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Abstract: This paper proposes two approaches, Empirical Mode Decomposition (EMD) and Fourier
Transform (FT), to correct the vibration signals measured by an Unmanned Aerial Vehicle (UAV),
which overcomes the difficulty of selection of reference points used in other correction methods, such
as homography transformation and three-dimensional reconstruction. In the method of this paper, a
UAV is used to collect the video of a vibrated bridge, and the displacement signal of the bridge is
obtained from the video by Kanade–Lucas–Tomasi (KLT) optical flow method, which contains false
displacement caused by the ego-motion of the UAV during the measurement. The false displacement
can be effectively eliminated by EMD and FT to obtain the real displacement signal. Finally, the
displacement signal is processed by the Operational Modal Analysis (OMA) technique to obtain the
bridge modal parameters. The performance of correcting vibration signals and extracting bridge
modal parameters from the vibration signals based on EMD, FT, and Differential Filtering (DF) are
compared by taking the fixed camera measurement as a reference (the accuracy of measuring bridge
vibration with fixed cameras has been verified) in this paper, and it is demonstrated that EMD has
better reliability in processing signal measured by UAVs, which is mainly due to the absence of
random factors and too much noise in the signal processing process of EMD.

Keywords: unmanned aerial vehicles; empirical mode decomposition; Fourier transform; differential
filtering; operational modal analysis

1. Introduction

Damage detection of bridge structures is an essential procedure in the long-term
service of bridges, and measuring vibration is indispensable in the process of damage
identification [1]. Strain gauges [2] and acceleration sensors [3] are the traditional methods
to measure vibration of bridge structure, but due to the disadvantages of contact measure-
ment, non-contact measurement methods such as Laser Doppler Vibrometer (LDV) [4] and
Global Positioning System (GPS) [5] are gradually getting popular. With the development
of measurement technology, GPS and LDV are gradually replaced by some optical mea-
surement methods with higher precision and lower cost. Kanade–Lucas–Tomasi (KLT)
optical flow method [6] is a measurement method of computer vision, which is an im-
proved method of Lucas–Kanade (LK) optical flow method [7]. The inter-frame motion
information of target points is obtained by tracking the target points on a set of images
stored in frames by KLT. As KLT performs well in target tracking [8], it has been applied to
vibration measurement of bridge models [9]. Fixed cameras are normally used in optical
measurement methods. However, it is difficult to select appropriate installation locations
for fixed cameras under some conditions (such as cross-valley bridges). With their wide
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applications, Unmanned Aerial Vehicles (UAVs) [10–12] have become popular in bridge
measurement [13,14].

Due to the motion of UAVs during the measurement, false displacement is introduced
in the measured displacement results [15]. Homography transformation [16] is a commonly
used method to correct the displacement measured by UAVs. Four fixed reference points
are used to calculate the homography matrix between the reference frame and other frames
in this method, and the displacement of the target point on the bridge can be corrected by
the homography transformation. However, this method requires the target points on the
bridge and four fixed reference points to be in the same plane, and that is unrealistic in
actual bridge measurement. The world coordinates of the target points on the bridge can
be recovered by the three-dimensional reconstruction, and the displacement time–history
curves of the target points can be obtained [17]. But the plane of target points and that of
reference points are required to be parallel for this method, and the distance between two
planes also needs to be known in advance, which is difficult to satisfy in the process of
actual bridge measurement. As neural networks are developed, they are gradually applied
to solve the problem of unstable shooting of UAVs. The characteristic relationship between
the target points on the measured bridge and the reference points on the background can
be learned by a Feedforward Neural Network (FNN), and true displacement of the target
points can be predicted through the characteristic relationship by the trained FNN [18].
Although the false displacement caused by UAVs can be eliminated by this method, some
fixed reference points on the background of the bridge are also required for this method,
and that is difficult to realize in some cases (e.g., the background of the bridge is the
boundless sea).

The modal parameters of bridges can be obtained from the vibration signals measured
by UAVs based on the Differential Filtering (DF) technique [19] without using any reference
points [20]. In this method, the acceleration signal of the bridge can be obtained from
original signal measured by UAVs by second-order differential filtering. However, the
random signal caused by the UAV motion cannot be effectively eliminated by this method,
which leads to the low accuracy of the obtained bridge modal parameters. According to
the original signal characteristics in the time scale, finite Intrinsic Mode Functions (IMF)
can be obtained by decomposing complex signals through Empirical Mode Decomposition
(EMD) [21,22], and each IMF contains different local characteristics in the time scale. EMD
perform well in processing non-stationary and nonlinear data for its universality, and
it is widely used in processing displacement signal [23]. The time-domain signal can
be converted into frequency-domain signal, that is, the spectrum of signal, by Fourier
Transform (FT) [24]. It is believed that any continuously measured time signal can be
expressed by the FT as infinite superposition of sine wave signals with different frequencies.
The FT is widely used in the field of signals processing [25]. The original time domain
signals can be obtained from the frequency domain signals by Inverse Fourier Transform
(IFT) [26]. The EMD and the FT (combined with IFT) can be used respectively to process the
displacement signal of the bridge measured by a UAV, and the bridge modal parameters are
extracted from the processed signals through Operational Modal Analysis (OMA) [27,28].
In OMA process, the structural natural frequency can be identified by Power Spectral
Density (PSD) [29], while the ratio of the PSD Transmissibility (PSDT) [30] is used to obtain
the bridge mode shape [31].

In this paper, EMD and FT are used to eliminate the random component in the signals
of a bridge model measured by a UAV. The bridge vibration is video-recorded by a UAV, the
target points on the bridge model in the video are tracked by KLT, and their displacement
contains false component. Then the EMD and FT are used to process displacement signals,
respectively. The modal parameters of the bridge model can be obtained by analyzing the
processed signals with OMA. Finally, taking the fixed camera measurement as a reference,
the processing effects and the modal parameter identification accuracies of EMD, FT, and
DF are compared.
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2. Methods
2.1. KLT Optical-Flow Method

The unchanged pixel value of each point and the small motion of each point between
adjacent frames are presumed in the KLT. In addition, spatial consistency is another as-
sumption of this method, that is, the adjacent pixels have similar motion between adjacent
frames. The image pyramid technique [32] is used by KLT to meet the assumption of spatial
consistency under different conditions.

The target points selected in the first frame are used to calculate the inter-frame vector
to realize target tracking by KLT. Suppose W is a constant size window, which is centered
on the position of a target point on each frame image and dx and dy are the motion of the

target point along the x-axis and y-axis between 2 frames; the motion, d =
[
dx dy

]T , can
be obtained by minimizing the value of the following formula [6]:

ε =
s

W [I2(X + d)− I1(X)]2ω(X)dX (1)

where ε is the residual error, I1 is the image of the previous frame, I2 is the image of the
next frame, ω(X) is the weight function, X =

[
x y

]T , (x, y) are the coordinates of the
pixels in the window, W.

From the video taken by the UAV, the coordinate of the target points on each frame
can be obtained by KLT. The target points displacement time–history curves are obtained
by connecting the coordinate information of each frame.

2.2. Correction Technique of Displacement Signal Measured by UAV

It can be seen from the previous section that the displacement time–history curve
of the bridge can be obtained by tracking the target points in the video taken by the
UAV through KLT, but the displacement signals contain the false displacement. Three
techniques of eliminating the random signal caused by the UAV will be introduced in
this section, including the two techniques used in this paper and the existing differential
filtering technique.

2.2.1. Empirical Mode Decomposition

A residual r(t) and N IMFs hi(t) can be obtained by decomposing the original signal
x(t) through an iterative sifting process by the EMD:

x(t) =
N
∑

i=1
hi(t) + r(t) (2)

where one of the hi(t) is the bridge true displacement signal, N is the number of IMFs.
The process of EMD is shown in Figure 1. When the original signal x(t) is not

monotonic, it is put into the sifting process as ri(t) (i = 0). The sifting process is as follows:
the upper and lower envelope curves of the signal are formed by finding the local extremum
of the signal, and the mean curves m(t) of the upper envelope s+(t) and lower envelope
s−(t) are removed from the signal to obtain a new signal ri

′(t). If ri
′(t) does not meet

Equation (3), it will be put into the sifting process again, otherwise, ri
′(t) is the first IMF

hi(t) (i = 1), and the sifting process is ended. Remove the obtained first IMF from the
original signal to obtain a new signal, and judge whether the new signal is monotonous.
If not, repeat the above process; otherwise, it is the residual separated from the original
signal, and the decomposition process is ended. The resulting residual and all IMFs are the
components of the original data. The expression of RT of ri

′(t) is as follows:

RT =
∑[r′i(t)−ri(t)]

2

∑[ri(t)]
2 ≤∈ (3)

where ∈ can be set between 0.2 and 0.3 [21].
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Figure 1. The process of EMD.

The signal measured by a UAV including false displacement can be decomposed with
EMD to obtain the true vibration signal of the bridge, which is one of the IMFs. EMD is not
only suitable for the analysis of nonlinear and non-stationary signals but also suitable for
the analysis of linear and stationary signals.

2.2.2. Fourier Transform and Inverse Fourier Transform

The time domain signals can be converted into frequency domain signals with FT,
which is a signal processing technique. For discrete data set X, the expression of FT is as
follows [33]:

yk+1 =
n−1
∑

j=0
ω jkxj+1 (4)

where yk+1 is the new signal after FT, xj+1 ∈ X, ω = e
−2πi

n is one of the complex unit roots,
i is an imaginary unit, n is the number of samples in X, and the value ranges of j and k are
both 0 to n− 1.

The frequency domain signals can be converted into time domain signals with IFT,
and its expression is as follows:

xj+1 = 1
n

n−1
∑

k=0
ω−jkyk+1 (5)



Appl. Sci. 2022, 12, 8689 5 of 18

The FT used in this paper is generally used for continuous signal processing. The
displacement signal measured by the UAV includes the bridge true displacement and the
false displacement, and the vibration frequency of the UAV is small relative to the vibration
frequency of the bridge; therefore, a filter combined FT with IFT is used to filter out the
low-frequency signal. The spectrum diagram is obtained from the displacement signal with
FT, and the low-frequency part of the spectrum is removed. Then the frequency domain
signal is converted into the time domain signal with IFT, so as to obtain the bridge true
vibration signal.

2.2.3. Differential Filtering

The noise and the zero drift of the signal measured by UAVs can be solved with DF,
and the expression of DF is as follows:

yk = xk+2 + xk − 2xk+1 (6)

where xk is the k-th point of displacement signal, yk is the k-th point of acceleration signal
obtained from the original signal by second-order differential filtering [34].

The DF is generally used for continuous signal processing. The vibration signal will be
amplified by the square of the frequency by the differential filtering and that is conducive
to the natural frequency identification [17].

2.3. Operational Modal Analysis

In the process of OMA, the expression of response transmissibility in the multiple-
degrees-of-freedom system is as follows [35]:

Tio(ω) = Xi(ω)
Xo(ω)

(7)

where Tio(ω) is response transmissibility; Xi(ω) and Xo(ω) are the Fourier transforms of
xi(t) and xo(t) at the Degrees of Freedom (DOF) i and o, respectively.

The expression of Power Spectrum Density (PSD) transmissibility is as follows:

T̂io(ω) =
Si,o(ω)
So,o(ω)

= Xi(ω)X∗o (ω)
Xo(ω)X∗o (ω)

(8)

where X∗o (ω) is the conjugate complex number of Xo(ω), Si,o(ω) is the Cross Power Spec-
trum Density (CPSD) of xi(ω) and xo(ω); So,o(ω) is the PSD of xo(ω). The PSD transmissi-
bility can be expressed as [36]:

T̂io(ω) = Xi(ω)
Xo(ω)

=
Hip(ω)·Fp(ω)

Hop(ω)·Fp(ω)
=

Hip(ω)

Hop(ω)
= Tio(ω) (9)

where Hip(ω) is the Frequency Response Function (FRF) between the degrees of freedom
i and p [37], Fp(ω) is the Fourier transform of excitation force signal at point P. From the
Equation (7), we can get the following:

lim
ω→ωr

T̂io(ω) = lim
ω→ωr

Hip(ω)

Hop(ω)
= ϕri

ϕro
(10)

Take the node of degree of freedom o as the reference point, and change the order of
measurement points of degree of freedom i in turn (i = 1, 2, . . . , N). The r-th modal shape
of the structure can be expressed as

ϕr1
ϕr2

...
ϕrN

 = ϕro


T̂1o(ωr)

T̂2o(ωr)
...

T̂No(ωr)

 (11)
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The structural modal shape can be obtained from Equation (7):

ϕr = lim
ω→ωr

{
T̂1o(ω), T̂2o(ω), . . . , T̂no(ω)

}
(12)

Substituting Equation (7) into Equation (11):

ϕr = lim
ω→ωr

{S1,o(ω), S2,o(ω), . . . , Sn,o(ω)} (13)

The modal parameter identification process of a structure by OMA is shown in Figure 2.
The PSD curve can be obtained from vibration signal under the reference DOF, and the
structural natural frequency is obtained from the PSD curve [38]. The CPSD can be obtained
from vibration signal under the reference DOF and other DOF, and the PSD transmissibility
can be obtained according to Equation (8). The mode shape can be obtained by the
PSD transmissibility.
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3. Experiment
3.1. Equipment of Experiment

In this paper, the steel frame shown in Figure 3a is used as the bridge model for
experiment, which has 9.8 m span, a width of 0.35 m, and a height of 0.35 m. The front
plane of the bridge model (Figure 3b) has 56 nodes, which are used as the target points.
The model is composed of hollow round bars (Figure 3c) and steel bolt balls (Figure 3d),
in which the lengths of red and yellow hollow round members are 365 mm and 215 mm,
respectively. The model is hinged at both ends as showed in Figure 3e. The top of the
model is 1.4 m from the ground.

The bridge model is excited by a sudden concentrated load of 50 N for 5 times to
collect the vibration signal, and the vibration time lasts for 80 s. The load is caused by an
excitation hammer (Figure 3f) acting on the Node 43.

As shown in Figure 4, the tool used to collect bridge model video is a quad-rotor UAV
(Mavic Air 2, Da-Jiang Innovations, Shenzhen, China) and a fixed camera (D5300, Nikon
Corporation, Tokyo, Japan); the former has an image resolution of 3840 × 2160 and an
acquisition frequency of 30 frames/s, and the latter has an image resolution of 1920 × 1080
and an acquisition frequency of 60 frames/s; both of them are located in the place 2 m away
from the model [39] as shown in Figure 5.
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3.2. Experimental Scheme

This experiment is mainly divided into two parts:

(1) The displacement signal measured by the UAV is corrected by a filter combined FT
with IFT in the first part. By comparing the correction results obtained by filtering
different low-frequency signals F and taking the degree of consistency with the
displacement signal measured by the fixed camera as the index, the F with best
correction effect on the displacement signal measured by a UAV can be determined.

(2) The processing effects of EMD, FT, and DF techniques on the displacement signal
measured by the UAV and the extraction accuracy of modal parameters based on
vibration signal are compared. The processing effects of three techniques are com-
pared from three indexes: burr degree, correction accuracy, and consistency with the
displacement signal measured by the fixed camera. Finally, the effect of three methods
on identification of the modal parameters based on vibration signals are compared
from the extracted natural frequency and mode shape of the model.

4. Experimental Results and Analysis

For better observation, the vibration signals of Node 15 are displayed.

4.1. Influence of F on the Correction Effect of FT

The original displacement signal collected by the UAV has a serious drift caused by the
ego-motion of the UAV during the measurement, as shown in Figure 6. The displacement
time–history curve measured by the UAV is converted into the spectrum by FT (Figure 7).
The figure shows that there is a peak at about 3 Hz, which is caused by structural vibration
and is also the part to be studied. Moreover, there are zero drift and many burrs near 0 Hz.
The main cause of the burrs is the motion of the UAV during measurement, which is a kind
of low-frequency irregular motion. In order to better study the structural vibration, the
signal close to 0 Hz is removed, and then, the obtained new frequency domain signal is
processed by IFT to obtain the time domain signal (Figure 8), that is, the structural vibration
signal without false displacement caused by the ego-motion of the UAV.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 18 
 

displacement signal measured by the fixed camera as the index, the 𝐹  with best 
correction effect on the displacement signal measured by a UAV can be determined. 

(2) The processing effects of EMD, FT, and DF techniques on the displacement signal 
measured by the UAV and the extraction accuracy of modal parameters based on 
vibration signal are compared. The processing effects of three techniques are 
compared from three indexes: burr degree, correction accuracy, and consistency with 
the displacement signal measured by the fixed camera. Finally, the effect of three 
methods on identification of the modal parameters based on vibration signals are 
compared from the extracted natural frequency and mode shape of the model. 

4. Experimental Results and Analysis 
For better observation, the vibration signals of Node 15 are displayed. 

4.1. Influence of 𝐹 on the Correction Effect of FT 
The original displacement signal collected by the UAV has a serious drift caused by 

the ego-motion of the UAV during the measurement, as shown in Figure 6. The 
displacement time–history curve measured by the UAV is converted into the spectrum by 
FT (Figure 7). The figure shows that there is a peak at about 3 Hz, which is caused by 
structural vibration and is also the part to be studied. Moreover, there are zero drift and 
many burrs near 0 Hz. The main cause of the burrs is the motion of the UAV during 
measurement, which is a kind of low-frequency irregular motion. In order to better study 
the structural vibration, the signal close to 0 Hz is removed, and then, the obtained new 
frequency domain signal is processed by IFT to obtain the time domain signal (Figure 8), 
that is, the structural vibration signal without false displacement caused by the ego-
motion of the UAV. 

 
Figure 6. Displacement signal measured by the UAV. 
Figure 6. Displacement signal measured by the UAV.

In order to study the influence of F on correction effect of FT, firstly, the value of F
is taken as 0.5, 1, 2 and 3 Hz, respectively. The corrected signals are shown in Figure 9
which shows that when F = 0.5 Hz, the corrected signal has many burrs and is unstable.
When F = 3 Hz, even if the curve is smooth and there are few burrs, the characteristic of
free vibration attenuation of displacement signal is not obvious. When F = 1 Hz, although
there are burrs in the curve, it tends to be stable. The main reasons are as follows: when F is
low, the low-frequency signals caused by the UAV ego-motion cannot be filtered out cleanly,
resulting in poor correction effect; and when F is high enough to approach the natural
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frequency of the structure of 3.281 Hz, some signals caused by the structural vibration may
be filtered out, resulting in poor correction effect. Therefore, the value of F is explored in
the range of 1 Hz to 3 Hz to determine the value of F with the best correction effect.
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Although the burr degree of the curve decreases with the increase of F between 1 Hz
and 3 Hz, the free vibration attenuation characteristics of the obtained displacement curve
gradually decrease, and therefore, the index for judging correction effect in this part is the
degree of consistency with the displacement signal measured by the fixed camera. The
degree of consistency between two displacement signals can be expressed by the Time
Response Assurance Criterion (TRAC) [40]. Therefore, a high TRAC indicates a higher
degree of similarity, that is, a better correction effect. The corrected signal of FT (F = 2 Hz)
and the measurement result of the fixed camera are shown in Figure 10. The relationship
between F and TRAC is shown in Figure 11, the ordinate of which is the average TRAC of
the six nodes of the model with larger amplitude (Nodes 14, 15, and 16 and 42, 43, and 44)
corresponding to F (the subsequent TRACs mentioned in this paper are the average TRAC
values of the six nodes with larger amplitude to ensure the reliability of the results). The
figure shows that in the range of 1 Hz to 3 Hz, with increase of F, the TRAC first increases
and then decreases. When the TRAC is the largest, F is 1.7 Hz. Therefore, 1.7 Hz is regarded
as the ideal F value.
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4.2. Comparison of EMD, FT, and DF

The processing effects of EMD, FT and DF techniques on the UAV measurement dis-
placement signal and the effect of modal parameter extraction from the vibration signal are
compared in this section. The true displacement of the bridge model can be decomposed
from the original displacement signal by EMD (Figure 12a). The original signal contains
seven IMFs and a remainder. The first IMF is the real displacement signal of the bridge
model, which has obvious characteristics of free vibration attenuation. The decomposed
remainder is monotonic, which is the condition to terminate the process of EMD. The
signals shown in Figure 12a are processed by FT to obtain the corresponding spectrum dia-
grams (Figure 12b), which indicates that only the first IMF contain the structural vibration
(frequency close to 3 Hz), which further indicates that IMF 1 is the real vibration signal of
the structure. The decomposed components except IMF 1 are combined into a composite
signal, which is the false displacement caused by the UAV measurement (Figure 13). The
components of the original signal decomposed by EMD are reconstructed into a new signal.
The standard deviation of the error curve between the new signal and the original signal is
3.687 × 10−15, indicating that the error of the EMD process is very small and negligible.
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Since the signal measured by the UAV and corrected by DF is an acceleration signal, in
order to facilitate comparison, the displacement signal measured by the fixed camera and
the UAV displacement signal corrected by EMD and FT are processed by the second-order
differential filtering, as shown in Figure 14. It shows that the curves of four cases are similar.
In this section, the processing effects of three techniques are compared with three indexes.
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The locally weighted regression (LOWESS [41]) can be used to smooth the original
displacement signal to obtain the ideal displacement curve x′(t). The burr degree of the
time–history curve can be reflected by the average value of the error curve between x(t)
and x′(t), which is defined as ECA in this paper. The higher the ECA, the more burrs the
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curve has. The average ECA of the six nodes of the model with larger vibration amplitude
(Nodes 14, 15, and 16 and 42, 43, and 44) are shown in Table 1 (the subsequent ECAs
mentioned in this paper are the average ECA values of the six nodes). It shows that the
ECA of EMD is the lowest, followed by FT, which are 24.897 and 25.310, respectively; while,
the ECA of DF is the highest, which is 26.456.

Table 1. Indexes of three methods.

Method EAC TRAC STD

EMD 24.897 0.941 98.604

FT 25.310 0.942 99.914

DF 26.456 0.918 106.508

The TRAC between the corrected signals obtained by the three methods and the
measurement results of the fixed camera are shown in Table 1. The TRAC of FT is the
highest, which is 0.942, followed by EMD, which is 0.941, while the relative error of them is
only 0.106%; the TRAC of DF is the lowest, which is 0.918.

The signals of a stationary point on the model background measured by the UAV and
corrected by three methods are shown in Figure 15. Theoretically, the curves are straight
lines, so the Standard Deviation (STD) reflects the accuracy of correction. The average STD
values of six static points are shown in Table 1 (the subsequent STDs mentioned in this
paper are the average STD values of six static points). It demonstrates that the STD of EMD
is the lowest, followed by that of FT, and they are 98.604 and 99.914, respectively. The STD
of DF is the highest, which is 106.508.
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Figure 16 illustrates the PSD curves of the signals shown in Figure 14. According to the
principle of OMA, the peak of the PSD curves corresponds to the modal natural frequency.
The PSD curves obtained by the three methods have obvious peaks, and the extracted
structural natural frequency is consistent with that extracted from the measurement of
the fixed camera, indicating the good performance of the three methods in extracting the
structural natural frequency.

Figure 17 shows the mode shape obtained from the acceleration signals of three
correction methods and the fixed camera measurement. The modal assurance criterion
(MAC) [42] is used to evaluate the fitting degree between the mode shape curves. The mode
shape obtained by the fixed camera is taken as the reference, the MAC values of EMD, FT,
and DF are 0.994, 0.986, and 0.981, respectively. Based on the above analysis, EMD is the
best in the three correction techniques of signal measured by UAVs on processing effect
and modal parameter identification of bridge models.



Appl. Sci. 2022, 12, 8689 14 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 18 
 

 
Figure 15. Corrected signals of static point of three methods: (a) EMD; (b) FT; (c) DF. 

Figure 16 illustrates the PSD curves of the signals shown in Figure 14. According to 
the principle of OMA, the peak of the PSD curves corresponds to the modal natural 
frequency. The PSD curves obtained by the three methods have obvious peaks, and the 
extracted structural natural frequency is consistent with that extracted from the 
measurement of the fixed camera, indicating the good performance of the three methods 
in extracting the structural natural frequency. 

 
Figure 16. PSD curves of four cases: (a) fixed camera; (b) EMD; (c) FT; (d) DF. 

Figure 17 shows the mode shape obtained from the acceleration signals of three 
correction methods and the fixed camera measurement. The modal assurance criterion 
(MAC) [42] is used to evaluate the fitting degree between the mode shape curves. The 
mode shape obtained by the fixed camera is taken as the reference, the MAC values of 
EMD, FT, and DF are 0.994, 0.986, and 0.981, respectively. Based on the above analysis, 
EMD is the best in the three correction techniques of signal measured by UAVs on 
processing effect and modal parameter identification of bridge models. 

Figure 16. PSD curves of four cases: (a) fixed camera; (b) EMD; (c) FT; (d) DF.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 
Figure 17. The mode shape identified by four methods. 

5. Discussion 
The discussion is mainly divided into three parts: 

(1) From the above experimental results, it can be known EMD has the best effect on the 
correction of displacement signal measured by the UAV. With respect of the 
acceleration signals, the effect of EMD and FT is better than DF, and the reason is as 
follows: the signals of EMD and FT are processed by second-order differential 
filtering on the basis of the corrected signals, while DF directly applies a differential 
filter to the original signal, which contains random signal caused by UAV 
measurement, so the signal after DF is poor. Figure 18 shows the EMD corrected 
displacement signal and its second-order differential. The figure shows that the burr 
of the signal increases significantly after DF, which shows the noise can be introduced 
by DF. Moreover, the true displacement signal of the bridge model cannot be 
obtained through DF, and therefore, EMD and FT are obviously more reliable for the 
processing of displacement signal measured by the UAV. 

 
Figure 18. The signals corrected by EMD: (a) EMD corrected signal; (b) Its second-order differential. 

The comparisons of correction effect of EMD and FT based on the displacement 
signals are shown in Table 2. It can be seen that EMD is better than FT, mainly because 
the high time resolution (the minimum time interval on the time axis) and the high 
frequency resolution (the minimum frequency interval on the frequency axis) cannot be 
obtained by FT at the same time, and the conversion between time domain signal and 
frequency domain signal is not accurate enough. In addition, with FT correction 
technique, it is not easy to find the optimal value of 𝐹  without knowing the natural 
frequency of the structure in advance, so EMD is more generally applicable than FT. 
(2) In addition to the above three techniques for signal measured by the UAV, Average 

Filtering (AF) [43] technique can also be used to correct the displacement signal 
measured by the UAV (see the Appendix A for more details). In the first step of AF 
correction technique, the signal of structural vibration is filtered out from the original 
signal, and the obtained displacement signal is the false displacement. In the second 
step, the filtered structural vibration signal can be obtained by subtracting the false 

Figure 17. The mode shape identified by four methods.

5. Discussion

The discussion is mainly divided into three parts:

(1) From the above experimental results, it can be known EMD has the best effect on
the correction of displacement signal measured by the UAV. With respect of the
acceleration signals, the effect of EMD and FT is better than DF, and the reason is as
follows: the signals of EMD and FT are processed by second-order differential filtering
on the basis of the corrected signals, while DF directly applies a differential filter to
the original signal, which contains random signal caused by UAV measurement, so
the signal after DF is poor. Figure 18 shows the EMD corrected displacement signal
and its second-order differential. The figure shows that the burr of the signal increases
significantly after DF, which shows the noise can be introduced by DF. Moreover, the
true displacement signal of the bridge model cannot be obtained through DF, and
therefore, EMD and FT are obviously more reliable for the processing of displacement
signal measured by the UAV.
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The comparisons of correction effect of EMD and FT based on the displacement signals
are shown in Table 2. It can be seen that EMD is better than FT, mainly because the high time
resolution (the minimum time interval on the time axis) and the high frequency resolution
(the minimum frequency interval on the frequency axis) cannot be obtained by FT at the
same time, and the conversion between time domain signal and frequency domain signal
is not accurate enough. In addition, with FT correction technique, it is not easy to find the
optimal value of F without knowing the natural frequency of the structure in advance, so
EMD is more generally applicable than FT.

Table 2. Indexes of EMD, FT and DF.

Method EAC TRAC STD

EMD 0.033 0.950 0.053

FT 0.045 0.946 0.062

DF 0.036 0.947 0.060

(2) In addition to the above three techniques for signal measured by the UAV, Average
Filtering (AF) [43] technique can also be used to correct the displacement signal
measured by the UAV (see the Appendix A for more details). In the first step of AF
correction technique, the signal of structural vibration is filtered out from the original
signal, and the obtained displacement signal is the false displacement. In the second
step, the filtered structural vibration signal can be obtained by subtracting the false
displacement from the original signal. The correction effect of AF depends on N (see
the Appendix A for more details). The optimal effect of AF technique (N = 8, it
is verified by numerical experiment) and the correction effects of EMD and FT are
compared in Table 2 (the results are based on the displacement signals). The table
shows that the effect of AF technique is between EMD and FT. Therefore, using AF to
correct the displacement measured by UAVs is also a considerable method.

During the processing of AF, partial false displacement signals may be filtered or
partial structural vibration signals are not filtered cleanly, which may lead to poor correction
effect. In addition, the value of N is different for different data, so AF technique is not as
applicable as EMD.

(3) The above conclusion is based on the bridge model. In follow-up research, the
methods used in this paper will be applied to the measurement results of actual
bridges.

6. Conclusions

In this paper, two displacement correction techniques for UAV measurement are
proposed, and the bridge modal parameters can be extracted accurately from the vibration
signals obtained by the two correction techniques, EMD and FT. Since the correction effect
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of FT can be affected by the value of F, the optimal F value must be determined before
correction. The processing effects of EMD, FT, and DF on UAV signals are compared; the
advantages of EMD in correcting UAV measured displacement signals are demonstrated.
The static reference points are not required for the used two methods to correct the UAV
measurement displacement. Unlike with DF, the signal obtained with the two methods
is the displacement signal of the structure. Therefore, EMD and FT are very suitable for
actual bridge measurement.
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Appendix A

The method of obtaining the average value of a signal as shown in Equation (A1) is
used by the AF technique to filter the original signal according to a certain period N.

m =
N
∑

i=1

xi
N (A1)

The process of AF is shown in Figure A1, where M is the smoothed signal based on
the original signal A. A window with the size of N traverses the whole A, and the average
value of the elements in the window are calculated as one of the elements of the new
data M.
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