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Abstract: Shapelet-based time series classification methods are widely adopted models for time series
classification tasks. However, the high computational cost greatly limits the practicability of the
Shapelet-based methods. What is more, traditional Shapelet can only describe the overall shape
characteristics of subsequences under the Euclidean distance metric, so it is vulnerable to noise. Other
than Shapelet, there are other types of discriminative information contained in the subsequences. To
deal with the aforementioned problems, an accurate and efficient time series classification algorithm,
named Shapelet with Canonical Time Series Features, is proposed in this paper. The proposed
algorithm is based on the following three key strategies: (1) randomly selecting Shapelet and limiting
the scope of Shapelet to improve efficiency; (2) embedding multiple canonical time series features
in Shapelet to improve the adaptability of the algorithm to different classification problems and
make up for the accuracy loss caused by the random selection of Shapelet; and (3) building a
random forest classifier based on the new feature representations to ensure the generalization ability
of the algorithm. Experimental results on 112 UCR time series datasets show that the proposed
algorithm is more accurate than the STC algorithm which is based on Shapelet exact search and the
Shapelet transform technique, as well as many other types of state-of-the-art time series classification
algorithms. Moreover, extensive experimental comparisons verify the significant advantages of the
proposed algorithm in terms of efficiency.

Keywords: time series; Shapelet; canonical time series features; classification

1. Introduction

Time series classification is an important research area in data mining and has re-
ceived more and more extensive attention in recent years [1,2]. The solutions of many
practical applications are supported by time series classification technology, such as road
condition prediction [3], disease diagnosis [4], remote sensing data analysis [5] and so on,
which have greatly promoted the rapid development of time series classification research.
However, the increasing scale of data [6,7] and the constant introduction of complex classi-
fication tasks [7] make it still extremely challenging to achieve accurate and efficient time
series classification.

One of the key problems in time series classification research is how to define and
find patterns that distinguish time series from different categories, which affects and even
determines the performance of time series classification algorithms. Ye et al. [8] first
proposed the concept of Shapelet, defining it as a discriminating subsequence in a time
series. Shapelet distinguishes different categories by the local shape of the time series,
has strong predictive ability and interpretability, and has received widespread attention
in the field of time series classification. However, Shapelet’s brute force search algorithm
requires iterating through all subsequences in the dataset with a time complexity of up to
O(n2 · l4) (n is the number of time series in the dataset, l is the average length of the time
series) [8]. The expensive computational cost strongly limits the usefulness of the time
series classification algorithms based on Shapelet [9,10]. To address the issue, researchers
improved the search efficiency of Shapelet by reducing the search space of Shapelet [9–12]
or trading space for time [13] (see Section 2.1 for details). However, these methods usually
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are designed with the goal of bringing only a certain efficiency gain without significantly
reducing accuracy.

In addition to the efficiency problem, we realize that there is another flaw in the
traditional Shapelet algorithm—that is, it can only describe the overall shape characteristics
of the subsequence under the Euclidean distance metric. So, it is extremely susceptible
to noise, and it is difficult to mine other types of features embedded in the subsequence.
Consider the example in Figure 1 taken from the “ShapeletSim” dataset [7]. Figure 1a
is a candidate Shapelet S chosen from the “Triangle” class, and Figure 1b,c present the
subsequences most similar to candidate Shapelet S in each of the two categories found using
sliding window technique. In fact, the characteristic that distinguishes the two categories
of the “ShapeletSim” dataset is the artificially embedded triangular-shaped segment in
the “Triangle” class (the area within the box in Figure 1a), and other data points in the
two categories are all random noise. As can be seen from Figure 1, the candidate Shapelet S
intuitively meets our expectations for Shapelet, as it has the triangular-shaped feature that
the “Noise” class does not have. However, due to the influence of noise, it is impossible to
correctly classify these two categories by sorting the Euclidean distances between the eight
subsequences and the candidate Shapelet S (as shown in Figure 1d).
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Figure 1. An example of mining discriminative information of subsequences via embedding canonical
time series features.

In order to deal with the above problems, this paper proposes a new time series
classification algorithm—Random Shapelet Forest Embedded with Canonical Time Se-
ries Features (RSFCF). RSFCF is a random, tree-based integrated classification algorithm
designed to achieve high accuracy and efficient time series classification. RSFCF’s time
complexity is reduced by several orders of magnitude relative to the Shapelet brute force
search by randomly selecting Shapelets. In addition, inspired by interval-based time series
classification methods [3,14], we believe that for most real-world datasets, the local offset
of the time series on the timeline is generally within a limited range. As a result, RSFCF
limits the scope of Shapelet, which further improves the efficiency of Shapelet matching
while retaining Shapelet’s location information to a large extent.

Lubba et al. proposed 22 typical time series features (“Catch22” for short; see
Section 3.3 for details), including statistical features, spectral features and other types
of features [15]. In order to improve the applicability of the algorithm and compensate
for the accuracy loss caused by the random selection of Shapelet, this paper combines
the Shapelet transformation technology [16] with multiple typical time series features,
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and proposes a random Shapelet transformation method that embeds typical time se-
ries features, and the final random forest classification model is constructed based on
the new feature representation of the data. As in the example shown in Figure 1, the
“triangle” causes the power spectrum of the subsequence to have a stronger response in
the lower frequency band. Based on the eigenvalue of the subsequence on the feature
SP_Summaries_welch_rect_area_5_1 (the sum of the energies of the five lowest frequencies
in the Fourier power spectrum, which is one of the features in the Catch22), the two cat-
egories can be correctly distinguished (as shown in Figure 1e). In this case, although the
candidate Shapelet S is not precise (i.e., contains a lot of random noise in addition to the
“triangle”), we are still able to tap into the discriminatory information contained therein
and rely on it for accurate classification.

In order to fully verify the performance of the RSFCF algorithm proposed in this paper,
we have conducted extensive experimental comparison and analysis with a number of
current advanced time series classification algorithms on a large number of UCR time series
datasets [7]. Experimental results on 112 datasets show that: (1) embedding typical time
series features can effectively improve the accuracy of random Shapelet forests; (2) RSFCF
surpasses the STC algorithm based on Shapelet precision search and Shapelet transforma-
tion techniques [17] in terms of accuracy (a recent work by Bagnall et al. [18] showed that
STC is the most accurate time series classification algorithm based on Shapelet), and is
an order of magnitude faster than it is in training; (3) besides the STC algorithm, RSFCF
surpasses many other types of advanced time series classification algorithms in terms
of accuracy, including residual neural networks (ResNet) [19], Proximity Forest [5], and
Canonical Interval Forests (CIF) [3].

The main contributions in this paper are summarized as follows:
(1) Considering the characteristics of a real dataset, a method that can effectively

improve the matching efficiency of Shapelet without a significant loss of accuracy is verified
to limit the scope of Shapelet;

(2) A novel method of embedding typical time series features in Shapelet is proposed,
and experimental results show that this method can effectively compensate for the loss of
accuracy caused by the random selection of Shapelet;

(3) Based on the above method, an accurate and efficient time series classification
algorithm is proposed—Random Shapelet Forest embedded with Canonical Time Series
features (referred to as RSFCF).

The rest of this article is organized as follows. Section 2 introduces the relevant work
and recent progress made in time series classification, Section 3 introduces the relevant
definitions and background knowledge, Section 4 describes the RSFCF algorithm proposed
in this paper in detail, Section 5 verifies the performance of the RSFCF algorithm through
extensive experimental comparison and analysis, and a final summary and possible future
work are given in Section 6.

2. Related Work

This section reviews relevant research work on Shapelet and briefly introduces other
types of time series classification method in light of the latest research advances.

2.1. Classification Method Based on Shapelet

The classification method of the time series classification algorithm based on Shapelet
distinguishes between different categories based on whether the discriminating subse-
quence (i.e., Shapelet [8]) appears in the time series, regardless of where it appears. The
original method of Ye et al. [8] used information gain as an evaluation criterion to search
for optimal Shapelet by enumerating all subsequences. Since the high computational cost
of the method severely hampers Shapelet’s practicality, much of the research on Shapelet
has focused on how to accelerate the discovery of Shapelet. For example, Mueen et al. [13]
employed an intelligent caching technique that traded space for time, reducing the time
complexity of an exact search for Shapelet by an order of magnitude. The fast Shapelet
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method [9] uses SAX technique [20] to discretize subsequences and search for “approxi-
mate” optimal Shapelet in low-dimensional spaces using random projection techniques,
reducing the temporal complexity of searching for Shapelet to O(n · l2). When Karlsson
et al. [10] constructed each node of a decision tree, only randomly selected k subsequences
(k are much less than the number of all subsequences). In [11], Shapelet pre-screening was
performed based on variance located at key points in the time series at each time point.
Ref. [12] applied local Fisher discriminant analysis (LFDA) to find key dimensions in time
series to reduce the Shapelet search space. Another method of improving efficiency is called
LearningShapelet [1], which learns Shapelet by optimizing strategies rather than directly
using subsequences in the dataset as candidates.

There are two main classification strategies for the above methods. The first way is to
fuse the Shapelet search process with the building process of the decision tree [8–10,13],
and the second is to transform the dataset using the multiple Shapelets found (i.e., using
the Shapelet transformation technique [16], see Section 3.2 for details) and then classifying
them using traditional classifiers such as SVM [12]. Although a series of Shapelet-based
classification methods have been proposed one after another, a recent assessment by Bagall
et al. [18] suggests that in terms of accuracy, the STC classification algorithm [17] based on
Shapelet precision search and Shapelet transformation techniques (the converted data are
used to train the rotating forest classifier [18]) represents the most advanced level of this
type of method. In the experimental analysis in Section 5, we will show that the accuracy
and efficiency of the RSFCF algorithm proposed in this paper on the UCR time series
dataset exceed the STC algorithm.

2.2. Other Types of Classification Methods

Classification methods based on intervals assume that local features depend on where
they appear and are generally more efficient. Typical methods include time series forest
(TSF) [14], random interval spectrum integration (RISE) [21], and typical interval forest
(CIF) [3]. TSF randomly selects a set of intervals in the time series to perform transfor-
mations over three time domains (mean, variance, and slope, respectively), and trains
an integrated classifier based on a decision tree with new feature representations [14].
Unlike TSF, RISE performs four frequency domain transitions for each set of randomly
selected intervals, including autocorrelation functions, partial autocorrelation functions,
autoregressive models, and power spectra [21]. CIF adds the 22 features in Catch22 [15] to
TSF, significantly exceeding TSF and RISE in accuracy [3].

Classification methods based on dictionaries convert time series into a bag of patterns,
distinguishing between different categories by the relative frequency with which patterns
appear. Representative algorithms include Pattern Package (BoP) [22], SAX-VSM [23],
BOSS [24], and WINCL [25]. Among them, BoP and SAX-VSM use symbolic aggregation
approximation (SAX) [20] techniques to convert subsequences into words, building feature
vectors based on word frequency [23]. BOSS is the most commonly used dictionary-based
classification method [21], which constructs words using symbolic Fourier approximation
(SFA) [26] techniques and constructs an integrated classifier [24] based on nearest neighbor
and specially tailored distance metrics. WEASEL uses a “supervised” symbolic Fourier
approximation technique to screen words with chi-square tests and ultimately train a
logistic regression classifier [25]. In terms of accuracy, WEASEL represents an advanced
level of lexicography-based classification methods [3,18]. However, researchers generally
point out that the spatial complexity of WEASEL is extremely high, mainly due to the large
characteristic space [5,27].

Classification methods based on distance usually use elastic distance measurements
(i.e., distance measurement methods that can cope with phenomena such as local shifts
or distortions of time series to some extent [28–30]) to quantify the distance between time
series and classify them according to the distance between test instances and training
instances. In order to improve the accuracy, Lines et al. [30] proposed an elastic integration
algorithm consisting of 11 nearest neighbor classification algorithms based on different
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elastic distance measurements. The training and classification complexity of this method
are high, at O(n2 · l2) and O(n · l2), respectively. Lucas et al. [5] proposed the Proximity
Forest algorithm to improve the accuracy and efficiency of the elastic integration algorithm.
A neighboring forest is an integration of multiple neighboring trees, where the data on each
node are split according to the distance from a randomly selected time series in each class,
and the distance measurement and its required parameters are also randomly selected.

The time series classification methods introduced earlier, including STC [17], BOSS [24],
elastic integration [31], neighboring forests [5], etc., are all integrated methods, but they
are all homogeneous integrations, or integrations based on a single representation of time
series. The meta-ensemble method [21,32] is an integration method based on several
homogeneous integration methods, that is, integrated integration. HIVE-COTE [21] is the
most accurate and representative meta-integration method available, and is an improved
version of FLATCOTE [31] that integrates elastic integration [31], STC [17], BOSS [24], time
series forest [14], and random interval spectrum integration [21]. HIVE-COTE achieves the
highest accuracy on UCR time series datasets [7], but is extremely complex [5,21], making
it difficult to apply to large-scale datasets.

The application of deep learning method to the task of time series classification has
gained attention in recent years [6,19]. Wang et al. [19] and Fawaz et al. [6] demonstrated
the powerful performance of fully convolutional neural networks (FCN) and residual
neural networks (ResNet) in time series classification tasks.

3. Definition and Background

This section firstly provides a definition of the basic concepts, and then introduces
the key techniques and theoretical foundations of this work: Shapelet transformation
techniques and typical time series characteristics.

3.1. Definitions

Definition 1. Time series. A time series T of length l is an ordered sequence of l observations of a
variable, which can be expressed as T = <t1, t2, . . . , tl>, where ti ∈ R.

Compared with the entire time series, here we pay more attention to the local fragments
of the time series, which is a time series subsequence.

Definition 2. Time series subsequence. A subsequence Ti,m = < ti, ti+1, . . . , ti+m−1 > of time
series T refers to a fragment consisting of consecutive m values from index i to index i + m − 1 in T.

In this article, any subsequence can be seen as a Shapelet. According to a Shapelet’s
discriminating ability, there will be expressions such as “optimal Shapelet” or “optimal
k Shapelets”.

Definition 3. Distance metric. The distances between subsequences can be used to reflect their
similarity. For two subsequences S1 and S2 with the same length m, here we use the normalized
Euclidean distance metric shown in Equation (1).

dist(S1, S2) =

√
1
m

m

∑
i=1

(S1
i − S2

i )
2 (1)

When calculating the distance between a subsequence S with length m and a time
series T with length l (l > m), the subsequence S needs to slide over the time series T to
find the best matching subsequence S’, and then take the best matching distance (i.e., the
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distance between the subsequence S and S’) as the distance between the subsequence S and
the time series T (as shown in Equation (2)). Figure 2 describes the above process.

subDist(S, T) = min
1≤i≤l−m+1

dist(S, Ti,m), (2)
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It should be noted that most of classification methods based on Shapelet generally use
Z-standard Euclidean disdance measurements in order to ensure that the amplitude offset
of the subsequence is invariant—that is, Z-score is calculated according to Formula (3)
before using Formula (1) to obtain the normalized European distance (µ is the mean of
subsequence S and σ is the standard deviation of S).

Snorm
i =

Si − µ

σ
, i = 1, 2, · · · , m, (3)

For computational efficiency reasons, the RSFCF algorithm uses a more efficient
normalized Euclidean distance metric when searching for the best match S’, and only uses
the Z standardized Euclidean distance metric when calculating the best match distance.

Definition 4. Time series classification. Given a training set D = {(T1, y1), (T2, y2), · · · , (Tn, yn)}
containing n instances, each instance consists of a time series and its corresponding class label. The
time series classification task aims to learn a classification model by training set D and uses the
model to predict the categories of unlabeled time series.

3.2. Shapelet Transforamtion Technology

In order to overcome the shortcomings of the original Shapelet-based classification
algorithm that can only build a decision tree classification model, Hills et al. [16] proposed
the Shapelet transformation technology, which separates the two stages of Shapelet discov-
ery and the classifier training, and the converted data can be directly used to train various
classification models, which greatly improves the flexibility of the application of Shapelet.
Algorithm 1 describes the specific process of the Shapelet transformation algorithm.

The algorithm first scans the dataset to find the optimal k Shapelets (line 1, the specific
process can be found in references [8,16]). The time series in the dataset are then converted
into feature vectors in the Shapelet space. Specifically, for each time series Ti in the dataset,
its distances from k Shapelet are calculated according to Equation (2). The vector Fi is then
formed by the adding the k distances and Ti’s class label yi together, which is added as an
instance to the transformed dataset D’ (lines 3–10).
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Algorithm 1. shapeletTransform(D,min,max,k)

Input: Dataset D, Shapelet minimum length min, Shapelet maximum length max, number of
Shapelets k
Output: Transformed dataset D’
1. Shapelets←findBestKShapelets(D,min,max,k);
2. D’←{F1, F2,· · · ,Fn};
3. for Ti in D
4. Fi←null;
5. for Shapelet Sj in Shapelets
6. dist, S’←subDist(Sj,Ti);
7. Fi.add(dist);
8. end for
9. Fi.add(yi);
10. end for
11. return D’;

As described in Section 3.1, when calculating the distance between Shapelet Sj and the
time series Ti, we obtained the subsequence S’ (line 6) that is most similar to Sj in the Ti
under the Euclidean distance measure. However, S’ is not shown to be explicitly utilized
in Algorithm 1. In Section 4, we will describe how to fully exploit the discriminative
information contained in it by embedding typical time series features. It is also important
to note that the Shapelets found in the training set are used when transforming the test set.

3.3. Typical Time Series Characteristics (Catch22)

Catch22 (22 canonical time series characteristics) is a feature set of 22 typical time
series features which was designed to assist time series analysis, particularly time series
classification, through a concise, diverse, and informative set of descriptive features.

The vast majority of time series in UCR time series datasets have been normalized by
Z-score [7,15] (standardized time series whose mean value equals to 0, variance equals to
1). Catch22 was originally proposed to perform feature transformation on the entire time
series, thus deliberately excluding features sensitive to mean and variance. However, the
RSFCF algorithm proposed in this paper is based on the local characteristics of the time
series, which performs feature transformation on the subsequence instead of the entire
time series. Generally, the mean value and variance of subsequences contain a wealth
of discriminating information [14]. For example, mean value can distinguish between
subsequences of similar shapes but different amplitudes; variance reflects the degree of
dispersion of subsequences. Therefore, in addition to the Catch22 feature set, we also
introduce two features: mean and variance. Moreover, since the slope feature reflects the
trend of subsequences well and was successfully applied in [3,14], we also introduce it
into the algorithm. In total, the RSFCF algorithm proposed in this paper uses a total of
25 features, namely mean, variance, slope, and 22 Catch22 features. In the following, we
refer to these 25 characteristics collectively as typical time series features.

4. Algorithm

This section describes in detail the random Shapelet forest algorithm (RSFCF). Firstly,
a novel data transformation method is introduced, which fully excavates the discrimi-
nating information in Shapelet by embedding multiple time series features in Shapelet.
Secondly, the construction and classification process of RSFCF model is described. The
time complexity analysis of RSFCF algorithm is given at last.

4.1. Random Shapelet Transformation Embedded with Typical Time Series Features

To improve efficiency while reducing accuracy loss, a new random Shapelet transfor-
mation method embedded with typical time series features is proposed on the basis of the
traditional Shapelet transformation technique introduced in Section 3.2.
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The transformation method (Algorithm 2) first randomly selects k Shapelets from
all possible subsequences of the training set according to the specified minimum and
maximum length of Shapelet (line 1), and records the starting position of each Shapelet
(e.g., Locations[i] = 10 indicates that the starting position of the ith Shapelet is at index 10).
To improve efficiency, for 25 time series typical features, we randomly select a features to
perform subsequent transformations of the dataset instead of using all of them (line 2).

The transformation process that follows has two key differences from the traditional
Shapelet transformation method. First, the restrictedSubDist method (line 7) limits the
scope of Shapelet matching, i.e., allows Shapelet to have the maximum offset of each shift
size on the left and right (as shown in Figure 3, Shapelet S can only look for the best match
with other time series between the two dotted lines). In this way, the algorithm is still able
to overcome the time warping problem that is prevalent in time series to a large extent, and
the computational complexity of Shapelet matching is reduced from O(l ·m) to O(shi f t ·m)
(shi f t << l).
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Second, when transforming time series Ti with Shapelet Sj, the traditional method
finds the subsequence S’ most similar to Sj in Ti, and only takes the normalized Euclidean
distance of S’ and Sj as a feature value of the transformed instance. On this basis, the
proposed method calculates a different feature values of S’, and merges the value of a value
into the transformed instance (lines 9–12), so that the transformed data representation
contains richer information.

Algorithm 2. randShapeletTransform-CF(D, min, max, k, a, shift)

Input: Dataset D, Shapelet minimum length min, Shapelet maximum length max, number of
Shapelets k, number of typical time series features a, Shapelet maximum offset shift
Output: Randomly selected Shapelets and their locations, randomly selected feature index Atts,
transformed dataset D’
1. Shapelets, Locations←randSampShapelets(D,min,max,k);
2. Atts←randSampAttIndices({1,2,· · · ,25},a);
3. D’←{F1, F2,· · · ,Fn};
4. for Ti in D
5. Fi←null;
6. for Shapelet Sj in Shapelets
7. dist, S’←restrictedSubDist(Sj,Ti,shift,Locations[j]);
8. Fi.add(dist);
9. for c←1 to a
10. val←computeFeature(S’,Atts[c]);
11. Fi.add(val);
12. end for
13. end for
14. Fi.add(yi);
15. end for
16. return Shapelets, Locations, Atts, D’;
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4.2. Ensemble Classification Model Building

Algorithm 3 describes the process of building an RSFCF ensemble classification model.
Algorithm 2 is first invoked to transform the training dataset (line 3), and then the trans-
formed dataset is used to train the decision tree classifier (line 4). The Shapelets and features
used in the dataset transformation are saved together in the corresponding decision tree
(lines 5–7) for converting the test dataset when classifying. The above process will be
repeated r times to build a forest containing r trees.

The construction of the time series tree follows the recursive strategy of the standard
decision tree from top to bottom, which takes the information gain as the criterion, divides
the instances of the current node with the best splitting threshold of the best splitting
attribute at each node, constructing two subnodes on the left and right, and recursively
carries out the process until all instances of the node belong to the same category. Regarding
the calculation of the optimal split threshold for numeric attributes, the time series tree
adopts a more efficient method, it divides the interval composed of the minimum and
maximum values of the attribute into κ equal parts (here we set κ to a fixed value of 20), and
the boundary between each cell is tested one by one as the candidate split threshold, and
the threshold for obtaining the maximum information gain is the optimal split threshold for
the attribute. In addition, for the split threshold to achieve the same information gain, the
time series tree uses the method of maximizing the decision boundary to break the draw
(to calculate a reasonable boundary value, the various attributes of the dataset need to be
Z-score standardized before training the time series tree to avoid the algorithm’s preference
for attributes of a larger magnitude).

Marginτ
j = min

i=1,2,··· ,n
|Attj

i − τ|, (4)

Equation (4) shows how the decision boundary is calculated for the split threshold τ

of the jth attribute, where Attj
i is the value of the ith instance on the jth attribute.

Algorithm 3. buildRSFCF(D,min,max,k,a,shift,r)

Input: Dataset D, Shapelet minimum length min, Shapelet maximum length max, number of
Shapelets k, number of typical time series features a, maximum offset shift, number of decision
trees r
Output: RSFCF classification model
1. RSFCFModel←{Tree1,Tree2,· · · ,Treer};
2. for i←1 to r
3. Shapelets, Locations, Atts, D’←randShapelet Transform-CF(D,min,max,k,a,shift);
4. Treei←buildTimeSeriesTree(D’);
5. Treei.add(Shapelets);
6. Treei.add(Locations);
7. Treei.add(Atts);
8. end for
9. return RSFCFModel;

Algorithm 4 describes the classification process of the RSFCF ensemble classification
model. When classifying, RSFCF aggregates the classification results of all time series trees
and gives the final classification by majority vote. It should be noted that before classifying
using a time series tree, it is first necessary to transform the time series to be classified using
the Shapelets stored in the tree and the attribute indices according to the method described
in lines 6 to 13 of Algorithm 2.
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Algorithm 4. classification(T,RSFCFModel,shift)

Inputs: Time series to be classified T, Classification model RSFCFModel, Shapelet maximum
offset shift
Output: Category y of time series T
1. Y←null;
2. for Treei in RSFCFModel
3. T’←instanceTransform(T,Treei.Shapelets,Treei.Locations,Treei.Atts,shift);
4. yi←Treei.classifyInstance(T’);
5. Y.add(yi);
6. end for
7. y←majorityVote(Y);
8. return y;

4.3. Time Complexity Analysis

Training time complexity: RSFCF is an ensemble classification model composed of r time
series trees. Building a time series tree first requires dataset transformation and then training
on the transformed dataset. The time complexity of the latter is O(n · log(n) · k · a) [14], where
n is the number of training set instances, log(n) is the average depth of the tree, and the
converted dataset has O(k · a) attributes (k is the number of randomly selected Shapelets,
a is the number of features used when transfroming the dataset). Randomly selected
Shapelets vary in length and the computational complexity of each feature varies, making
it difficult to analyze the precise time complexity of the dataset transformation process,
but still making reasonable estimates possible. The transformation of time series Ti over
Shapelet Sj consists of two processes: (1) finding the subsequence S’ most similar to Sj
on the Euclidean distance measure in Ti; (2) calculating the value of S’ on a randomly
selected features. Process 1 requires 2·shift normalized Euclidean distance calculations with
complexity of O(m) (m is the length of Shapelet Sj), so the time complexity of the process is
O(shi f t ·m). On the basis of the Catch22 feature set, we introduce three features of linear
computational complexity (mean, variance and slope), and randomly select a features of
25 features to calculate the feature values, since the average computational complexity
of the 22 Catch22 features is approximately linear (O(m1.16)) [15], so the computational
complexity of process 2 is also approximately linear in the mean sense, and the total time
complexity of the two processes can be approximated as O(shi f t ·m). Since n time series
need to be transformed with k Shapelets, the time complexity of the dataset transformation
is O(n · k · shi f t · m), where m is the average length of the Shapelets. Overall, the time
complexity of training an RSFCF classification model is:

O(r · ( n · k · shi f t ·m︸ ︷︷ ︸
data transformation

+ n · log(n) · k · a︸ ︷︷ ︸
time series tree training

))

Classification time complexity: The time complexity of transforming test dataset is
O(k · shi f t ·m), after which a traversal of the average log(n) nodes completes the classifica-
tion of each tree. Therefore, the time complexity of the classification process is:

O(r · ( k · shi f t ·m︸ ︷︷ ︸
testset transformation

+ log(n)︸ ︷︷ ︸
classification

))

5. Experimental Analysis

This section first analyzes the parameter settings of the proposed algorithm RSFCF,
then compares it with several of the most advanced time series classification algorithms
to evaluate the accuracy and efficiency of RSFCF, and finally verifies the effectiveness
of the RSFCF design strategy through experiments, finding that embedding typical time
series features in Shapelet can effectively improve the classification accuracy. To improve
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the reproducibility of the work, we provide the Java source code of the algorithm (https:
//github.com/gaozhenzhuo/RSFCF, accessed on 6 June 2022).

5.1. Parameter Settings

RSFCF has a total of six parameters to set (see Table 1). Since the length range of the
pattern in the learning task cannot be known in advance, we simply set the minimum
and maximum lengths of Shapelet to 3 and l, respectively (l is the time series length in
the learning task). The number of Shapelets k and the Shapelet maximum offset shift
randomly selected per tree can be used to flexibly control the efficiency of the algorithm,
and larger parameter values can theoretically obtain higher accuracy with a decline in
efficiency. Parameter k is set to

√
l to seek a compromise between accuracy and efficiency.

We conducted specialized experiments to verify the effect of the Shapelet maximum offset
shift, the number of features a used in the data transformation and the number of trees r in
the RSFCF classification model on RSFCF performance to guide parameter value setting.

Table 1. Parameter setting of RSFCF.

Parameter Description Value

min Shapelet minimum length 3
max Shapelet maximum length l

k The number of randomly selected Shapelets for each tree
√

l
a The number of features used in the data transformation 8

shift The maximum offset of Shapelet l/10
r The number of trees in the RSFCF classification model 500

Effect of the number of trees r on the performance of RSFCF (a is set to 8, shift is set
to l/10). For a reasonable assessment and to fully account for experimental efficiency, we
selected all 60 datasets with a total number of instances less than 2000 and time series length
less than 600 in the 112 datasets shown in Table 2 (i.e., the datasets with names bolded in
Table 2, which we will abbreviate as Small60 datasets later). Since RSFCF is essentially a
random algorithm, we repeated the experiment 10 times on each dataset of Small60.

Table 2. Accuracy of RSFCF on 112 UCR time series datasets (%).

Dataset Accuracy Dataset Accuracy Dataset Accuracy Dataset Accuracy Dataset Accuracy

ACSF1 86.00 ECG200 86.00 Herring 67.19 PhaOC 82.52 Strwbe 96.76
Adiac 77.75 ECG5000 94.53 House20 97.48 Phoneme 38.19 SwdLeaf 95.20

ArrHead 81.71 ECG5D 100.00 InlSka 47.45 PigAirP 40.38 Symbols 98.69
Beef 76.67 ElecDev 74.57 InEPGRT 100.00 PigArtP 97.60 SynCtl 99.33

BeetFly 85.00 EOGHS 65.47 InEPGST 100.00 PigCVP 60.58 ToeSeg1 96.93
BirdChi 90.00 EOGVS 56.63 InWSnd 65.35 Plane 100.00 ToeSeg2 89.23

BME 100.00 EthLevel 57.60 ItPwDem 96.02 PowCons 99.44 Trace 100.00
Car 90.00 FaceA 76.51 LKitApp 80.00 PrPhOAG 82.93 TwLECG 99.82
CBF 100.00 FaceF 100.00 Light2 77.05 PrPhOC 87.63 TwPatt 99.80

Chtown 97.38 FacesU 92.63 Light7 75.34 PrPhTW 80.49 UMD 97.22
ChConc 70.89 50Words 78.68 Mallat 98.59 RefDev 58.13 UWaAll 97.54

CinCECG 93.70 Fish 97.14 Meat 93.33 Rock 86.00 UWaX 82.72
Coffee 100.00 FordA 92.27 MdImg 74.87 ScrType 52.00 UWaY 76.33

Comput 72.80 FordB 77.90 MdPhOAG 62.99 SeHGCh2 94.50 UWaZ 77.44
CriketX 76.67 FreeRT 100.00 MdPhOC 83.16 SeHMCh2 88.89 Wafer 99.74
CriketY 81.54 FreeST 99.93 MdPhTW 58.44 SeHSCh2 93.56 Wine 70.37
CriketZ 83.08 GunP 99.33 MixSRT 95.75 ShpSim 98.33 WordSyn 70.53

Crop 77.00 GunPAS 99.05 MixSST 94.14 ShpAll 85.67 Worms 75.32
DiaSRed 85.29 GunPMF 99.68 MtStr 93.37 SKitApp 81.87 WormsTC 79.22

DiPhOAG 74.82 GunPOY 100.00 NoECGT1 93.18 SmthSub 98.67 Yoga 89.47
DiPhOC 78.26 Ham 76.19 NoECGT2 94.71 SonyRS1 83.19
DiPhTW 69.06 HandOut 92.70 OliOil 83.33 SonyRS2 85.73
Earthqu 74.82 Haptics 53.57 OSULeaf 75.62 StarCur 98.13

https://github.com/gaozhenzhuo/RSFCF
https://github.com/gaozhenzhuo/RSFCF
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As shown in Figure 4, the accuracy of RSFCF increases with the size of ensemble. Al-
though the average accuracy tends to stabilize when the number of trees exceeds 100, it can
be seen from the box diagram in Figure 4 that the accuracy rate of RSFCF in 10 experiments
at r = 500 is more stable than at r = 100. The efficiency comparison analysis in the next
section shows that RSFCF can still maintain a significant advantage in efficiency when
r is set to 500, and when there is a higher requirement for efficiency, setting r to 100 can
achieve a five-fold efficiency improvement without causing a significant reduction in
classification accuracy.
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Figure 4. Average accuracy and variance of RSFCF over Small60 datasets under different
ensemble sizes.

Effect of the number of features used in data transformation a on the performance
of RSFCF (r set to 500, shift is set to l/10). Figure 5 shows how the average accuracy of
RSFCF on the Small60 dataset compares to the average training time at different settings of
parameter a. As the value of parameter a increases, the average accuracy generally shows
an upward trend, and the average training time also increases (nearly linear). Since the
design goal of RSFCF is to achieve accurate and efficient time series classification, we set a
to 8, which loses only a small amount of accuracy but achieves nearly twice the efficiency
improvement compared to using all features (i.e., setting a to 25).

Effect of the maximum offset of Shapelet shift on the performance of RSFCF (r set
to 500, a is set to 8). Parameter shift is set to restrict the scope of the Shapelet matching
process. To find the optimal setting of shift, different values from l·5% to l·50% are tested
with Small60 datasets. As shown in Figure 6, as the shift value increases, the training
time becomes significantly longer. This is the result of expanding the searching space
of Shapelet matching. The classification accuracy increases from the beginning, reaches
a stable state when the value of shift reaches 20% of the time series length, and even
encounters a small drop at the end. This shows that although time warping exists commonly
in time series datasets, the vast majority of shifts occur only within small areas, and it may
be counterproductive to expand the matching space of the Shapelet. Again, to reach a
compromise between efficiency and accuracy, we choose l/10 as the optimal value of shift.
To sum up, subsequent experiments take the default parameter settings given in Table 1.
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Figure 5. Average accuracy and training time of RSFCF over Small60 datasets under different settings
of parameter a.
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of parameter shift.

5.2. Ablation Experiment

RSFCF randomly selects 8 out a total of 25 features, namely mean, variance, slope, and
22 Catch22 features. The ablation experiment is designed to test whether eight features are
good enough for describing a time series by comparing it with using all Catch22 features
and using mean, variance, slope features only. The experiment is conducted with all
112 time series datasets under three different settings. With each dataset, the algorithms
with Catch22 features and with mean, variance, slope features are run only once, while the
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original RSFCF is run 10 times to avoid contingency, as the eight features are randomly
selected. The average accuracies are finally calculated as shown in Table 3.

Table 3. Ablation experiment result.

RSFCF (8 Features) Catch22 (22 Features) Meanstdslope (3 Features)

Accuracy 84.52 84.50 82.52

The average accuracy of RSFCF is slightly higher than Catch22, showing that the
algorithm benefits from adding the three features. What is more, it should be noted that the
feature size of RSFCF is much smaller than Catch22. Using only mean, variance and slope
features acquires the lowest average accuracy among the three. This means these three
features are not enough to describe a time series when dealing with classification tasks.

5.3. Accuracy Comparison

The UCR time series dataset [7] is the standard dataset in the area of time series
classification study [30], containing a total of 128 datasets. Bagnall et al. [18] recently
conducted a new evaluation of time series classification algorithms using 112 of them
(15 of the 16 excluded datasets are not typically used to evaluate algorithm performance
due to inconsistent time series lengths or defect values [7,18], and the other is a “Fungi”
dataset with only one training instance per category), and gave the accuracy of time
series classification algorithms that represent the most advanced level of the current state
of affairs.

In order to fully verify the performance of the RSFCF algorithm proposed in this
paper, we used the same 112 datasets and compared them with the seven algorithms that
performed the best and are most relevant: gRSF [10], STC [17], CIF [3], WEASEL [25],
Proximity Forest [5], HIVE-COTE [21], ResNet [19] (the above algorithms are abbreviated as:
gRSF, STC, CIF, WS, PF, HCT, RN). These algorithms belong to the six different types of time
series classification methods introduced in Section 2, representing the advanced level of the
corresponding types. The experiment follows the original training and test set split of the
dataset [7], and the results of the comparison algorithms are taken from the results proposed
by Bagnall et al. [18]. Table 2 shows the accuracy rate of algorithm RSFCF on 112 datasets.

We use the critical difference plots described in [32] to compare the accuracy of multiple
classifiers across multiple datasets. We set the significance level α to 0.05, and then use the
Friedman test to determine whether the hypothesis “there is no difference in the average
ranking of accuracy between multiple classifiers on multiple datasets” is true, and if the
hypothesis is not true, we then use the Nemenyi test to group the classifiers (the classifiers
connected to the same line in Figure 7 form a group), and there is a significant difference in
the average accuracy ranking of any two classifiers in different groups.
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The critical difference plot shown in Figure 7 shows that the average ranking of
RSFCF’s accuracy rates outperforms gRSF, STC, CIF, and WEASEL, and significantly
exceeds Proximity Forest. It is worth mentioning that according to the recent evaluation
of Bagalll et al. [18], the above four algorithms represent the current most advanced level
of time series classification methods based on Shapelet, interval, dictionary, and distance.
Compared with deep learning methods, RSFCF surpasses the powerful baseline algorithm
ResNet. The meta-ensemble method HIVE-COTE obtained the highest average accuracy
ranking (2.9063), but there was no significant difference from the algorithm RSFCF in this
paper, and the efficiency comparison in the next section verified that the efficiency of RSFCF
was much higher than that of HIVE-COTE.

Table 4 shows the results of the two-by-two comparison of RSFCF and seven algo-
rithms. Although HIVE-COTE ranks higher on average accuracy than RSFCF, it can be
seen from Table 4 that RSFCF still surpassed HIVE-COTE on 36 datasets. Compared to the
remaining six algorithms, RSFCF wins on near to or even more than half of the datasets,
while the other algorithms only win on about one-third of the datasets, which highlights
the accuracy advantage of RSFCF.

Table 4. Pairwise comparison of RSFCF and 6 comparison algorithms in terms of accuracy over
112 UCR datasets.

Comparison of Algorithms Win/Draw/Loss

HIVE-COTE 36/12/64
STC 65/10/37

ResNet 54/13/45
CIF 62/19/31

WEASEL 63/11/38
Proximity Forest 64/14/34

gRSF 60/12/40

5.4. Efficiency Comparison

To evaluate the efficiency of the algorithm, we ran RSFCF and five comparison al-
gorithms on the Small60 dataset using the same computer (Intel Core i7-7700 (3.60 GHz)
processor, 16 GB of memory), recording the algorithm’s CPU running time (ResNet was
not included in this evaluation because it required a high-performance GPU to complete
the training in acceptable time). Figure 8 shows the average training time (horizontal axis)
and the average ranking of accuracy (vertical axis) on the Small60 dataset compared to
the average ranking of accuracy (vertical axis) of the RSFCF and 4 comparison algorithms
(HIVE-COTE was not included because the algorithm was not run on the full Small60
dataset after more than 5 days), and the algorithm is located in the lower left corner of the
graph, indicating that its accuracy average ranking is higher and requires less training time.
As can be seen from Figure 8, the efficiency of RSFCF far exceeds that of STC. RSFCF is
slightly less efficient than WEASEL and CIF, but RSFCF ranks significantly higher on aver-
age for accuracy. The above comparative analysis shows that RSFCF is highly competitive
in terms of both accuracy and efficiency.

5.5. Design Strategy Validation

The biggest innovation in this paper is to provide a novel idea for embedding typical
time series features in randomly selected Shapelets. To verify the effectiveness of this
strategy, we compared the accuracy of RSFCF and Naive Random Shapelet Forest (RSF) on
112 UCR datasets. RSF is a simplified version of RSFCF that does not embed typical time
series features in Shapelet (this simplification can be achieved by setting the parameter a to
0 or commenting on lines 9–12 of Algorithm 2) (Figure 9).
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Figure 9. Comparison of random Shapelet forest classifiers with or without canonical time series
features (RSFCF versus RSF) in terms of accuracy over 112 UCR datasets.

Figure 10 shows the results of the comparison of RSFCF and RSF, with RSFCF winning
on 69 datasets, while RSF won on only 31 datasets. The reason why RSF is significantly
weaker than RSFCF is that RSF does not embed other features, so it can only use the
overall shape of Shapelet as a basis for distinguishing different categories of time series,
but the randomly selected Shapelet is only a very small subset of all possible Shapelet,
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so the probability of taking a discriminating “exact shape” is very low, thus affecting the
classification accuracy. RSFCF has two significant advantages over RSF.
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First, because the value of Shapelet on one or more features can reflect the discrim-
inating shape information contained within it (as shown in Figure 1), RSFCF relaxes the
requirements for Shapelet and thus reduces the risk of random selection of Shapelet, re-
sulting in a loss of accuracy; second, in addition to the sequence shape, RSFCF can also
capture discriminating information from multiple angles such as the numerical distribution
characteristics, autocorrelation, and periodicity of the sequence, which is the most critical
reason for which RSFCF surpasses RSF and STC. Based on the comparison results of RSFCF
and RSF and the above analysis, we believe that embedding typical time series features in
Shapelet plays a key role in improving classification accuracy.

6. Conclusions

The continuous expansion of data scale puts forward higher requirements for the
efficiency of data mining algorithms. In order to perform accurate and efficient time series
classification, a random Shapelet forest algorithm (RSFCF) embedded with typical time
series features is proposed in this paper. RSFCF randomly selects Shapelet and limits
the scope of Shapelet to improve efficiency, and embeds typical time series features in
Shapelets to compensate for the loss of accuracy caused by random selection of Shapelet.
The classification results on the 112 UCR time series datasets show that the accuracy of
RSFCF surpasses that of multiple advanced time series classification algorithms and reaches
the current leading level. The meta-integrated method HIVE-COTE is more accurate than
RSFCF, but experiments have shown that its efficiency is much lower than that of RSFCF, so
HIVE-COTE is difficult to apply to large-scale datasets. In summary, the RSFCF algorithm
proposed in this paper takes into account both accuracy and efficiency, and has higher
practicality. Future work includes studying a fusion strategy to embed RSFCF into the
meta-integration method HIVE-COTE for a more precise classification of scenarios where
real-time requirements are not high.
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