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Abstract: Automatic object detection by satellite remote sensing images is of great significance for
resource exploration and natural disaster assessment. To solve existing problems in remote sensing
image detection, this article proposes an improved YOLOX model for satellite remote sensing image
automatic detection. This model is named RS-YOLOX. To strengthen the feature learning ability of
the network, we used Efficient Channel Attention (ECA) in the backbone network of YOLOX and
combined the Adaptively Spatial Feature Fusion (ASFF) with the neck network of YOLOX. To balance
the numbers of positive and negative samples in training, we used the Varifocal Loss function. Finally,
to obtain a high-performance remote sensing object detector, we combined the trained model with an
open-source framework called Slicing Aided Hyper Inference (SAHI). This work evaluated models
on three aerial remote sensing datasets (DOTA-v1.5, TGRS-HRRSD, and RSOD). Our comparative
experiments demonstrate that our model has the highest accuracy in detecting objects in remote
sensing image datasets.

Keywords: object detection; remote sensing image; attention mechanisms; feature fusion; varifocal
loss; Slicing Aided Hyper Inference (SAHI)

1. Introduction

With the continuous expansion of remote sensing applications, remote sensing has
been widely used in agriculture [1,2], forestry [3], water conservancy [4], urban and rural
construction [5], and earth science research [6,7]. A crucial part of remote sensing applica-
tions is object detection in satellite remote sensing images, and it is of great significance for
resource exploration, natural disaster assessment, etc. For example, Meng et al. [8] used
a target detection method based on bags of visual word features to detect the leakage of
seabed gas; their research could be used to explore natural gas hydrate and other resources.
Liu et al. [9] proposed an improved Mask RCNN model to automatically identify landslides
on the Eastern Tibet Plateau, so as to reduce the losses caused by landslides to a certain
extent. In the field of object detection, the research on automatic detection algorithms
for remote sensing images has always been important and challenging. However, due
to the large size of remote sensing images, it is difficult to identify small objects, and the
samples are unbalanced, which seriously affects the accuracy of recognition. Traditional
detection algorithms are not effective in detecting objects in remote sensing images. This is
because traditional detection and the recognition of remote sensing image targets are mainly
based on manually extracting features, and the rich, diverse, and detailed information in
remote sensing images means that a single feature described manually is inadequate at
fully expressing the target characteristics and relies more on expert experience. In addition,
machine learning based on probability and statistics usually requires complex feature
description, and the feature representation learned on the basis of its shallow network
structure is obviously insufficient in terms of performance and generalization ability when
dealing with complex target detection problems.
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In recent years, with the application and development of deep learning in the field
of computer vision, many excellent object detection models based on deep learning meth-
ods have been proposed, for example, the two-stage model represented by the R-CNN
series [10–12], and the one-stage model represented by SSD [13,14] and YOLO [15–20].
These models have achieved impressive results in the detection of natural images. Re-
searchers have introduced advanced detection algorithms into the application of remote
sensing images, the goal being to overcome the difficulties in satellite remote sensing image
detection. Yan et al. [21] used an improved Faster R-CNN model to detect tailing ponds
in remote sensing images. Luz et al. [22] used an unsupervised model to detect fire-prone
areas. Etten [23] proposed the YOLT model, which is an improved YOLOv2 model for
satellite remote sensing image detection. Although these methods have achieved good
results, they only improve one direction or detection of one category in remote sensing
images and do not systematically solve the problems of remote sensing image detection.

Focusing on the problems of detecting objects in satellite remote sensing images,
this article proposes a high-precision automatic detection method for satellite remote
sensing images: RS-YOLOX. We obtained this model by improving the YOLOX model. We
evaluated our proposed methods by using three aerial remote sensing datasets (DOTA-v1.5,
TGRS-HRRSD, and RSOD). Our model achieved good results on these three datasets,
outperforming all YOLO models in accuracy.

The novelty of this article is exemplified by the following:

• We propose a state-of-the-art YOLO model that surpasses all previous YOLO models
in detection accuracy in satellite remote sensing images.

• We use Efficient Channel Attention (ECA) and the Adaptively Spatial Feature Fusion
(ASFF) in YOLOX to improve the model’s accuracy in detecting small objects in remote
sensing images.

• We use a new loss function, Varifocal Loss function (VFL), which alleviates the problem
of the unbalanced training of positive and negative samples in model training.

• We combine the detection model with the Slicing Aided Hyper Inference framework
(SAHI) to realize the direct detection of large-size remote sensing images.

The rest of this study is organized as follows: Section 2 introduces the current popular
object detection methods and their application in remote sensing image detection and then
introduces the YOLOX model that inspired this article. Section 3 focuses on our methods
to improve YOLOX to address the problems of satellite remote sensing image detection.
Section 4 presents the experimental results of our methods and our analysis of the results.
Sections 5 and 6 discuss and conclude our work, respectively.

2. Related Work
2.1. Mainstream Object Detection Algorithms

The current mainstream object detection algorithms can be divided into two categories:
two-stage and one-stage.

As the name suggests, the detection of the two-stage object detection algorithm is
divided into two stages: (1) to extract the pre-selected boxes from the input image, (2) to
use the convolutional neural network (CNN) to classify and regress. The most famous
two-stage object detection algorithm is the R-CNN series [10–12]. Although the two-stage
target detection algorithm can achieve high detection accuracy, the detection speed is slow
and it is not suitable for real-time detection.

The one-stage algorithm directly extracts features from the input image and then
calculates the category probability and position coordinates of the targets. Typical one-stage
algorithms include SSD [13,14] and YOLO series [15–20]. In the past, the detection accuracy
of the one-stage algorithm was often lower than that of the two-stage algorithm. However,
with the proposal of YOLOv3 [17], the one-stage model surpasses the two-stage model in
accuracy, while maintaining high-speed detection.
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2.2. Object Detection in Remote Sensing Image

In recent years, many researchers have used the latest two-stage algorithm or one-stage
algorithm in satellite remote sensing images and made corresponding improvements to
the algorithm.

Yan et al. [21] proposed an improved Faster R-CNN model to detect tailing ponds
in remote sensing images. They used an attention mechanism in the Faster R-CNN, and
the average precision (AP) of detecting tailing ponds reached 85.7%. However, the single
dataset they used cannot reflect the generalization of the model.

Etten [23] proposed the YOLT model, an improved YOLOv2 model for satellite remote
sensing image detection. This model uses a ResNet-like residual structure to connect the
features of multiple layers to obtain a more fine-grained feature representation, improving
the detection of small objects, but it does not solve the problem of the imbalanced number
of positive and negative samples in remote sensing images.

Xie et al. [24] proposed applying the YOLOv5 algorithm to detect remote sensing
images, but did not optimize the YOLOv5 algorithm for the purpose.

2.3. Attention Mechanisms in Vision Tasks

The principle of the attention mechanism is to imitate the attentional thinking of
human beings. It can shift the attention of the model learning to important informative
regions and ignore irrelevant information. Attention algorithms used in computer vision
include spatial domain attention, channel domain attention, and mixed domain attention.

Spatial domain attention obtains attention weights by computing the correlation of
each position in the feature map with all other positions. For example, STNs (Spatial
Transformer Networks) [25] learn the spatial transformation parameters by performing
reverse spatial transformation on the data, so as to reduce the influence of the deformation
of the target on the picture, thereby making the recognition of the classification network
more efficient.

Channel domain attention is to apply attention weights on channels to capture the
dependencies between channels, a typical representative is SENet (Squeeze-and-Excitation
Networks) [26], which uses global average pooling to process feature maps to generate
per-channel statistics, then uses two fully connected layers to learn weighted values for
each channel, and finally gets a weighted feature map as the next layer network input.

Both spatial domain attention and channel domain attention algorithms are theo-
retically flawed. The former treats the features of each channel the same, ignoring the
correlation between channels, while the latter performs global average pooling on each
channel, and local information is ignored. Therefore, some researchers proposed a mixed
domain attention algorithm, which combines the attention of the spatial domain and the
channel domain. For example, in CBAM [27], which uses a serial method, the feature map
first passes through the channel attention module, and then passes through the spatial
attention module.

All of the above three attention algorithms can be integrated with convolutional neural
networks to complete visual tasks such as classification, detection, and segmentation. For
example, Li et al. [28] fused channel attention with YOLOv5 to achieve disease detection in
maize leaves, and Wang et al. [29] introduced mixed attention into two-stream convolution
network to realize human action recognition. Li et al. [30] proposed a new mixed attention
algorithm and used it in the U-Net network to achieve cell segmentation. It can be known
from these studies that the proposal of the attention mechanism promotes the development
of computer vision models to have higher accuracy.

2.4. YOLOX

YOLOX is a high-performance object detection model proposed by Ge et al. [20], which
is an upgrade of the YOLO series.

The YOLO series of models, starting from YOLOv3, has used the common three-part
structure of an object detector: the backbone for extracting features, neck for integrating
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features, and head for implementing detection. YOLOX continues to use this network
structure (Figure 1).

Figure 1. Structure of YOLOX.

As shown in Figure 1, to increase the number of channels, YOLOX uses the Focus
module from YOLOv5. In addition, it combines with the feature extraction network
CSPDarkNet from YOLOv4 as the backbone network, followed by the SPP module [31]
for multi-scale training. The neck part of YOLOX uses the PAFPN [32] structure to realize
the integration of multi-scale features. After the input image is processed by the backbone
network and the neck network, it is divided into three scales, 13 × 13, 26 × 26, and 52 × 52,
to predict large objects, medium objects, and small objects, respectively. Finally, the features
of the three scales are, respectively, entered into the decoupled detection head to complete
the detection.

The biggest improvement is that YOLOX uses an anchor-free mode [33–35] and a
decoupled head [36]. The anchor-free mode gets rid of the calculation required when using
the preset anchors and greatly reduces the number of parameters. The coupled detection
head couples the classification and regression of the prediction boxes, which will affect
the detection performance. Therefore, YOLOX decouples the classification and regression
(i.e., separates them into two branches), and adds a branch for IOU calculation.

Although YOLOX is already an excellent detection model, there are some problems in
using it to detect remote sensing images. We summarize these questions into the following
three points:

• Satellite remote sensing images contain rich, detailed information and many small
targets, making it inconducive for the detection model to extract useful target informa-
tion. If we only rely on ordinary convolutional structures to extract features, some key
information may not be valued by model learning. Therefore, we need to introduce a
new attention module and feature fusion module to enhance the feature processing
capability of the convolutional network in YOLOX.

• In object detection, the target information is the positive sample and the background
information is the negative sample. Due to the complex background of satellite remote
sensing images, the numbers of positive and negative samples are unbalanced, which
seriously affects the accuracy of model detection. The loss function used by YOLOX
is the Binary Cross Entropy (BCE) function, which is a traditional loss function that
cannot balance the numbers of positive and negative samples.
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• Many satellite remote sensing images have a size of tens of millions of pixels, and
target detection models, including YOLOX, have a poor detection performance where
large-size images are concerned.

3. Proposed Methods

To overcome the problems described in Section 2.3, we used the following methods to
improve YOLOX:

• We added the ECA modules [37] to the backbone network of YOLOX and connected
the ASFF structure [38] after the neck network. This can enhance the feature extraction
and fusion of the network, thereby improving the accuracy of the model in detecting
small objects.

• We replaced the BCE function with the VFL function [39], which not only balances the
numbers of positive and negative samples, but also highlights the key samples in the
positive samples.

• In the detection of large-size images, we used the SAHI framework [40], which can
cooperate with the target detection model to achieve the high-precision detection of
large-size images.

3.1. Network Structure

Figure 2 displays the network structure of our improved YOLOX model. We added
the ECA modules to the back of the backbone network to strengthen the learning of the
captured features and the ASFF to the back of the neck network to enhance the feature
fusion. The VFL function is used in the decoupling heads as the loss function in training.

Figure 2. Structure of our improved YOLOX model.

Finally, to improve the detection performance of the model for high-resolution remote
sensing images, we combined the improved YOLOX model with the SAHI framework. We
named the improved model RS-YOLOX. Figure 3 displays the detection process of this
model. After the SAHI framework slices the high-resolution image, it is input into our
target detection model. After detection is complete, all the slices are merged into a complete
detection result map.
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Figure 3. Detection process of RS-YOLOX.

3.2. Efficient Channel Attention (ECA)

Attention mechanisms in computer vision can ensure that models pay more attention
to important information and selectively forget unimportant information or disturbing
information that affects judgment. Therefore, object detection models can capture better
features by using attention mechanisms, improving the performance of the model in
detecting small objects. The ECA blocks [37] adopted in this article are an improvement
over SE blocks [26].

SE is the beginning of channel attention mechanisms in computer vision. It strength-
ens important features by modeling the feature correlation between channels, thereby
improving the detection performance of the model. Figure 4 shows the structure of the
SE block.

Figure 4. SE block structure.
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The SE block uses two fully connected layers to capture nonlinear cross-channel
interaction information. The parameters of the two fully connected layers are learned
by network training. These parameters act on the feature map and can extract more
important features. To reduce the complexity of the model, the first fully connected layer
reduces the number of channels, which makes the model more lightweight, but weakens
the connection between the channel and the weight vector and is not good for capturing the
interrelationships between channels. To address this shortcoming, the ECA block cancels
the operation of dimensionality reduction and uses one-dimensional (1D) convolution,
which not only reduces the number of parameters, but also improves the detection accuracy
of the model. ECA removes the fully connected layer in the SE block and directly learns
through a weight-sharing 1D convolution on the features after global average pooling
(GAP). One-dimensional convolution involves the hyperparameter k, which is the size of
the convolution kernel and represents the coverage of local cross-channel interactions. ECA
attempts to capture inter-channel interactions using each channel of feature maps and its k
neighbors. Figure 5 displays the structure of an ECA block.

Figure 5. ECA block structure.

In Figure 5, the weights of 1D convolution are interleaved, realizing the function of
mutual cross-channel. Weights exist in groups, and the number of weights in a group
depends on the size of the convolution kernel. The values of weights of each group are
shared, which greatly reduces the number of parameters. The attention of SE is calculated
through two fully connected layers, while the attention of ECA is calculated through k
nearest-neighbor channels. The size of k obviously affects the efficiency of ECA block
calculation. In fact, k is related to the number of channels C; the nonlinear mapping
relationship between them can be described by an exponential function. This can be
formulated as:

C = φ(k) ≈ exp(γ ∗ k− b) (1)

The number of channels is usually an exponential multiple of 2, so k can be calculated
by the following formula:

k = Ψ(C) = |
log2 C

γ
+

b
γ
|odd (2)

The structural design of ECA avoids dimensionality reduction, realizes cross-channel
information interaction, and reduces the amount of calculation. It is an effective ultra-
lightweight attention mechanism module. We added ECA blocks to the backbone network
of YOLOX so that the features extracted by the backbone network were enhanced in the
attention weight matrix.

3.3. Adaptively Spatial Feature Fusion (ASFF)

In addition to using ECA to enhance the features captured by the backbone network,
this article also optimizes the feature fusion of the neck network, adding an effective feature
fusion algorithm: ASFF [38].

The neck network of YOLOX adopts the structure of a multi-level feature pyramid:
PAFPN. The structure enables the output of the neck network to combine both the location
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information of the shallow network and the semantic information of the deep network,
thereby achieving better regression and classification results. ASFF can be connected to
PAFPN to perform feature fusion on the feature map processed by PAFPN, which can
fuse similar features together, improving the detection performance. Figure 6 displays the
structures of PAFPN and ASFF.

Figure 6. Structure of PAFPN and ASFF.

As shown in Figure 6, the image will output three feature maps through PAFPN. We
number them from top to bottom: feature map X1, feature map X2, and feature map X3.
Arrows in different colors represent feature transfer in different feature maps.

X1 has the largest receptive field and is suitable for detecting large objects in the
picture, X3 has the smallest receptive field and is suitable for detecting small objects, and
X2 has a receptive field in between, so it is used to detect medium-sized objects. ASFF takes
the output (X1, X2, X3) of the PAFPN network as input for the fusion of three feature maps.
The calculation process of ASFF includes two parts: feature resizing and adaptive fusion.

Feature resizing involves scaling a feature map to the size of the feature map to be
fused in order to ensure that the size of the feature map during feature fusion remains the
same. We use X1->3 to represent the image after X1 is scaled to the size of X3. Adaptive
fusion is used to train three weight maps, α, β, and γ, through the network and multiply
them with the input feature maps.

Taking the input of ASFF-3 in Figure 6 as an example: (1) Perform feature scaling on X1,
X2, and X3 to obtain X1->3, X2->3, and X3->3, respectively. (2) Use the network to train three
weight maps (α, β, and γ) with the same size as X1->3, X2->3, and X3->3 and multiply each
weight map and each input point by point to determine the activation and suppression of
each pixel in the input feature map X to achieve feature fusion. (3) Add the three matrices
obtained after point-by-point multiplication to obtain the output of the feature fusion result
of small objects in ASFF. The formula for the above calculation is as follows:

ASFF-3 = X1->3 ⊗ α3 + X2->3 ⊗ β3 + X3->3 ⊗ γ3 (3)

Through such calculation, the features of small objects are enriched in the feature map
X3 used to detect small objects (the features of the small objects in the feature map X1 and
the feature map X2 are fused). At the same time, the activation values of the features of
large objects and medium objects in the feature map X3 are filtered out so that the model
is more focused on detecting small objects. The branches of ASFF-1 and ASFF-2 are also
based on the same principle. They both integrate the features of their own concern in the
three feature maps and suppress unimportant features, which improves the accuracy of
object detection. The datasets of satellite remote sensing images contain a large number
of small objects. Using ASFF, the features of these small objects can be fused as much as
possible, improving the detection of small objects.
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3.4. Varifocal Loss Function (VFL)

The YOLOX model divides the loss function into classification loss, regression loss,
and confidence loss, and the total loss function is the sum of the three. YOLOX uses the
BCE function to calculate the classification loss and the confidence loss of the objects, using
IoU or GIoU as the loss for prediction boxes regression. To solve the problem of unbalanced
samples in satellite remote sensing images, this article replaces the BCE function with
the VFL function [39]. VFL is an optimization of Focal Loss [41], and Focal Loss is an
optimization of BCE. The loss function of BCE is as follows:

BCE = − log(Pt) =

{
− log(ŷ), y = 1

− log(1− ŷ), y = 0
(4)

In the above formula, y = 1 represents a positive sample and y = 0 represents a negative
sample. As a classic loss function, BCE is widely used in classification and detection tasks,
but it does not suppress the number of negative samples and so cannot solve the problem
of serious imbalance between positive and negative samples.

Focal Loss improves BCE, and its calculation formula is as follows:

FL = −αt(1− Pt)
γ log(Pt) =

{
−α(1− ŷ)γ log ŷ, y = 1

−(1− α)ŷγ log(1− ŷ), y = 0
(5)

α is used to adjust the weight of positive and negative samples, and (1 − Pt)γ is used
to reduce the influence of bad samples. The so-called bad samples refer to samples that are
too easy to judge. If the sample is too easy to detect, its Pt value will be high. VFL uses 1 to
subtract this Pt value, thereby reducing the weight of the sample and the model’s attention
to sample detection. Thus, the model pays more attention to learning those samples that
are difficult to detect.

On the basis of Focal Loss, Varifocal Loss proposes an asymmetric weighting operation,
and its calculation formula is as follows:

VFL =

{
−q(q log(ŷ) + (1− q) log(1− ŷ)) q > 0

−αpt
γ log(1− ŷ) q = 0

(6)

When calculating the loss of positive samples, q > 0, its value is the Intersection over
Union (IoU) of the prediction box and the labeling box, and q = 0 means calculating the
loss of negative samples.

It can be seen from Equation (6) that when the label is a positive sample, it is equivalent
to using a BCE loss function with an adaptive IoU weighting value added. The IoU
weighting is used to highlight the main samples (samples with high IoU value) among the
positive samples. When the label is a negative sample, the function is the standard Focal
Loss. This design not only balances the positive and negative samples, but also highlights
the main samples, ensuring that the training focuses on high-quality positive samples. We
used Varifocal Loss as the confidence loss function of the model to alleviate the problem of
sample imbalance.

3.5. Slicing-Aided Hyper Inference (SAHI)

SAHI is an open-source framework for detecting small objects in large-size images.
Proposed by Akyon et al. [40], it can be mounted on any object detector. Figure 7 displays
the working process of SAHI.
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Figure 7. Execution process of the SAHI framework.

The large-size image to be detected is divided into several parts P1, P2, . . . , PI. The
aspect ratio is maintained, and the size of each slice is adjusted. Then, each slice is put
into the model for detection. The model detects the objects that exist in each slice and
combines the detection results into a complete image. The method of merging the detection
results of the sliced pictures is to map the position coordinates of the targets in all the sliced
pictures to the original picture, so that the detection result of a complete large picture can be
obtained. Finally, the Non-Maximum Suppression (NMS) algorithm is used to the removed
duplicate prediction boxes.

Object detection implementations in the SAHI framework can use any object detection
algorithm. To subtly realize the object detection of high-resolution images, the framework
uses image slicing and largely avoids the problem of missed detection and false detection
of small targets in large-sized images. In practical applications, to avoid cutting off objects
in the image, we performed overlapping cuts on the original image, and the duplicate
detection frames obtained by mapping the target coordinates back to the original image
could be filtered out in subsequent NMS processing. Satellite remote sensing images are
usually high-resolution images, so SAHI is suitable for remote sensing image detection.

4. Experiments
4.1. Experimental Environment

All experiments in this article were run in Python3.8, PyTorch1.10.0, and CUDA10.2.
The CPU processor of the machine used was AMD Ryzen 5 3600X 6-Core, and the graphics
card was NVIDIA GeForce RTX 2080 Ti. The speed and accuracy tests in the experiments
were all conducted under the settings of FP16-precision and batch size = 1.

4.2. Datasets

The proposed RS-YOLOX model is evaluated on three aerial remote sensing image
datasets: DOTA-v1.5 [42–44], TGRS-HRRSD [45,46], and RSOD [47,48].

DOTA-v1.5 includes 2806 large-size images, 16 categories, and 403,318 object instances.
The DOTA images were collected from Google Earth, GF-2, and JL-1 satellite provided
by the China Center for Resources Satellite Data and Application. It is widely used in
the research of remote sensing image object detection. The image size of this dataset is
large (800 × 800 to 20,000 × 20,000 pixels), and the images could not be directly used for
model training. So we cropped each image to a size of 640 × 640. Then we used data
augmentation techniques to increase the number of small categories. The number of images
after cropping and augmentation was 42,831. We split the images into a training set, a
validation set, and a test set in a ratio of 6:2:2. The training set had 25,699 images, the
validation set had 8566 images, and the test set had 8566 images.
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TGRS-HRRSD includes 21,761 images, 13 categories, and 55,740 object instances. This
dataset was acquired from Google Earth and Baidu Map. The image size of this dataset
is from 150 × 150 to 1200 × 1200. The advantage of this dataset is that the number of
categories is balanced and each category has about 4000 instances. The officially announced
training set had 5401 images, validation set had 5417 images, and test set had 10,943 images.

RSOD includes 976 images, 4 categories, and 6950 object instances. The image size of
this dataset is about 1000 × 1000. The number of different categories in this dataset is not
balanced. To achieve better experimental results, we used data augmentation techniques
to increase the number of images in small categories. The augmented dataset has a total
of 1916 images, with approximately 400 images per category. We split the images into
a training set, a validation set, and a test set in a ratio of 6:2:2. The training set had
1150 images, the validation set had 383 images, and the test set had 383 images.

4.3. Evaluation Metrics

The performance of model in this article is evaluated comprehensively through AP,
mAP, Latency, and FPS.

AP represents the average precision of a single category under different recall condi-
tions, which is also equal to the area under the Precision–Recall curve. The mAP metric
represents the mean of AP values of all categories and can be used to measure the accuracy
of model detection. The formulas for calculating AP and mAP are as follows:

AP =
∫ 1

0
P(r)dr (7)

mAP =
∑n

k=1 APk

n
(8)

AP50 and mAP50 represent the AP value and the mAP value, respectively, when the
threshold of IoU is 0.50; mAP50-95 is the average of 10 mAP values with IoU thresholds of
0.50, 0.55, 0.60, . . . , 0.90, 0.95.

Latency represents the average inference time to detect an image, and FPS means the
number of image frames detected per second. Latency and FPS can be used to measure the
detection speed of the model.

In addition, we used P to represent the total number of parameters of the model, which
is used to measure the size of the model.

4.4. Experiment Results of Proposed Methods
4.4.1. Effects of Attention Mechanisms

We added several advanced attention modules to the original YOLOX model for
comparative experiments. SE [26] is a classic channel attention mechanism, CBAM [27]
combines channel attention and spatial attention, NAM [49] is a lightweight mixed attention
module which redesigns the implementation of channel attention and spatial attention
in CBAM, ULSAM [50] is a lightweight subspace attention module, and ECA [37] is an
improved version of SE. We added these attention mechanisms to the back of the backbone
network so that the features processed by the attention mechanisms could be sent to PAFPN.
We trained the model on the processed DOTA-v1.5 dataset and obtained the results shown
in Table 1.
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Table 1. Test results of attention mechanism blocks on DOTA.

Methods mAP50-95 (%) P (M) Latency (ms) FPS

YOLOX 73.57 8.94 13.66 73.2
YOLOX + SE 74.11 9.06 14.12 70.8

YOLOX + CBAM 73.98 9.15 15.89 62.9
YOLOX + NAM 74.21 8.95 15.45 64.7

YOLOX + ULSAM 74.06 8.95 17.94 55.8
YOLOX + ECA 75.58 8.94 13.26 75.4

It can be seen from Table 1 that the effect of ECA is the best among these attention
mechanisms, the number of parameters added is the least, and the accuracy of the model
can be improved without increasing the number of parameters. Thus, we finally chose the
ECA attention mechanism to add to the YOLOX model.

The results of our testing of the ECA module using three datasets are displayed
in Table 2. After we used the ECA module, the detection accuracy of the model when
used on these three datasets was improved and the speed of image detection was also
slightly accelerated.

Table 2. Effects of ECA on three datasets.

Methods
DOTA-v1.5 TGRS-HRRSD RSOD

mAP50-95 (%) Latency (ms) mAP50-95 (%) Latency (ms) mAP50-95 (%) Latency (ms)

YOLOX 73.57 13.66 66.07 11.34 77.18 14.86
YOLOX + ECA 75.58 13.26 69.23 11.21 78.23 14.58

4.4.2. Effects of the ASFF Algorithm

After adding ASFF [38] to the neck network in the YOLOX model, we obtained the
results shown in Table 3.

Table 3. ASFF test results.

Methods P(M)
DOTA-v1.5 TGRS-HRRSD RSOD

mAP50-95 (%) Latency (ms) mAP50-95 (%) Latency (ms) mAP50-95 (%) Latency (ms)

YOLOX 8.94 73.57 13.66 66.07 11.34 77.18 14.86
YOLOX + ASFF 14.38 75.62 14.38 66.92 13.97 78.01 18.60

We tested ASFF on three datasets, and the accuracy of the model was greatly improved.
However, the parameters and calculations increased and the time of model forward in-
ference increased. Although it increases the number of parameters and computation to
a certain extent, it is also a feasible method to improve the accuracy without the need to
achieve real-time detection.

4.4.3. Loss Function Test

The confidence loss function used by the YOLOX model is BCE, and although it is a
classic and effective classification loss function, it did not balance the positive and negative
samples in training. Therefore, we replaced it with Focal Loss (FL) [41] and Varifocal Loss
(VFL) [39] for experiments and obtained the results shown in Table 4. As per Table 4, among
the three loss functions, VFL can obtain the highest detection accuracy and reduces the
inference time compared to FL. Therefore, we finally chose to use VFL as our confidence
loss function.
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Table 4. Test results of different confidence loss functions.

Methods
DOTA-v1.5 TGRS-HRRSD RSOD

mAP50-95 (%) Latency (ms) mAP50-95 (%) Latency (ms) mAP50-95 (%) Latency (ms)

YOLOX–BCE 73.57 13.66 66.07 11.34 77.18 14.86
YOLOX–FL 75.08 15.91 66.92 13.18 77.46 16.53

YOLOX–VFL 75.52 14.04 67.13 11.87 78.03 15.27

4.4.4. Effects of SAHI

As our experiments were trained using cut remote sensing images, when actually
applied to large-sized remote sensing images, we could still detect targets only after the
images were cut. When we used our trained model, Figure 8 displays the detection results
of the remote sensing images after the images were cut.

Figure 8. Detection results of small images on DOTA-v1.5 after the images were cut. (a) Plane,
(b) basketball court, (c) ship, (d) large vehicle, (e) swimming pool, (f) tennis court, (g) storage tank,
and (h) harbor.

Our model performed well on these small images in Figure 8, detecting all the objects
in these images. However, if we directly use the model to detect a high-resolution image,
the detection effect will be poor, as shown in Figure 9. This is the detection result of a high-
resolution image (a size of 3826 × 3473). A large number of objects are not detected and
there are many false detections. In response to this problem, we introduced the SAHI [40]
open-source framework and mounted our trained YOLOX model onto the SAHI framework.
The detection result obtained is shown in Figure 10. It can be clearly seen that the use of
SAHI greatly improves the detection performance of the model for large-size images.
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Figure 9. The detection result of putting a large-size image directly into the YOLOX mode.

Figure 10. The detection results of the YOLOX model combined with the SAHI framework for the
same high-resolution image.

4.5. Evaluation Model

We added the above improved methods to the original YOLOX model in turn and
tested them with the cut and amplified DOTA-v1.5 dataset. The results obtained are
displayed in Table 5.
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Table 5. The test results of adding each module to YOLOX in turn on DOTA-v1.5.

Methods mAP50-95 (%) P (M) Latency (ms) FPS

YOLOX 73.57 8.94 13.66 73.2
+ECA 75.58 (+2.01) 8.94 14.46 69.2
+ASFF 77.16 (+1.58) 14.38 17.96 55.7
+VFL 78.49 (+1.33) 14.38 17.67 56.6

After we improved the YOLOX model, the test results on the DOTA dataset were 4.92%
higher than the mAP of the original YOLOX model, but there was a slight increase in the
number of parameters and calculations. Finally, we fused the improved YOLOX and SAHI
frameworks so that our model could directly detect large-size remote sensing images. By
improving YOLOX using all the above methods, we produced our new model: RS-YOLOX.

It can be seen from the experimental results that, compared with YOLOX, RS-YOLOX
greatly improved the detection performance for aerial remote sensing images with ex-
tremely high resolution. Figure 11 shows a comparison of object detection results of
YOLOX and RS-YOLOX on the DOTA-v1.5 dataset.

Figure 11. Comparison of detection results of YOLOX and RS-YOLOX on the DOTA-v1.5 dataset.

Our model also achieved good performance on two other datasets. Figure 12 displays
its detection results on TGRS-HRRSD and RSOD datasets. The official website of TGRS-
HRRSD provides the detection results of several advanced models. Table 6 presents a
comparison between our model and these models.
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Figure 12. Detection results of our model on TGRS-HRRSD and RSOD. (a) From left to right, the
photographs show ground track fields, tennis courts, baseball diamonds, and basketball courts.
(b) From left to right, the photographs show aircraft, oil tanks, an overpass, and a playground.

Table 6. Comparison of our model with the models on the HRRSD official website.

Category YOLOv2/% Fast R-CNN/% Fast_R-CNN +
GACL-Net/%

Faster
R-CNN/%

Faster_R-CNN
+ GACL-Net/%

RS-YOLOX
(Ours)/%

Airplane 84.6 83.3 85.1 90.8 90.8 90.9
Baseball Diamond 62.2 83.6 82.6 86.9 87.2 88.6
Basketball Court 41.3 36.7 42.1 47.9 49.7 78.2

Bridge 79.0 75.1 76.7 85.5 85.6 90.4
Crossroad 43.4 67.1 68.7 88.6 88.2 90.1

Ground Track Field 94.4 90.0 89.6 90.6 90.7 90.8
Harbor 74.4 76.0 78.4 89.4 89.7 89.9

Parking Lot 45.8 37.5 39.5 63.3 65.3 75.0
Ship 78.5 75.0 74.3 88.5 88.5 90.1

Storage Tank 72.4 79.8 80.4 88.7 89.2 90.3
T Junction 46.8 39.2 38.8 75.1 75.0 86.5

Tennis Court 67.6 75.0 77.0 80.7 80.0 90.4
Vehicle 65.1 46.1 50.7 84.0 86.9 90.8
mAP50 65.8 66.5 68.0 81.5 82.1 88.0

On the TGRS-HRRSD dataset, our model has the highest mAP value and our model
has a higher detection accuracy for each category than the models provided by the
official website.

Finally, we tested the current state-of-the-art remote sensing image detectors with
these three datasets, and the results obtained are displayed in Table 7.
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Table 7. Performance comparison of advanced object detection models on aerial remote sensing
images.

Dataset Evaluation
Metrics

Improved Faster
R-CNN [21]

YOLT
[23]

YOLOv3
[17]

YOLOv4
[18]

YOLOv5
[19,24]

YOLOX
[20]

RS-YOLOX
(Ours)

DOTA-v1.5

mAP50 (%) 72.51 72.06 77.05 86.23 88.56 90.12 92.83
mAP50-95 (%) 50.26 51.27 58.32 69.01 71.38 73.57 78.49
Latency (ms) 263.29 25.68 19.11 16.13 11.87 13.66 17.86

P(M) 60.42 50.54 61.60 64.02 7.05 8.94 14.38

TGRS-
HRRSD

mAP50 (%) 74.29 73.19 74.38 85.63 85.87 86.01 88.04
mAP50-95 (%) 53.23 54.17 55.26 64.58 63.33 65.12 68.26
Latency (ms) 260.78 23.96 18.12 15.02 9.24 11.34 15.23

P(M) 60.42 50.54 61.60 64.2 7.50 8.94 14.38

RSOD

mAP50 (%) 80.79 79.28 81.36 90.23 90.97 92.01 93.07
mAP50-95 (%) 62.12 61.33 64.57 76.12 75.34 76.27 78.56
Latency (ms) 265.35 28.72 21.79 17.56 11.88 14.86 18.29

P(M) 60.42 50.54 61.60 64.2 7.50 8.94 14.38

Our model achieves good results in three aerial image datasets, and its detection
accuracy surpasses all of the above models.

5. Discussion

This section discusses the links between previous research and ours, the strengths and
weaknesses of our model, and our future directions for improvement. The experiments in
Section 4.4 show that all the methods we used have good effects on improving the accuracy
of remote sensing image detection models. The experiments in Section 4.5 show that our
model has the highest detection accuracy compared to other state-of-the-art models. Before
us, many researchers have also tried to use a combination of various advanced methods to
achieve automatic object detection in remote sensing.

5.1. About the Backbone Network

To improve the quality of features extracted by the backbone network, some re-
searchers have tried to add an attention mechanism to the backbone network. Li et al. [51]
combined the resnet-50 and the position attention module (PAM) to achieve high accuracy
in the change detection of remote sensing images. Zhang et al. [52] introduced a new spatial
attention mechanism into the Siamese network, which also improved the accuracy of the
model for detecting changes in multispectral images. Our research drew on these previous
studies, and added the ECA attention mechanism after the backbone network of YOLOX,
which improved the detection accuracy of the model.

To find the most suitable attention mechanism, we compared the results of five attention
mechanisms (as shown in Table 1), which include three types of attention: spatial, channel,
and mixed. From the results of the detection accuracy and speed, ECA has the best results.
We found that channel domain attention is the friendliest to our model and dataset, and it
improves accuracy without adding excessive inference time.

Previous researchers used some lightweight networks to replace the backbone network
in order to realize the lightweight of the model. For example, Li et al. [53] replaced the
backbone network of the YOLO model with Mobilenet, which greatly reduced the amount
of parameters and calculations, and realized the real-time detection of remote sensing
images. This is a general way to improve the detection speed of the model. However, the
Mobilenet constructed by depthwise separable convolution has low detection accuracy, so
our research did not use this method.

5.2. About the Neck Network

The neck network is usually used to achieve feature fusion. Researchers have tried
to improve the feature fusion of the neck network to improve the performance of the
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model. Yan et al. [21] used the feature pyramid network (FPN) in Faster RCNN to achieve
multi-scale feature fusion, and used channel attention in the FPN structure to achieve high
accuracy in detecting tailing ponds in remote sensing images. Qu et al. [54] introduced the
ASFF structure in the FPN of YOLOv3, which strengthened the feature fusion of FPN, and
achieved good detection results.

Besides FPN, PAFPN used by YOLOX is also a commonly used neck network, so
we tried to connect the ASFF structure after the neck network. The results are shown in
Table 3, and the accuracy of the model has improved significantly. However, a disadvantage
of ASFF is also very obvious. It increases the amount of parameters and calculation of
the model.

5.3. About the Loss Function

YOLOX uses the BCE function as the classification and confidence loss function, and
the IoU loss as the positioning loss function. Some studies [39,41] have shown that using a
focal loss-type of loss function is better than using the BCE function because focal loss can
alleviate the imbalance in the number of positive and negative samples. Based on these
theoretical foundations, we replaced the BCE function in YOLOX to the latest focal loss
function, Varifocal Loss, and obtained the accuracy improvement (as shown in Table 4).

We have also studied the replacement of the positioning loss function. In addition to
the IoU function, the positioning loss functions include GIoU [55], DIoU [56], CIoU [56],
and SIoU [57]. They all add other punishment items on the basis of IoU to obtain a better
convergence effect. We tried to replace the IoU function in YOLOX into these functions, but
the improvement effect of the detection accuracy was not obvious, and the reasoning time
was increased. So, we did not use these more advanced loss functions in our final model.

5.4. About Our Model and Future Improvement

Judging from the experimental results, our model undoubtedly has high detection
accuracy, and with the use of the SAHI framework, our model can directly detect large
-sized remote sensing images. However, compared to the original model, our improved
YOLOX model has more parameters and calculations, so the detection speed has decreased.
The results of the ablation experiments in Table 5 show that the increased parameters and
calculations mainly come from the ASFF structure we used.

For the problem of detection speed drop, our future research is mainly aimed at
improving the detection speed, and we want to improve our detection speed while main-
taining the high accuracy of the model. We are considering redesigning the structure of
ASFF, reducing its number of parameters, or trying other variants of the FPN structure.
We will also consider deploying our model using TensorRT to reduce the inference time of
the model.

5.5. Other Interesting Discussions

Our research is to use deep learning technology to achieve the automatic detection of
objects in remote sensing images. In the introduction part, we mentioned that the method
of manually extracting features is not enough to fully extract the target features, and using
deep learning methods to automatically extract features can greatly improve the efficiency.

In fact, in the field of remote sensing applications, although automated methods are
highly efficient, they may not be the optimal method in certain specific environments. In
some cases, manual methods of processing remote sensing data can also achieve good
results. For example, Weißmann et al. [58] collected data by controlling the drone, and
then used related software to reconstruct the point clouds and textured 3D models of the
survey objects. This study did not use a fully automated process, and many critical steps
were performed manually, but according to these methods, photorealistic 3D models can be
reconstructed. This shows that in the field of remote sensing, the use of artificial methods
can also achieve good enough results.
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Automated methods can process large amounts of data in a short period of time, and
they have the advantages of convenience and high efficiency. However, they cannot replace
the flexible thinking of humans. In some situations that require complex operations, manual
methods are obviously more reliable than automated methods. We pursue technological
innovation to facilitate people’s lives, but we do not want the automation of machines
to replace some activities that require human creativity because the accumulation of hu-
man experience and knowledge is the most valuable treasure, which cannot be replaced
by machines.

6. Conclusions

In this article, for the detection task of aerial remote sensing images, we made a series
of improvements to the YOLOX model, using three aerial remote sensing datasets for
training and testing. We finally proposed an improved, high-performance remote sensing
image detection model: RS-YOLOX.

To enhance the features in the backbone network and the neck network and improve
the performance of the model in detecting small targets, we used ECA and ASFF. To
adjust the number of positive and negative samples, we used the VFL function. Finally,
to improve the detection performance of the model for large-size images, we adapted the
model to the SAHI framework. Although our model has high detection accuracy for remote
sensing images, compared with the original YOLOX model, it increases the parameters and
calculation as well as the detection time. Therefore, our next plan is to study the model in
terms of making it lightweight and improving its speed.
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