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Abstract: Magnetic resonance imaging (MRI) is an information-rich research tool used in diagnostics
using image processing applications (IPAs), and the results are utilized in machine learning. Therefore,
testing of IPAs for credible results is vital. A deficient IPA would cause the related taxonomies of the
machine learning to be defective as well and diagnosis will not be perfect. Accurate disease detection
by IPA, without surgical intervention, leads to improved quality of treatment. Current challenges
for testing of IPA include an absence of a test oracle. One way to alleviate the test oracle problem
is metamorphic testing which identifies the specific properties called metamorphic relations of the
system under test. Previously metamorphic testing approaches have been applied and evaluated on
IPAs, but there is no previous work on evaluation of metamorphic testing on MRI images. In this
work, we have evaluated effectiveness of metamorphic testing on edge detection of MRI images. The
aim of this study is to determine which metamorphic relations are more effective for metamorphic
testing of edge detection in MRI images such as T1, T2 and flair images. Our results show that the
fault detection rate of MR4 is highest and MR2 is the lowest among all type of MRI images at the
threshold of 0.95.

Keywords: edge detection; fault detection rate; image processing; metamorphic relations; metamorphic
testing; MRI brain images; test oracle

1. Introduction

In the medical field, ultrasound, X-ray, computed tomography (CT) scans, positron
emission tomography (PET) scans, and magnetic resonance imaging (MRI) are the impor-
tant sources of digital images used in diagnostic decision-support systems. MRI is one
of the most powerful diagnostic tools among modern-day clinical testing devices, while
offering highly sophisticated research prospects and studies of physiological processes.
However, it is also perceived as a not-so-accurate and cost-intensive method which is an
important driver of the errors in diagnostics [1]. The contrast configuration is one the most
lethal contributing factor of radiology error (MRI related misdiagnosis) for identifying
abnormalities or to correctly interpret them [2]. Thus, there is a crucial need to improve its
effectiveness in terms of clinical outcomes, within the context of noninvasive diagnosis and
minimally invasive therapy.

Nowadays, machine learning and, in particular, deep learning approaches are fre-
quently used for automated diagnosis from medical images (MRI, CT Scan, ultrasound, etc.).
This process involves an important step of edge detection in the images. Edge detection is
a very meticulous process that serves as a chief tool for the detection of edges in the image
with variations in its luminosity or incoherence [3]. There are different conventional edge
detection algorithms such as Canny, Sobel, Prewitt, Robert, etc. for the detection of edges.
A review of the literature shows that deep learning approaches have been used primarily
in image-based diagnosis, and not for edge detection. However, in a few approaches, deep
learning has been used as a preprocessing step prior to edge detection to improve the
accuracy of edge detection. In this paper, our focus is on evaluation of metamorphic testing
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for edge detection algorithm. For this purpose, we have selected enhanced Canny edge
detection algorithm given in [4].

In general, error-prone software systems can cause massive disaster. Software system
testing is a fundamental approach to identify the bugs in implementation under test (IUT)
to check whether the system meets its specification or not [5]. Therefore, it is imperative
to reckon the reliability and consistency of these systems through dependable testing [6].
More complex software systems such as IPAs are playing a vital role in our daily lives
in various areas such as medical imaging, surveillance, biometrics, etc. These IPAs are
handling large amounts of data to produce multifaceted outputs [7]. As compared to
the conventional software-testing, the software-testing of IPA is very resource intensive
because IPA is tested manually. Many complex images, used as inputs for testing, must
be generated and the expected outputs of the testing must be determined to gauge the
conclusions of the testing of IPA [8].

Complex visual semantics of the images used make the testing of IPA quite challenging,
such as sometimes it is difficult to produce the expected output from the selected test case [7]
called the test oracle problem, which is a mechanism to determine the ability to distinguish
between correct and incorrect behavior of the system under test for a given input [9].
Usually, the testers use input images that can be handcrafted or have well-defined expected
output results [10]. The results of testing using handcrafted images are easily predictable
and limited to the selection of input images made.

There are different methods to alleviate the test oracle problem in IPAs such as Pseudo-
Oracle, Partial-Oracle, and metamorphic testing (MT). Among these three methods, MT is
widely used to deal with the applications that have the test oracle problem for which it is
very difficult to predict the output correctly when an arbitrary input has been given to the
system [11]. In MT, source test cases are generated through traditional test case generation
techniques. New test cases known as follow-up test cases are generated from source test
cases using metamorphic relations. Metamorphic relations (MR) are the properties of the
functionality of the system under test (SUT) [12]. The key role of MR is the generation of
follow-up test cases as well as verification of test results in the absence of a test oracle [13].
In terms of precision, MR differs from other types of properties as it is the relationship
among multiple executions of the SUT. If the test oracle is not available to verify the output
of each individual, even then we can check the multiple outputs of the SUT against the
given MR. As a result, failure is revealed if the MR is violated for certain test cases [14].

MT is dependent on the fault detection rate of the MR. The higher the fault detection
rate, the higher the fault detection capability. Let a program P have a set of test cases T,
and R be a metamorphic relation for P. Let t’ denote follow-up test case of t w.r.t R, and P(t)
denote the output of P on test case t. A test case t is said to satisfy R if metamorphic relation
R holds between P(t) and P(t’). Metamorphic relation R is said to be satisfiable w.r.t. T if
all test cases in T satisfy R, otherwise R is said to be violative w.r.t. T. The fault detection
rate (FDR) of an MR with respect to a program P is the ratio of the size of the MR’s set of
violative source inputs to the size of the MR’s set of source inputs [15]. If R is satisfiable for
a given program P and a given test set T, then it means either R has 0 or low fault detection
rate or there is no bug in P. If R is violative for a given program P and a given test set T,
then it means R has high fault detection rate.

In our proposed framework, we selected all four MRs of edge detection, proposed
by Sim et al. in [16], from the literature of metamorphic testing. Instead of testing the
conventional edge detection programs, we have checked the accuracy of these MRs on
the edge detection program proposed by Sari et al. in [4]. Conventional edge detection
algorithms are already tested. However, the edge detection algorithms that are proposed
by medical researchers themselves are not tested. Our primary concern is to validate these
un-tested edge detection algorithms. We have selected the Sari’s edge detection algorithm
because amongst all the articles, this is the latest research article to detect brain tumor in
MRI images.
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The first step is to generate source test cases to test the algorithm from the selected
dataset of MRI of brain. In previous literature, MR evaluation is not comprehensive in terms
of FDR [7,8,17,18]. We have performed MT on an improved algorithm of edge detection
(as the algorithm does not have built-in functions such as conventional edge detection
algorithms Canny, Sobel, Prewitt, Robert, etc.) that shows the fault detection capability of
MR in terms of satisfying each relation.

A solution is proposed for the generation of source test cases by combining both black-
box testing and white-box testing techniques. In the black-box testing technique, source
test cases are selected randomly and are further divided into five classes based on image
characteristics through strong equivalence class testing: image resolution, image bit depth,
image horizontal dimension, image vertical dimension, and image type (T1-weighted
images, T2-weighted images and flair-type images). In white-box testing, the selected test
cases are further checked through code coverage to ensure complete coverage. The test
suite must cover 100% branch coverage otherwise more test cases should be included to
cover the remaining branches. Our test suite covers 100% statement coverage and branch
coverage, respectively (including all three types of images), from these test cases.

After the generation of source test cases through our proposed criterion, follow-up test
cases are generated through source test cases and MRs. Source test cases and follow-up test
cases are given to an edge detection program used as SUT to generate outputs, respectively.
In the MT process, first, the source test cases are given to the original program. The outputs
of source test cases are recorded as O1. Then, the follow-up test cases are given to the same
original program. The outputs of follow-up test cases are also recorded as O2. The outputs
of both source and follow-up test cases are compared and if (O1, O2) satisfy their related
MR for all the test cases then it shows that the related MR is satisfiable.

For comparing the outputs of two images, we have used structure similarity index mea-
sure (SSIM). SSIM has become a de-facto standard in the field of image processing [19]. It is
a perception-based method that considers perceived change in the structural information.
It emphasizes on the pixels that are spatially closed and carry important information [20].
It compares the images based on three similarities, i.e., luminance, contrast, and struc-
ture [21]. The 0 value indicates that the two images are not identical structurally, while the
value 1 shows that both the images are exactly similar in structure. We have chosen this
measure because in MRI images, luminance and contrast should be carefully observed for
the accurate identification of edges and this measure checks the similarity based on these
two attributes along with structure similarity. Then, we have checked the similarity of both
the outputs through SSIM and checked the FDR of each MR by dividing the number of test
cases violating the MR with the total number of test cases in the test suite. Results show
that the FDR of MR2 is lowest for all the three categories of images (T1, T2, and flair) having
FDR of 12.12%, 27.58% and 3.03%, respectively. Similarly, the FDR of MR4 is highest in T1,
T2 and flair-type images with an FDR of 63.63%, 72.41%, and 27.27%, respectively.

Research Contributions

Our academic work is specific to medical field using the MRI of brain cells to detect
edges of the tumor. The proposed framework provides following contributions to the
research area.

• The novelty of this paper is to study the effectiveness of metamorphic testing applied
on MRI brain images. Testing of image processing applications is different from testing
of conventional applications, due to the test oracle problem. Previously, metamorphic
testing approaches have been applied and evaluated on image processing applications,
but there is no previous work on evaluation of metamorphic testing on MRI images. In
this work, we have evaluated effectiveness of metamorphic testing on edge detection
of MRI images. The aim of this study is to determine which metamorphic relations are
more effective for metamorphic testing of edge detection in MRI images such as T1,
T2 and flair images.
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• Source test cases are generated through a systematic way to ascertain that the generated
test cases are random but diverse in nature. Equivalence class testing along with
structural testing is used for the generation of source test cases.

• The fault detection effectiveness of four metamorphic relations used in metamorphic
testing are evaluated.

• For comparing the outputs of source and follow-up test cases, structure similarity
images measure is used.

2. Related Work

We have categorized the related work into four parts. One is related to edge detec-
tion/brain tumor detection in MRI brain images, and the second part covers MT in IPA.
The third part covers edge detection papers using deep learning, and the last part includes
the pre-processing method of machine learning for edge detection.

2.1. Tumor Detection in MRI Brain Images

In this category, we have selected those research papers which have proposed either an
enhanced or improved edge detection algorithm for detecting edges in MRI brain images
or the papers which have proposed enhanced algorithms for the detection of brain tumor.

Some of the researchers have proposed enhanced algorithm for the detection of edges
in MRI images. An improved canny edge detection algorithm is proposed for the detec-
tion of brain tumor in MRI images by Stosic et al. [22]. A Laplacian of Gaussian (LoG)
filter is used to identify the regions with fast intensity change. In the proposed algorithm,
modified kernel and modified gradient magnitude is used for image smoothing. Results
show that the improved canny edge detection algorithm shows more details for detecting
the type of brain tumor instead of traditional canny edge detection algorithm. Another
improved canny edge detection algorithm is proposed by Zotin et al. [23]. In the proposed
algorithm, a median filter is used to suppress the noise with considerably less blurring.
Balance Contrast Enhancement Technique (BCET) is used where the contrast of the image
can be stretched or compressed without changing the histogram pattern of input image.
Afterwards, FCM clustering method is applied, and in the end, traditional canny edge
detection algorithm is used to detect the detailed edges. The improved algorithm is then
compared with traditional edge detection algorithms. Akey et al. proposed an improved
edge detection algorithm for the detection of edges in MRI and CT scans [24]. They have
used Gabor wavelet Transform to remove the noise. Gabor transform is integrated with
K-Means and Fuzzy C-Means clustering algorithms. Traditional canny edge detection
is used for edge detection. The results are calculated on the basis of Figure of Merit
(FOM) and Misclassification Rate (MCR). An improved Sobel edge detection is proposed by
Aslam et al. [25]. The algorithm can detect less false edges as compared to conventional So-
bel edge detection algorithm for brain tumor segmentation of MRI images. Closed contour
algorithm is used to detect different regions for tumor detection. Results are evaluated on
the basis of three parameters such as gray level uniformity measure (GU), Q-parameter,
and relative ultimate measurement accuracy (RUMA). In the proposed algorithm, a median
filter is used to suppress the noise with considerably less blurring [26]. Balance Contrast
Enhancement Technique (BCET) is used where the contrast of the image can be stretched
or compressed without changing the histogram pattern of input image. Afterwards, FCM
clustering method is applied and, in the end, traditional canny edge detection algorithm is
used to detect the detailed edges. The results are evaluated on the basis of figure of merit
(FOM), sensitivity, and accuracy. Ranjitham et al. proposed an improved edge detection
algorithm named “Luminance edge detection algorithm” for MRI brain images based on
image quality parameters [27]. Mean filter is used for image smoothing. Then, pixel inten-
sity is changed using gradient method. Remove the pixel that is not considered an edge.
Classify the pixels on the basis of thresholding and then interpolate the pixels. The results
are evaluated through SSIM and PSNR parameters and then compared with conventional
edge detection algorithms (Sobel, Canny, Prewitt). Owny proposed a novel algorithm
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for the detection of edges in medical images (MRI brain images, blood cells) having salt
and pepper noise [28]. Renyi entropy is used to find the global threshold value whereas
Kapur entropy is used to find the local threshold value. Then, edge detection procedure is
applied. The results are compared with conventional edge detection algorithms such as
Sobel, canny, LoG, and Prewitt. Another improved edge detection algorithm is proposed
by Somasundaram et al. [29]. The edges are detected using Chebyshev’s Orthogonal Poly-
nomial. Averaging filter is used to remove noise in filtering process. Results show that the
improved algorithm is capable to extract the brain portion from MRI images.

A Combination of K-Means and Fuzzy C-Means algorithm for the identification
of Brain Tumor is proposed by Sari et al. in [4]. They have used two filters for contrast
adjustment, namely, a fast local Laplacian filter and a median filter. Similarly, two clustering
algorithms (K-Means and Fuzzy C-Means) are used for the detection of brain tumor.
Canny edge detection is used to detect the edges. The results are computed through
confusion matrix. An improved algorithm for the detection of brain tumor is proposed by
Hazra et al. [30]. The authors have used a median filter to remove noise from images. Then,
image enhancement is performed by scaling the grey level of each pixel. Edges are detected
through three traditional edge detection algorithms such as, Canny, Sobel, and Prewitt.
Segmentation (thresholding segmentation technique) and clustering (K means clustering)
is implemented for the detection of brain tumor. Khalid et al. proposed an algorithm for
the detection of brain tumor in MRI images [31]. A median filter is used for noise removal.
Contrast is enhanced through scaling the gray level of each pixel. Sobel and Canny edge
detection algorithms are used for the detection of edges. Thresholding technique is used in
segmentation process. Results are evaluated on the basis of confusion matrix.

2.2. Metamorphic Testing in IPA

In the literature, researchers have used MT to address the oracle problem in the field of
image processing. MT is an efficient method to deal with the applications that have the test
oracle problem for which it is very difficult to assess the output correctly when an arbitrary
input has been given to the system [11]. In MT, testing effectiveness is dependent on the
degree of strength/weakness of the MR.

Researchers have used different image-processing operators such as edge detection,
image region growth, dilation and erosion, and their properties as MR. Sim et al. [16]
studied Sobel edge detection program written in C programming language to spot the bugs
in program using MT. Single operator faults and stride implementation faults are used
to check the effectiveness of each MR. Experimental results show that the fault detection
capability varies for each MR. In [7], Tahir et al. addresses the oracle problem in image
processing applications. The authors have studied some specific and general properties of
dilation and erosion (morphological image operations) operators. Test cases are generated
through segmental symbolic evaluation method. The effectiveness of MR is analyzed
through mutation testing. Results show that the FDR varies for different MR used in testing.
Chao et al. [17] worked on image region growth program and alleviate the test oracle
problem using MT. Segmental symbolic evaluation method is used for the generation of
test cases. Authors have proposed different MRs by studying the geometric properties,
numeric calculations, and specific characteristics of the algorithm. Mutation testing is used
to find the effectiveness of MRs.

Some researchers have integrated MT with machine leaning. An automated testing
framework is proposed by Tahir et al. [32] for testing IPA. The proposed approach uses
MT along with a support vector machine to address the oracle problem. Image smoothing
is an operator of image processing that removes noise (salt and pepper) from the image.
This smoothing property is used as MR. Segmental symbolic evaluation method is used
for the generation of test cases. For the demonstration of machine learning-based test
oracle, twenty edge detection algorithms are selected along with their implementations. It
is concluded that canny edge detection algorithm produces precise output results while the
other produces results with slight variation. A framework is proposed by Tahir et al. [33] to
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automatically test the test oracle by using a support vector machine (SVM). For training the
data, some correct and incorrect images are required that is responsible for the classification
of valid and invalid output images. For the demonstration purpose, the authors have used
different Implementations of dilation and erosion operators and compare the result of their
proposed scheme with metamorphic test oracle and statistical oracle (contains parameters
such as mean and standard deviation of the images). Experimental results show that SVM
produced better results in terms of the lowest classification error than statistical oracle and
metamorphic test oracle. Chan et al. [34] proposed a testing method that integrates the
pattern classification technique with MT technique. The proposed framework pipelines the
test cases marked as passed by pattern classification technique and given the pass test cases
to MT component to check the missed failures. Statistical and analytical techniques are
integrated to improve the test oracle problem. A classifier (trained) is used that labels the
test cases as pass/fail. Due to the statistical nature of the classifier, the passed test outputs
also contain failures. If the input data cannot reveal failures by statistical classifier, then
according to the proposed methodology, the test cases along with their test output can be
pipelined to an analytical MT component for additional testing. Therefore, less time and
effort are consumed in MT for the test cases that are marked as failed.

Some researchers have integrated MT with structural testing. A self-checked testing
approach is proposed by Junhua et al. [35] for the detection of subtle faults in the implemen-
tation. An image processing program is used to recreate a 3D structure of a biological cell.
The reconstructed image is compared with the original image (used as a test oracle) through
the pattern recognition component. The proposed approach integrates MT with structural
testing for fault detection. The effectiveness of MT is verified by test coverage criterion.
Statement coverage, branch coverage and def–use coverage are used to manually test the
source code (full source code is not tested). Furthermore, the effectiveness of proposed
approach is validated through mutation testing. Junhua et al. [36] proposed a method for
MR refinement. Discrete dipole approximation program (ADDA) program is used to test
the proposed scheme. Test cases are generated through the ray tracing technique. The
effectiveness of MT is validated through mutation testing. It is observed that the MRs
defined in this program are weak because of the unknown test output relation. Therefore,
more MRs are required to adequately test the ADDA program. Junhua et al. proposed
a framework to evaluate the effectiveness of MT [18]. Test cases are generated through
random testing. The authors have developed an iterative method to check the adequacy of
MR. MT adequacy is checked through program coverage, mutation analysis and mutation
tests for testing MRs. The proposed framework is explained through an image processing
application that is used to construct a 3D biological cell. The effectiveness of proposed
scheme is demonstrated through a case study in which a complex Monte Carlo program
is tested.

Table 1 shows the advantages and disadvantages of the metamorphic testing method
in IPAs.

Table 1. Summary of papers related to metamorphic testing in IPAs.

Ref.
Paper

Operation
Performed

Input Generation
Method Advantages Disadvantages

[7] Dilation, Erosion Random Input
Generation Method

Effectiveness of MRs are
identified through
mutation testing

Structural testing is not used to check
the adequacy of source test cases

Images are compared pixel by pixel

[16] Sobel Edge
Detection

Random Input
Generation Method

Edge detection algorithm is
used to check the

effectiveness of MRs

Structural testing is not used to check
the adequacy of source test cases

Images are compared pixel by pixel

[17] Image Region
Growth

Segmental Symbolic
Evaluation Method

Effectiveness of MRs are
checked through mutation

testing

Structural testing is not used to check
the adequacy of source test cases

Images are compared pixel by pixel
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Table 1. Cont.

Ref.
Paper

Operation
Performed

Input Generation
Method Advantages Disadvantages

[18] Image
Reconstruction

Segmental Symbolic
Evaluation Method

Use of structural testing
along with mutation

testing for improving the
quality of MR

Images are compared manually

[32]
Image Smoothing,

Dilation and
Erosion

Segmental Symbolic
Evaluation Method

Automatic framework for
IPAs that includes

generation and execution
of test cases along with

output evaluation

Structural testing is not used to check
the adequacy of source test cases

[33] Dilation Random Input
Generation Method

Automate the test oracle
using SVM

Structural testing is not used to check
the adequacy of source test cases

[35] Image
Reconstruction

Random Input
Generation Method

Use of structural testing
along with mutation

testing for improving the
quality of MR

Images are compared manually

2.3. Edge Detection Using Deep Learning

Li et al. proposed an edge detection algorithm for the detection of cancer images using
deep learning [37]. The reconstruction accuracy of edge detection algorithm is improved
by combining the edge detection algorithm with the deep learning algorithm.

First, the dataset of cancer images are selected to train the neural network model.
Based on the neural network model, the reconstruction of a three-dimensional cancer
image is constructed, and the features of cancer cells are extracted from the image by using
the edge contour feature extraction method, and cancer image edge detection results are
obtained. Finally, segmentation method is used for information recombination. Their
results show 95% reconstruction ability with high accuracy to detect the edges of the
cancer images.

Jamal et al. proposed a tumor edge detection approach in mammography images using
quantum and machine learning approaches [38]. The approach includes quantum genetic
algorithm and a support vector machine. The quantum genetic algorithm is used to resolve
the thresholding problem based on Tsallis entropy, whereas support vector machines are
trained to detect the edges of mammographic images. The proposed approach is compared
with some standard edge detection methods on mammographic images. The effectiveness
of proposed approach is measured using PSNR, SSIM and FSIM metrics.

R. Wang proposed a deep learning-based approach to resolve the problem of edge
detection in image processing [39]. First, a dataset of natural images are used as input. The
input image undergoes a pre-processing step of noise removal. Afterwards, a convolutional
neural network (CNN) scans the whole image and makes predictions for edges directly from
the image patches. At the end, morphological operations are applied as post-processing
step to thin the output edge map. The approach is simple and does not need any feature
extraction method.

The above approaches are relevant but they have not considered performance of edge
detection in brain MRI images and their types, T1, T2, and flair. Furthermore, in machine
learning algorithms, the accuracy of edge detection depends not only on the algorithm but
also on the dataset used for training. Therefore, we have not selected these approaches for
evaluation of metamorphic testing.

2.4. Pre-Processing Method of Machine Learning for Edge Detection

Park et al. proposed a pre-processing approach of machine learning for edge detection
with high accuracy [40]. In this approach, the quality of the image is improved by adjusting
contrast and brightness, which results in effective edge detection without light control.
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First, the dataset of ground truth images are used as input. In pre-processing, meaningful
features are extracted from the image and perform machine learning (SVM, KNN, and
MLP) to predict brightness and contrast for better edge detection. This approach is used for
ISP pre-processing so that it can detect the boundary lines more accurately and improve
the data processing speed when compared with the existing ISP.

2.5. Summary of Related Work

Our study is closely related to [16], wherein we have used properties of edge detection
operation as MR, ref. [18] where structural testing is used to check test case adequacy
and [4] where Sari’s improved edge detection algorithm is used as the SUT. Based on the
critical analysis of the literature review, the research gaps are given below:

• In the literature survey, we have included the papers of edge detection algorithms
that are used to identify edges/tumors in MRI brain images. These algorithms are
enhancements of traditional edge detection algorithms such as Sobel, Canny, Prewitt,
Roberts, etc. The traditional edge detection algorithms are already tested; therefore,
testing of these enhanced algorithms is important. We have selected Sari’s improved
edge detection algorithm because amongst all the articles, this is the latest research
article to detect brain tumor in MRI images.

• In the existing techniques, random testing is considered unbiased for the generation
of test cases, but random testing leads to unfair distribution of parametric values.
Therefore, we have proposed a criterion where test cases are generated through black-
box testing and white-box testing techniques. In the proposed framework, source test
cases are selected randomly through the strong equivalence class testing technique,
and later, the adequacy of selected test cases is checked through structural testing.

• In the case of image processing operations, sometimes a test oracle cannot be clearly
defined, e.g., comparing two images pixel by pixel may show little difference, but
visually they are similar. We have used SSIM for the comparison of two images and
then calculated the FDR accordingly.

3. Methodology

The process of MT has following steps:

• Generation of source test cases;
• Identification of MRs;
• Generation of follow-up test cases;
• Comparison of the output of source test cases and output of follow-up test cases.

The process of MT is depicted in Figure 1.
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• MR strength evaluation: the methodology of the proposed framework is shown in
Figure 2.
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3.1. Generation of Source Test Cases

The first step is to generate source test cases [38]. Test case selection strategies are
developed to reveal better faults detection. Some of the traditional test-case generation
techniques are random test generation through random model or Boolean model, structural
or program-based test generation techniques, behavioral or specification-based techniques,
the symbolic evaluation method, combinatorial techniques, and fault-based test generation
techniques, etc. After studying the relevant literature work, it became clearer that the
random test generation method is widely used because of its unbiased nature for the
generation of test cases [6,10,41,42]. Though random testing is unbiased and easy to
implement, there are some limitations of this technique. For example, many of the test
cases are redundant and unrealistic with the unfair distribution of parametric values.

In the proposed framework, a dataset of brain MRI is used for the testing of the
edge detection algorithm. Generally, the images in the datasets have identical parametric
values such as horizontal and vertical dimension, bit depth and resolution. The dataset is
selected where these parametric values are genuinely diverse. For the selection of source
test cases, we have defined black-box testing and white-box testing techniques as our
selection criteria. Equivalence class testing is a black-box testing technique where a domain
is divided into distinct sub-domains (classes) and is further divided into weak equivalence
class testing and strong equivalence class testing [43]. To generate source test cases, we
have selected random test cases by using strong equivalence class testing to select images
with truly diverse parametric values. We have defined following five domains based on
the image characteristics: image horizontal dimension, image vertical dimension, image
bit depth, image resolution, and type of image. Each domain is further divided into
distinct sub-domains.
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After the generation of source test cases, we checked the adequacy of test cases using
the white-box testing technique to test the thoroughness of the code coverage which
includes all three types of images (T1, T2, flair) accumulatively accounting for 100 percent
the branch/statement coverage. If the test suite does not fulfill 100 percent branch coverage,
then new test cases are required to improve the coverage criteria not achieved through the
cases of the previous test suite.

3.2. Identification of Metamorphic Relations

In MT, testers define MRs which are used to generate new test cases (referred as follow-
up test cases) from the available test cases (referred as original/source test cases) [44]. The
key role of MR is to generate new test cases and to verify test results in the absence of a
test oracle [13]. For verification of test results, there are only two possible outcomes: a high
fault detection capability or a low fault detection capability. Greater FDR shows higher
fault detection capabilities and vice versa.

As we know, MT is totally dependent on the selection of MRs. So, the selection of
MRs makes the testing strong or weak. The MRs can be identified based on the guidance
provided by the experiences and the domain knowledge in the field of image processing
(Tahir et al. [7], Mayer et al. [41]). We have selected four MRs proposed by Sim et al. in [16],
and we have checked the FDR of these four MRs through an edge detection program using
edge detection as a SUT. These four MRs are defined as below:

3.2.1. Counter-Clockwise Rotation at 90 Degrees

The mathematical property of MR1 is:

MR1: C(E(Im)) = E(C(Im))

where Im is the input Image, C(.) is the counter-clockwise rotation at 90 degrees, and E is the
edge detection. The image output of counter-clockwise rotation followed by edge detection
should be like the image output of edge detection followed by counter-clockwise rotation.

3.2.2. Transposition

The mathematical property of MR2 is:

MR2: T(E(Im)) = E(T(Im))

where T(.) is the transpose of an image. The image output of transposition followed by
edge detection should be like the image output of edge detection followed by transposition.

3.2.3. Reflection at the Ordinate

The mathematical property of MR3 is:

MR3: Mx(E(Im)) = E(Mx(Im))

where Mx(.) is the image reflection at the ordinate. The output of reflection at the ordi-
nate followed by edge detection should be like the output of edge detection followed by
reflection at the ordinate.

3.2.4. Reflection at Abscissa

The mathematical property of MR4 is:

MR4: My(E(Im)) = E(My(Im))

where My(.) is the image reflection at abscissa. The output of reflection at abscissa followed
by edge detection should be like the output of edge detection followed by reflection
at abscissa.
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3.3. Generation of Follow-Up Test Cases

Follow-up test cases are generated from source test cases using MRs [45]. Let us
suppose that we have a program p that implements a function and does not have a test
oracle. The program p is executed using test case t as input and output o is produced as
[p (t) = o]. To verify the correctness of program p through the function, or the algorithm
used by MT is a property called MR which along with the source test case t is used by MT
to generate follow-up test case t’. Follow-up test cases are used when the program p is
executed with the test case t’ and produces an output o’ (p(t’) = o’) [46]. It is then verified
that whether t, o, t’, and o’ satisfies the relevant MR or not. If MR is not violated, then the
program p is bug free, or MR is too weak to find the violation.

The follow-up test cases of MRs for edge detection are given below:

MR1: C(E(Im)) = E(C(Im))

where C(Im) is the follow-up test case in this case.

MR2: T(E(Im)) = E(T(Im))

where T(Im) is the follow-up test case of above-mentioned MR.

MR3: Mx(E(Im)) = E(Mx(Im))

where Mx(Im) is the follow-up test case in MR3.

MR4: My(E(Im)) = E(My(Im))

where My(Im) is the follow-up test case of above MR.

3.4. Evaluation of Metamorphic Relations

After the generation of follow-up test cases, both source and follow-up test cases are
used as input to the SUT. The output data is generated by executing the IUT for each test
case [7]. Evaluation of MR is performed by comparing the output relation between source
and follow-up test cases. The satisfaction of MR shows the absence of faults, otherwise
the SUT is faulty. However, if the MR satisfies all the test cases, then it is too weak to find
the violation.

In our study, we implemented our dataset using the first MR (counter-clockwise rota-
tion at 90 degrees) and the rest of MRs will adopt the same information. The mathematical
property of MR1 is given below:

MR1: C(E(Im)) = E(C(Im))

where the following are defined:

E = Edge detection program and SUT in this case;
Im = Source test case and could be any image;
C = Counter-clockwise rotation at 90 degrees;
C(Im) = Follow-up test case, created by applying counter-clockwise rotation on the source
test case.

Figure 3 shows the source test case and follow-up test case of the respective MR.
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Now, both the test cases are given to the SUT. After applying the edge detection
operation on the source and follow-up test cases, the output would be E(Im) and E(C(Im)),
respectively. The outputs of source and follow-up test cases are shown in Figure 4.
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Afterwards, the relation between the output of source test case and follow-up test case
is checked by comparing output of both the images structurally by using SSIM. If we obtain
a full black image after comparison, then the images are exactly similar, and there is no MR
violation. However, if both the images are not similar, then it shows an MR violation.

3.5. SSIM Based Output Comparison

Image quality assessment is an important parameter of assessing the quality between
two images. Usually, MSE (mean square error) and PSNR (peak signal-to-noise ratio)
are used to assess the quality of images by giving absolute errors. However, these two
measures are not normalized, and therefore, it is difficult to understand them. Recently,
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two new metrics, SSIM and FSIM (feature similarity index measure), have been developed
to check the structure and feature similarity between two images [20]. We have used SSIM
to compare the output of source and follow-up test cases because SSIM compares the image
based on luminance, contrast, and structure, respectively. We are using a dataset of MRI
brain images where correct identification of luminance, contrast and structure helps in the
identification of edges and lesions. SSIM has also become a default measure in the field of
image processing [19].

As discussed earlier, if the value of SSIM is 0, then both images are different, but if the
value of SSIM is 1, then the images are exactly similar. To check the satisfaction of MR, we
have compared the outputs of all the source and follow-up test cases and set a threshold
value of 0.95. If the value of SSIM is below this threshold values, then MR is in violation.
Afterwards, FDR is calculated for each MR.

3.6. MR Fault Detection Rate

Strength of a MR defines its fault detection capabilities. The higher the FDR, the
higher is the fault detection capability of the MR and vice versa. The FDR of MR is given
in Equation (1).

FDR =

(
Number of test cases violating MR

Total number of test cases

)
∗ 100 (1)

4. Experiment Design

This section describes the detail about subject program, source code, dataset, source
test cases, coverage, and MRs used in our experiment.

4.1. Subject Program

We have performed our experiments on the edge detection program proposed by Sari
et al. [4] and used the properties of the edge detection operator proposed by Sim et al. [16]
as MRs. In the image processing domain, edge detection programs play a vital role for
identifying the changes in grayscale images. Identification of edges of the boundary of
soft tissue of brain cells in the MRI can be invaluable for a medical professional [22]. The
improved algorithm by Sari et al. consists of seven steps for identification of brain tumor.
We have implemented our algorithm of detection of edges of the soft tissues shown in the
MRI of a brain image by using first five of the seven steps used by Sari et al. to test Sari ’s
algorithm through edge detection MRs as below:

• Apply a fast local Laplacian filter on the original image for the enhancement of contrast
and texture.

• Convert the image into a grayscale image.
• Apply K-means clustering and fuzzy C-Means clustering.
• Apply traditional Canny edge detection to identify the edges in the MRI of a

brain image.
• Apply median filter to smooth out the lines detected in step four.

The input and output of Sari ’s improved edge detection algorithm using our source
test case is given in Figure 6.
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In Figure 6, we have generated the output of each step of Sari’s improved edge
detection algorithm.

4.2. Source Code

We have used a well-structured code written in Python version 3.8.3 for our imple-
mentation. The algorithms of all five steps mentioned above are taken from GitHub and
are consolidated in a single Python file which has 347 statements and 110 branches.

4.3. Dataset

A diversified collection of 3000 images in jpg format, as source test cases, is taken
from www.kaggle.com (accessed on 2 July 2021) for our study. The dataset comprises 1500
images with no brain tumor and 1500 images with brain tumor with multiple characteristics
such as horizontal and vertical dimensions, resolution in dpi, image type (T1-weighted,
T2-weighted, flair), and bit depth.

4.4. Source Test Cases

We have selected random source test cases using strong equivalence class testing
and grouped the attributes of MRI images into five classes: horizontal dimension, vertical
dimension, bit depth, resolution, and the image type. Each class is further divided into
multiple sub-classes as shown in Table 2

Table 2. Classes using strong equivalence class testing.

Classes Sub-Classes

Horizontal Dimension
h1: 1–300
h2: 301–650
h3: 651+

Vertical Dimension
v1: 1–350
v2: 351–700
v3: 701+

Resolution
r1: 1–90 dpi
r2: 91–99 dpi
r3: 100–450 dpi

Bit Depth b1: 8
b2: 24

Type of Image
t1: T1-weighted images
t2: T2-weighted images
t3: flair images

www.kaggle.com
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According to Table 2, “Horizontal Dimension” is a class which is further divided into
three sub-classes. “Vertical Dimension” is divided into three classes as well. “Resolution”
and “Type of Image” have three sub-classes each. “Bit Depth” is a class which is further
divided into two sub-classes.

As discussed earlier, we have used strong equivalence class testing for the generation of
source test cases. In strong equivalence class testing, we will make all possible combinations
from these classes for the generation of source test cases. The total numbers of classes
generated through these combinations are: 3 × 3 × 3 × 2 × 3 = 162. Out of 162 classes,
only 95 classes (33, T1; 29, T2; 33, flair) are obtained with a few with an 8-bit depth value.
There are few images in each image type (T1, T2, flair) with 8-bit depth that are selected.
All missing 67 classes with 8-bit depth value are unavailable. The results of 8-bit depth
value or lower show either very dark (T1 and flair) images or very bright (T2) images which
make it very difficult to detect the lesions accurately.

4.5. Coverage

The adequacy of these 95 test cases is checked through white-box testing, which
validates code coverage for branch coverage and statements coverage. The test suite should
cover 100 percent branch coverage for the initialization of our proposed testing process;
otherwise, new test cases would be required to complete the branch coverage to 100 percent.
Our test suite covers 100 percent for branch coverage and statement coverage, respectively.
The summary of code coverage is given in Table 3.

Table 3. Summary of code coverage.

Summary of Code Coverage

Total No. of Test Cases 95
Total No. of Statements 347
No. of Covered Statements 347
Statement Coverage (%) 100%
Total No. of Branches 110
No. of Covered Branches 110
Branch Coverage (%) 100%

Since all 95 images of our test suite, as shown in Table 3, have achieved 100 percent
statement coverage and branch coverage, respectively, we do not need any additional test
cases for our study.

4.6. Metamorphic Relations

The MRs of edge detection operator used in our approach is given below:

MR1: C(E(Im)) = E(C(Im))
MR2: T(E(Im)) = E(T(Im))
MR3: Mx(E(Im)) = E(Mx(Im))
MR4: My(E(Im)) = E(My(Im))

5. Results and Discussion

We have checked the outputs of source and follow-up test cases for each MR against
the three image types: T1-weighted images, T2-weighted images, and flair images by using
SSIM. The SSIM value of each MR on 33 test cases (of 95 total test cases) of T1-weighted
images are shown in Table 4 as below.
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Table 4. SSIM value of T1-weighted images.

Test Cases (TC) MR1 MR2 MR3 MR4

TC1 0.93 0.99 0.98 0.99
TC2 0.96 0.96 1 0.96
TC3 0.98 0.99 0.98 0.93
TC4 0.95 0.98 0.97 0.92
TC5 0.99 0.99 0.99 0.99
TC6 0.81 0.99 0.95 0.91
TC7 0.92 0.98 0.93 0.94
TC8 0.99 1 0.98 0.92
TC9 0.99 1 0.98 0.96
TC10 0.93 0.98 0.94 0.84
TC11 0.83 0.82 1 0.82
TC12 0.92 0.97 0.93 0.95
TC13 0.98 0.94 0.94 0.94
TC14 0.79 0.97 0.97 0.89
TC15 0.89 0.96 0.95 0.84
TC16 0.94 0.98 0.92 0.9
TC17 0.94 0.82 0.91 0.89
TC18 0.98 0.99 0.98 0.97
TC19 0.94 0.98 0.94 0.95
TC20 0.98 0.99 0.96 0.95
TC21 0.96 0.97 0.97 0.96
TC22 0.87 0.99 0.87 0.9
TC23 0.95 0.98 0.84 0.93
TC24 0.88 0.94 0.72 0.78
TC25 0.98 0.99 0.89 0.94
TC26 0.95 0.97 0.96 0.92
TC27 0.95 0.99 0.96 0.92
TC28 0.98 0.98 0.96 0.98
TC29 0.93 0.97 0.9 0.87
TC30 0.91 0.98 0.95 0.88
TC31 0.97 1 0.96 0.94
TC32 0.94 0.98 0.95 0.88
TC33 0.96 0.97 0.97 0.94

If the value of SSIM is equal to 1, then both the outputs of source and follow-up
test cases are exactly similar. If the value of SSIM is equal to 0, then both the outputs of
source and follow-up test cases are exactly dissimilar. The lower the values of SSIM, the
more dissimilar the images. We have set a threshold value for comparison because we
did not obtain an exact match for the images. Our reasoning for not obtaining an exact
match is because the MRs are designed for conventional edge detection algorithms, and
our algorithm consists of many steps other than edge detection. Therefore, there is a high
probability that the images may lose their contrast and luminance after processing.

We know that the relation in MT satisfies when output of both source and follow-up
test cases are same. As we did not obtain an exact match between the outputs of the
source and follow-up test cases, we therefore need test cases that would satisfy the MR
for calculating meaningful results. We have set the threshold value to 0.95 because the
SSIM value greater than and equal to 0.95 shows the similarity of output images closest
to 1. If the SSIM value is less than the given threshold value, then the MR does not satisfy
the relation for that test case. The FDR of MR is calculated by using the formula given
in Equation (1).

Let us suppose threshold is denoted by θ. The total number of test cases that satisfy
the MR against θ value 0.95, and the FDR for each of the MRs for T1-weighted images is
shown in Table 5.
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Table 5. Fault detection rate of T1-weighted images.

MR θ = 0.95 FDR

MR1 15 54.54%
MR2 29 12.12%
MR3 21 36.36%
MR4 12 63.63%

As shown in Table 5, when the value of θ is set to 0.95, the FDR of MR4 is the highest
(63.63%) followed by MR1 (54.54%) by violating the MR in more than 50 percent of test
cases. The FDR of MR3 is 36.36%, which is neither too high nor too low to identify the
faults. MR2 has the lowest (12.12%) FDR value. Hence, it is concluded that MR2 has the
lowest FDR and is not a recommended MR to identify faults in T1-weighted images. MR4
has the highest FDR value and is considered best to identify faults in T1-weighted images.
MR1 and MR3 have also high FDR and are recommended for this type of images. The SSIM
value for each of the T2-weighted images is shown in Table 6.

Table 6. SSIM value of T2-weighted images.

Test Cases (TC) MR1 MR2 MR3 MR4

TC1 0.97 0.99 0.94 0.94
TC2 0.94 0.89 0.97 0.93
TC3 0.75 0.75 0.93 0.92
TC4 0.92 0.76 0.76 0.76
TC5 0.92 0.99 0.92 0.96
TC6 0.94 0.84 0.96 0.95
TC7 0.98 0.99 0.99 0.97
TC8 0.93 0.96 0.95 0.93
TC9 0.88 0.99 0.95 0.88
TC10 0.85 0.99 0.93 0.96
TC11 0.95 0.97 0.91 0.85
TC12 0.97 0.99 0.94 0.93
TC13 0.97 0.86 1 0.91
TC14 0.97 0.99 0.9 0.97
TC15 0.96 0.88 0.87 0.95
TC16 0.95 0.96 0.96 0.91
TC17 0.95 0.98 0.96 0.89
TC18 0.93 0.95 0.94 0.87
TC19 0.98 0.86 0.98 0.85
TC20 0.9 0.96 0.93 0.9
TC21 0.95 0.97 0.97 0.93
TC22 0.94 0.98 0.96 0.84
TC23 0.91 0.83 0.93 0.93
TC24 0.86 0.98 0.92 0.9
TC25 0.83 0.97 0.95 0.91
TC26 0.98 0.98 0.97 0.95
TC27 0.96 0.98 0.98 0.96
TC28 0.95 0.97 0.96 0.92
TC29 0.95 0.98 0.98 0.94

Table 6 shows that we have 29 test cases in the category of T2-weighted images. The
test cases that satisfy the MR against the θ value 0.95 is depicted in Table 7.
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Table 7. Fault detection rate of T2-weighted images.

MR θ = 0.95 FDR

MR1 15 48.27%
MR2 21 27.58%
MR3 16 44.82%
MR4 8 72.41%

Table 7 shows that considering θ as 0.95, the FDR of MR4 is the highest that is 72.41%
followed by MR1, MR3, and MR2 with FDR values 48.27%, 44.82%, and 27.58%, respectively.
Hence, it is determined that all the MRs are useful for T2-weighted images when the θ is
set to 0.95. Similarly, when the θ value is 0.90, MR2 and MR4 are useful for T2-weighted
images, whereas MR1 and MR3 have a low FDR and are not very useful for identifying
faults in these types of images. The SSIM values of flair-type images are given in Table 8.

Table 8. SSIM value of flair images.

Test Cases (TC) MR1 MR2 MR3 MR4

TC1 0.98 0.97 0.97 0.98
TC2 0.95 0.96 0.98 0.97
TC3 1 0.99 1 0.99
TC4 0.99 0.99 0.99 0.98
TC5 0.84 0.96 0.94 0.94
TC6 0.96 0.97 0.97 0.95
TC7 0.97 0.99 0.95 0.97
TC8 0.98 0.99 0.99 0.98
TC9 0.91 0.96 0.91 0.89
TC10 0.96 0.98 0.98 0.92
TC11 0.98 0.99 0.92 0.97
TC12 0.99 1 0.99 0.97
TC13 0.98 1 0.98 0.97
TC14 0.84 0.98 0.96 0.97
TC15 0.99 0.97 0.98 0.99
TC16 0.87 0.97 0.93 0.76
TC17 1 1 1 0.98
TC18 0.96 0.98 0.97 0.97
TC19 1 0.99 1 0.99
TC20 0.98 0.99 0.98 0.98
TC21 0.99 0.99 0.99 0.99
TC22 0.97 0.98 0.97 0.95
TC23 0.94 0.91 0.91 0.98
TC24 0.95 0.98 0.87 0.93
TC25 0.99 0.99 0.99 0.99
TC26 0.97 1 0.94 0.92
TC27 0.99 0.96 0.98 0.99
TC28 0.96 0.98 0.96 0.96
TC29 0.92 0.96 0.77 0.83
TC30 0.94 0.97 0.95 0.92
TC31 0.91 0.98 0.97 0.96
TC32 0.96 0.99 0.97 0.97
TC33 0.92 0.99 0.99 0.94

Table 8 shows 33 test cases in flair-type images. The test cases that satisfy the MR
against θ value 0.95 for flair-type images with their FDR is depicted in Table 9.
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Table 9. Fault detection rate of flair type images.

MR θ = 0.95 FDR

MR1 24 27.27%
MR2 32 3.03%
MR3 25 24.24%
MR4 24 27.27%

Table 9 shows that MR2 has the lowest FDR value of 3.03%, whereas the FDR of MR1,
MR3, and MR4 is 27.27%, 24.24%, and 27.27%, respectively. The results show that like the T1-
and T2-weighted images, the FDR of MR4 is highest and MR2 has the lowest. Considering
θ as 0.95, MR2 has the lowest FDR and is not recommended for flair-type images. The
FDR of MR1, MR3, and MR4 is neither too high nor too low, thus making them useful for
identifying faults. Figure 7 shows the statistics of the first MR (counter clockwise rotation
at 90 degrees) for all the types of images.
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In Figure 7, when the θ is set to 0.95, the capability of MR1 to detect faults is high for
T1- and T2-weighted images by violating 18 and 14 test cases, respectively. On the other
hand, flair-type images violate only nine test cases. Hence, it is concluded that MR1 is more
suitable for T1- and T2-weighted images rather than flair-type images.

Now, we consider the second MR (transpose of an image) and check the FDR of MR2
on all three types of MRI images. Figure 8 shows the graphical representation of MR2.
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Figure 8 shows that MR2 has lowest capability to identify faults for T1 and flair-type
images. T1 images satisfy the relation on 29 test cases, whereas the flair-type images
satisfy the relation on 32 test cases, respectively. MR2 is relatively better than other MRs in



Appl. Sci. 2022, 12, 8684 20 of 24

identifying faults in T2-weighted images by satisfying 21 test cases. It is concluded that
MR2 is recommended for only T2-weighted images by violating the MR on 8 test cases.

Let us talk about the third MR which is reflection at the ordinate. The result of MR3 is
given in Figure 9.
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Figure 9 shows that the capability of MR3 to detect faults is low for flair-type images
by violating only 8 test cases, whereas the capability of MR3 to detect faults is high for T1-
and T2-weighted images by violating 12 and 13 test cases, respectively. It is concluded that
MR3 is recommended for all the categories of images. The fault detection capability of this
MR is low for flair-type images when comparing with T1- and T2-weighted images, but
it is still able to detect faults. The last MR is reflection at abscissa. Figure 10 shows the
statistics of MR4.
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Figure 10 shows that the FDR of MR4 is very high for T1- and T2-weighted images
when θ is set to 0.95. Both of the image types violate the relation on 21 test cases each. At
the same θ value, flair-type images violate the relation on 9 test cases, which is neither too
low nor too high. Hence, it is concluded that MR4 is useful for all the three types of images
but highly recommended for T1- and T2-weighted images. The FDR of all four MRs against
all the three types of images is shown in Figure 11.

It is concluded from Figure 11 that for each image type, MR4 is considered the best
among all the MRs by achieving the highest FDR. The FDR of MR4 for T1, T2, and flair-type
images is 63.63%, 72.41%, and 27.27%, respectively. On the other hand, the FDR of MR2 is
considered the lowest in all three types of images, with an FDR value of 12.12%, 27.54%, and
3.03%, respectively. Hence, it is observed that for T1, T2, and flair images, MR4 should be
preferred to enhance the credibility of MRI diagnostics. On the other hand, MR2 produced
a low FDR and is not suggested for the diagnostics purpose, especially in flair-type images.
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A comparison of the proposed methodology with existing techniques is given
in Table 10.

Table 10. Comparison with existing techniques.

MT Related Research Dataset Image Comparison Method Input Generation Method

[7] Random Camera Images Pixel by pixel Random Input Generation
[16] Random Camera Images Pixel by pixel Random Input Generation

[17] Random Camera Images Pixel by pixel Segmental Symbolic
Evaluation Method

[18] Biological Cells Manual Segmental Symbolic
Evaluation Method

[35] Biological Cells Manual Random Input Generation

Proposed Methodology MRI brain Images Structure Similarity Image
Measure

Strong equivalence class
testing and structural testing

• As shown in Table 10, random camera images are used for the testing of IPAs. We
have used a dataset of brain MRIs. To the best of our knowledge, no prior work has
been conducted using an MRI dataset in MT.

• In the literature, there is no systematic way to ascertain that the generated test cases
are actually random and have diversity to represent all different type of attributes
or full coverage. If the sample is not a full representation of the population, then we
would obtain biased results affecting the final outcome. In the proposed framework,
we have precisely defined procedures to generate source test cases randomly by using
black-box and white-box testing.

• In the existing literature, the outputs of two images are compared either manually or
pixel by pixel. Sometimes, when comparing the images pixel by pixel, they may have
differences which cannot be seen with the naked eye. In the proposed methodology,
SSIM is used for the comparison, so we obtain the exact match between the two images.

6. Conclusions and Future Work

Magnetic resonance imaging uses a combination of radio waves and a magnetic field
to produce detailed pictures of the internal body such as brain cells to detect tumor by
identifying specific and related biomarkers. The evidence so far is limited, and more
research is needed, but our proposed framework offers the potential for an exciting new
development in the process of diagnosing tumor. Due to the absence of a test oracle, an
effective testing of IPA producing the MRI is quite challenging. MT is widely used to
handle the test oracle problem of the IPA as the related and relevant MRs can identify the
faults in the SUT used in the MT. However, every MR is not suitable for bug manifestation.
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In our proposed method, random source test cases are selected through the strong
equivalence class testing technique (black-box testing), and then, the adequacy of the
selected source test cases is verified through code coverage criteria (white-box testing). The
fault detection capability of MR is checked through the assigning of the SSIM values for
each source test case. Our academic work is specific to the medical field, using the MRI
of brain cells to detect the tumor. The results show that the FDR of MR2 is the lowest for
all the three categories of images (T1, T2, and flair) having an FDR of 12.12%, 27.58% and
3.03%, respectively. Similarly, the FDR of MR4 is the highest among T1, T2 and flair-type
images, with an FDR of 63.63%, 72.41%, and 27.27%, respectively. Through the use of the
MRs with a high FDR, we can generate the likely output precisely. In future, finding a
solution to improve the low FDR of MRs could be a challenge that would improve the
effectiveness of MT.
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