are no two instances in the set I that can be

merged. At this time, the instances in the set I are the final instances.
A schematic diagram of the judgment and merging of the four second-level subsystems

for the State pattern shown in Figure 3 is shown in Figure 9.
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Figure 9. Schematic diagram of the judgment and merging of the four second-level subsystems for
the State pattern.

8. Experiments and Result Analysis

To verify the effectiveness of the method in this study, experiments were carried out
on three open-source projects using three non-machine learning design pattern detection
methods and five design pattern detection methods based on traditional machine learning
algorithms as well as the method in this paper. In addition, the experimental results were
analyzed and discussed from precision and recall.

8.1. Experimental Environment and Data

Here we used the JavaWeb technology and used the Eclipse tool as the development
environment to develop the support tool for the proposed method. This tool is an updated
and upgraded version of the design pattern detection tool we developed in [22–24], named
PatternDetectorByDL 3.0 (Version number: 3.0; Creator: Lei Wang, et al.; Location: Beijing,
China). The tool takes the source code or UML model (class diagram and sequence diagram)
of the system to be identified as input and automatically divides the system to be identified
into subsystems and second-level subsystems according to the pattern to be identified,
selected by the user, and converts them into colored UML models, then input into the
corresponding design pattern classification model that has been trained and saved for
judgment and merge the judgment results to obtain the final pattern instances, and finally
display the detection results on the interface.

The running environment of the experiments was: Windows 10 (Version number:
10; Creator: Microsoft; Location: Seattle, USA) operating system, Genuine Intel (R) CPU
(number of cores: 4, number of threads: 8), 16.00 GB memory, 2.40 GHz main frequency
and 500 GB hard disk.

The open-source projects JHotDraw, JRefactory and JUnit contain a large number of
design pattern instances, and the documents of these projects record the use information of
design patterns in detail. Therefore, they are used to verify the design pattern detection
methods in many references. In this study, JHotDraw 5.1, JRefactory 2.6.24 and JUnit 3.7
were selected as experimental data.
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8.2. Evaluation Indexes

The evaluation of the effectiveness of design pattern detection methods in this study
is based on the following terms:

(1) True positive (TP).
(2) False positive (FP).
(3) False negative (FN).
(4) Precision.
(5) Recall.

For the definitions of the above terms, see references [22–24].

8.3. Result Analysis

Tables 2–4 list the number of true positive instances, the number of false positive
instances, and the number of false negative instances of design pattern detection in the
three open-source projects by the three non-machine learning design pattern detection
methods of Mayvan et al. [9], Tsantalis et al. [7] and Luitel et al. [6] as well as the method in
this paper, respectively; Tables 5–7 list the precisions and recalls of design pattern detection
in the three open-source projects by the three non-machine learning design pattern detection
methods as well as the method in this paper, respectively.

Table 2. The number of true positive instances, the number of false positive instances and the number
of false negative instances in JHotDraw 5.1.

Design Pattern
Mayvan et al.’s Method Tsantalis et al.’s Method Luitel et al.’s Method Our Method

TP FP FN TP FP FN TP FP FN TP FP FN

Adapter
9 0 9 18 3 0 15 3 3 17 1 1

Command

Composite 1 0 0 1 1 0 1 1 0 1 0 0

Decorator 3 0 0 3 1 0 3 2 0 3 1 0

Factory method 3 0 0 2 0 1 1 0 2 2 0 1

Observer 3 0 2 5 2 0 5 3 0 4 1 1

Prototype 1 0 0 1 0 0 1 0 0 1 0 0

Singleton 2 0 0 2 1 0 1 0 1 2 0 0

State
22 0 1 22 3 1 21 2 2 23 2 0

Strategy

Template Method 5 0 0 5 3 0 4 4 1 5 0 0

Visitor 0 0 1 1 1 0 1 2 0 1 0 0

Average

Table 3. The number of true positive instances, the number of false positive instances and the number
of false negative instances in JRefactory 2.6.24.

Design Pattern
Mayvan et al.’s Method Tsantalis et al.’s Method Luitel et al.’s Method Our Method

TP FP FN TP FP FN TP FP FN TP FP FN

Adapter
4 0 3 7 2 0 6 2 1 6 1 1

Command

Decorator 0 0 1 1 0 0 0 0 1 1 0 0

Factory method 3 0 1 1 0 3 2 1 2 2 0 2

Singleton 9 0 3 12 2 0 10 1 2 12 1 0

State
11 0 1 11 5 1 10 4 2 11 0 1

Strategy

Template Method 17 3 0 17 13 0 16 6 1 17 2 0

Visitor 2 0 0 2 1 0 1 2 1 2 1 0

Average
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Table 4. The number of true positive instances, the number of false positive instances and the number
of false negative instances in JUnit 3.7.

Design Pattern
Mayvan et al.’s Method Tsantalis et al.’s Method Luitel et al.’s Method Our Method

TP FP FN TP FP FN TP FP FN TP FP FN

Adapter
1 0 0 1 1 0 1 1 0 1 0 0

Command

Composite 1 0 0 1 0 0 1 0 0 1 0 0

Decorator 1 0 0 1 1 0 1 1 0 1 0 0

Observer 3 0 1 4 2 0 3 1 1 4 2 0

State
3 0 0 3 2 0 2 1 1 3 1 0

Strategy

Template Method 1 0 0 1 2 0 1 3 0 1 0 0

Average

Table 5. The precisions and recalls in JHotDraw 5.1.

Design Pattern
Mayvan et al.’s Method Tsantalis et al.’s Method Luitel et al.’s Method Our Method

Precision Recall Precision Recall Precision Recall Precision Recall

Adapter
100.0% 50.0% 85.7% 100.0% 83.3% 83.3% 94.4% 94.4%

Command

Composite 100.0% 100.0% 50.0% 100.0% 50.0% 100.0% 100.0% 100.0%

Decorator 100.0% 100.0% 75.0% 100.0% 60.0% 100.0% 75.0% 100.0%

Factory method 100.0% 100.0% 100.0% 66.7% 100.0% 33.3% 100.0% 66.7%

Observer 100.0% 60.0% 71.4% 100.0% 62.5% 100.0% 80.0% 80.0%

Prototype 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Singleton 100.0% 100.0% 66.7% 100.0% 100.0% 50.0% 100.0% 100.0%

State
100.0% 95.7% 88.0% 95.7% 91.3% 91.3% 92.0% 100.0%

Strategy

Template Method 100.0% 100.0% 62.5% 100.0% 50.0% 80.0% 100.0% 100.0%

Visitor 0.0% 50.0% 100.0% 33.3% 100.0% 100.0% 100.0%

Average 90.0% 80.6% 74.9% 96.2% 73.0% 83.8% 94.1% 94.1%

Table 6. The precisions and recalls in JRefactory 2.6.24.

Design Pattern
Mayvan et al.’s Method Tsantalis et al.’s Method Luitel et al.’s Method Our Method

Precision Recall Precision Recall Precision Recall Precision Recall

Adapter
100.0% 57.1% 77.8% 100.0% 75.0% 85.7% 85.7% 85.7%

Command

Decorator 0.0% 100.0% 100.0% 0.0% 100.0% 100.0%

Factory method 100.0% 75.0% 100.0% 25.0% 66.7% 50.0% 100.0% 50.0%

Singleton 100.0% 75.0% 85.7% 100.0% 90.9% 83.3% 92.3% 100.0%

State
100.0% 91.7% 68.8% 91.7% 71.4% 83.3% 100.0% 91.7%

Strategy

Template Method 85.0% 100.0% 56.7% 100.0% 72.7% 94.1% 89.5% 100.0%

Visitor 100.0% 100.0% 66.7% 100.0% 33.3% 50.0% 66.7% 100.0%

Average 83.6% 71.3% 79.4% 88.1% 58.6% 63.8% 90.6% 89.6%
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Table 7. The precisions and recalls in JUnit 3.7.

Design Pattern
Mayvan et al.’s Method Tsantalis et al.’s Method Luitel et al.’s Method Our Method

Precision Recall Precision Recall Precision Recall Precision Recall

Adapter
100.0% 100.0% 50.0% 100.0% 50.0% 100.0% 100.0% 100.0%

Command

Composite 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Decorator 100.0% 100.0% 50.0% 100.0% 50.0% 100.0% 100.0% 100.0%

Observer 100.0% 75.0% 66.7% 100.0% 75.0% 75.0% 66.7% 100.0%

State
100.0% 100.0% 60.0% 100.0% 66.7% 66.7% 75.0% 100.0%

Strategy

Template Method 100.0% 100.0% 33.3% 100.0% 25.0% 100.0% 100.0% 100.0%

Average 100.0% 95.8% 60.0% 100.0% 61.1% 90.3% 90.3% 100.0%

As seen in Tables 5–7, the average precision/recall of JHotDraw 5.1 of Mayvan et al. [9],
Tsantalis et al. [7] and Luitel et al. [6] were 90.0%/80.6%, 74.9%/96.2%, and 73.0%/83.8%, re-
spectively; the average precision/recall of JRefactory 2.6.24 were 83.6%/71.3%, 79.4%/88.1%,
and 58.6%/63.8%, respectively; the average precision/recall of JUnit 3.7 were 100.0%/95.8%,
60.0%/100.0% and 61.1%/90.3%, respectively. It can be seen that Mayvan et al. [9] achieved
high precision in all three projects, but the recall of JHotDraw 5.1 and JRefactory 2.6.24
was not high. Contrary to Mayvan et al. [9], Tsantalis et al. [7] achieved high recall in the
three projects, however, the precision was low, especially the precision of JUnit 3.7 was only
60.0%. The reason lies in that the detection rules of these methods are all obtained from the
theoretical description of design patterns, while the detection rules of design patterns are
very complex and flexible. Improving the matching standard will increase the precision to
a certain extent, but it will reduce the recall. Reducing the matching standard will improve
the recall, but it will lead to low precision. Luitel et al. [6] tried to use the Prolog language
to facilitate the addition and modification of rules to improve the detection effect. From the
detection results, Luitel et al. [6] generally maintained the balance between precision and
recall, but the precision and recall are very low except that the recall of JRefactory 2.6.24
reached 90%. In addition, the calling rules between classes of design patterns are more com-
plex and flexible. The methods of Mayvan et al. [9], Tsantalis et al. [7], and Luitel et al. [6]
are generally not good in identifying behavioral patterns, and none of the three methods
can distinguish between the Adapter/Command patterns and State/Strategy patterns. In
this study, the powerful automatic feature extraction capability of deep learning combined
with the advantages of SVM on binary classification problems was leveraged, resulting
in improved precision and recall and a good distinction between the Adapter/Command
patterns and State/Strategy pattern, and the average precision/recall on the three open
source projects reached 94.1%/94.1%, 90.6%/89.6%, and 90.3%/100.0%, respectively.

In this paper, experiments were also conducted on the three open-source programs
with the application of six design pattern detection methods based on traditional machine
learning algorithms, proposed by Lu et al. [27], Chihada et al. [28], Uchiyama et al. [31,32],
Dong et al. [25], and Feng et al. [36]. All these methods require manual extraction and
selection of features. Among them, Lu et al. [27] selected 12 metric features, such as whether
being an abstract class, whether being an interface, the number of methods, the number of
generalization relation sources, and the number of generalization relation targets. For each
design pattern, the model was trained by using three classification algorithms: KNN, C4.5
decision trees, and SVM. Chihada et al. [28] selected 64 metric features such as class interface
width, number of attributes, number of classes, number of constructors, loop complexity,
fan-out, etc., and they used SVM-PHGS [56] to train classifiers for patterns of Adapter,
Builder, Composite, Factory Method, Iterator, and Observer. For each role of five patterns,
including Singleton, Template Method, Adapter, State and Strategy, Uchiyama et al. [31,32]
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selected features such as number of static domains, number of private constructors, number
of methods, number of static methods, number of abstract methods, number of overriding
methods, number of interfaces, number of domains, number of object domains, and number
of methods for generating instances. They made an input of pattern-applied programs
into the measuring system to obtain the metrics of each pattern role, and these metrics
were put into the ANN simulator for learning to train the classifiers. Dong et al. [25]
considered entities (classes/interfaces/objects) and relationships between entities. They
reduced the learning of composite records (classes) to some basic models by clustering
training records (classes) with related attributes/relationships and then built decision trees
based on the clustered training samples. Feng et al. [36] considered 69 metric features
such as the weighting method of classes, line of code, loop metric, number of changes
in access methods, as well as 16 structural features including overriding method, create
object, return type, delegation, multiple redirections in the family, and redirect in the
family. For each design pattern, a classifier was trained with metric and microstructure,
respectively, and then the final classifier was trained by model stacking. Viewing the
experimental results, some methods performed well on certain programs or patterns, e.g.,
Chihada et al. [28] achieved 100% precision and recall for two patterns on JUnit, but the
performance was very poor on some other programs or patterns. This is because different
programs and patterns have their own characteristics, and it is hard for researchers to take
a comprehensive consideration of these different characteristics in the process of manual
feature extraction and feature selection. In addition, like non-machine learning methods,
these design pattern detection methods based on traditional machine learning algorithms
do not perform well on behavioral patterns, and most of them cannot distinguish between
the Adapter/Command patterns and the State/Strategy patterns. This is because it is more
difficult to select appropriate and effective features for behavioral patterns than for creation
and structural patterns. In general, the method proposed in this paper has achieved higher
precision and recall than the design pattern detection methods based on traditional machine
learning algorithms on the three programs. For different programs and their patterns, the
precision and recall were stable at more than 85% in most cases, including the identification
of behavioral patterns such as Observer and State.

According to the above analysis, the method in this paper can achieve better identi-
fication results than the non-machine learning methods and the design pattern detection
methods based on traditional machine learning algorithms, and can maintain stability
for different projects and different patterns. In addition, this paper can also distinguish
instances of behavioral patterns that have similar structural features to other patterns (e.g.,
there are similar structural features between the State pattern and the Strategy pattern, as
well as the Command pattern and the Adapter pattern).

9. Conclusions and Prospect
9.1. Conclusions

The existing literature on machine learning design pattern detection largely adopts
traditional machine learning algorithms like the KNN, decision trees, ANN, SVM, and
logistic regression. No scholarly attempt has been made to use deep learning to recognize
design patterns. It is a daunting task to find the most suitable and effective features
to address the design pattern detection problem. Deep learning is mainly suitable for
locally correlated, dense continuous data such as images, texts, and voices, and cannot be
directly applied to address the design pattern detection problem. In this research project, a
colored UML model is proposed by adding colors, line types, and extending shapes for the
purpose of extending graph information with elements like the traditional UML classes,
operations, the relationship between classes, and call relationship between methods, thereby
converting the design pattern detection problem into a graph recognition problem. On the
basis of converting positive and negative samples of collected instances and the system
to be recognized into graph-style colored UML model, this paper leverages deep learning
technology with advantages like powerful automatic feature extraction in combination
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with the SVM excelling at binary classification problems to realize the end-to-end design
pattern detection, producing more favorable detection effect than other methods.

Compared with other methods, the biggest contribution of this paper is to transform the
design pattern detection problem into an image classification problem and realize end-to-end
design pattern detection based on deep learning technology. This provides a completely new
and effective way of thinking and direction for the design pattern detection problem.

9.2. The Pros and Cons of Using Our Method
9.2.1. Pros

This paper combines the advantages of deep learning and SVM, and has achieved good
detection results in both structural and creational patterns as well as behavioral patterns.

The method in this paper realizes end-to-end design pattern detection without ad-
ditional work, such as manual feature extraction and feature selection. Therefore, it is
not required to have a very deep knowledge and understanding of the patterns to be
recognized, and the detection models can be trained only by constructing the sample set of
the patterns. It also makes it very easy to add new patterns.

9.2.2. Cons and Limitations

For the design pattern detection of source code, the method in this paper needs to
convert the source code into a UML model with the help of third-party tools such as Visio
and IntelliJ IDEA. The completeness and consistency of the UML models converted by
these tools will have a significant impact on the final detection results.

This method relies on decomposing the system into subsystems and second-level
subsystems. Dividing subsystems and second-level subsystems take a lot of time and
memory space. The required time and memory space increase quadratically with the
number of system classes.

9.3. Prospect

There are still some deficiencies in the current research, and future work is expected,
mainly as follows:

(1) The current semantics of the colored UML model is still relatively simple, without
considering information such as attributes of classes, and it only targets UML class diagrams
and sequence diagrams. In the future, class properties and other information will be further
added to the colored UML model with an expansion of other UML diagrams, including
state diagrams.

(2) The deep learning model currently used in this paper is a convolutional neural
network. However, the traditional convolutional neural network is generally regarded as
undesirable for modeling when it comes to time sequence problems, so the sequences of
function invocations were not considered in the identification of design patterns in this
paper. However, such sequences are sometimes crucial for the recognition of behavioral
patterns. In future work, a recurrent neural network that can model the sequences of
function invocations will be introduced on the basis of the convolutional neural network to
train better models.
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