
Citation: A. Alissa, K.; S. Alrayes, F.;

Tarmissi, K.; Yafoz, A.; Alsini, R.;

Alghushairy, O.; Othman, M.;

Motwakel, A. Planet Optimization

with Deep Convolutional Neural

Network for Lightweight Intrusion

Detection in Resource-Constrained

IoT Networks. Appl. Sci. 2022, 12,

8676. https://doi.org/10.3390/

app12178676

Academic Editors: Howon Kim and

Thi-Thu-Huong Le

Received: 5 August 2022

Accepted: 27 August 2022

Published: 30 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Planet Optimization with Deep Convolutional Neural Network
for Lightweight Intrusion Detection in Resource-Constrained
IoT Networks
Khalid A. Alissa 1 , Fatma S. Alrayes 2, Khaled Tarmissi 3, Ayman Yafoz 4, Raed Alsini 4 , Omar Alghushairy 5 ,
Mahmoud Othman 6 and Abdelwahed Motwakel 7,*

1 SAUDI ARAMCO Cybersecurity Chair, Networks and Communications Department,
College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University,
P.O. Box 1982, Dammam 31441, Saudi Arabia

2 Department of Information Systems, College of Computer and Information Sciences,
Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

3 Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University,
P.O. Box 5555, Makkah 21955, Saudi Arabia

4 Department of Information Systems, Faculty of Computing and Information Technology,
King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia

5 Department of Information Systems and Technology, College of Computer Science and Engineering,
University of Jeddah, Jeddah 21589, Saudi Arabia

6 Department of Computer Science, Faculty of Computers and Information Technology,
Future University in Egypt, New Cairo 11835, Egypt

7 Department of Computer and Self Development, Preparatory Year Deanship,
Prince Sattam Bin Abdulaziz University, AlKharj 11942, Saudi Arabia

* Correspondence: a.ismaeil@psau.edu.sa

Abstract: Cyber security is becoming a challenging issue, because of the growth of the Internet of
Things (IoT), in which an immense quantity of tiny smart gadgets push trillions of bytes of data over
the Internet. Such gadgets have several security flaws, due to a lack of hardware security support
and defense mechanisms, thus, making them prone to cyber-attacks. Moreover, IoT gateways present
limited security features for identifying such threats, particularly the absence of intrusion detection
techniques powered by deep learning (DL). Certainly, DL methods need higher computational
power that exceeds the capability of such gateways. This article focuses on the development of
Planet Optimization with a deep convolutional neural network for lightweight intrusion detection
(PODCNN-LWID) in a resource-constrained IoT environment. The presented PODCNN-LWID
technique primarily aims to identify and categorize intrusions. In the presented PODCNN-LWID
model, two major processes are involved, namely, classification and parameter tuning. At the primary
stage, the PODCNN-LWID technique applies a DCNN model for the intrusion identification process.
Next, in the second stage, the PODCNN-LWID model utilizes the PO algorithm as a hyperparameter
tuning process. The experimental validation of the PODCNN-LWID model is carried out on a
benchmark dataset, and the results are assessed using varying measures. The comparison study
reports the enhancements of the PODCNN-LWID model over other approaches.

Keywords: intrusion detection system; lightweight; deep learning; parameter tuning; security

1. Introduction

The idea of the Internet of Things (IoT) depends upon the incorporation of recog-
nizable, varied physical substances (instant cameras, humans, sensors, animals, vehicles,
etc.) and the cyber world with the capability of transferring data in a network deprived of
human-to-computer or human-to-human interfaces [1]. IoT applications may range from
modest appliances for a smart home to complicated devices in a smart grid. The IoT offers a
marvelous chance for humanity across the globe [2]. With various objectives, conflicting IoT

Appl. Sci. 2022, 12, 8676. https://doi.org/10.3390/app12178676 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12178676
https://doi.org/10.3390/app12178676
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3975-5879
https://orcid.org/0000-0002-3163-575X
https://orcid.org/0000-0002-7378-5545
https://orcid.org/0000-0001-9240-7593
https://doi.org/10.3390/app12178676
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12178676?type=check_update&version=1


Appl. Sci. 2022, 12, 8676 2 of 15

applications take a joint set of features. Generally, an IoT primary node can execute three
different activities: data processing and utilization, data collection, and data transmission.
Many approaches to enhancing data access, authentication, and confidentiality are stated
in the literature; however, even with such systems, IoT networks are vulnerable to many as-
saults pointed at network disturbance [3]. The diversity, growth, ubiquity, and complexity
of the IoT expands the possible assault surfaces. Thus, intrusion-preventing apparatuses
and signature-related intrusion detection (ID) techniques are needed for the potential as-
saults in the IoT network [4]. An intrusion detection system (IDS) is a device or software
application that monitors a network for abnormal activities or policy violations. Any
intrusion activity or violation is normally reported either to an administrator, or gathered
centrally through the use of security information and an event management system.

A defense system is needed for noticing new and effective intrusions. An IDS depends
upon anomaly detection (i.e., statistically related) to achieve its purpose. Anomaly recog-
nition has no need for previous recognition of assault signs [5]. Since IoT services cover
an extensive range, there are varied transmission technologies with diverse values, which
increases the threats to end-wise security. The assault surface size in the IoT is raised, due
to the expansions in diversity and the complexity of the IoT [6]. Defense systems such as
signature-related ID techniques do not function correctly for the adapted assaults, and,
therefore, an IDS is necessary for new intrusions. The anomaly-related ID method drives
this discovery structure, as there is no need for previous data regarding the assault signs [7].
Definite features of IoT systems were provided by several scholars in the facets of evolving
an IDS.

The devices or nodes in the IoT are source-limited and work with less influence.
It is impossible to host an orthodox IDS that needs higher computational abilities and
a higher level of power [8]. The protocols utilized in the IoT system are not similar to
the protocols utilized in traditional systems [9]. The protocols utilized in such networks,
namely, IPv6 with Constrained Application Protocol (CoAP) and low-power, wireless
personal area networks (6LoWPAN) make the network varied, leading to novel dimness
and making it challenging to apply the IDS in the networks. Taking the aforementioned
features into account, it becomes essential to advance a lightweight IDS that executes its
purpose professionally in network security [10]. The word lightweight indicates that the
scheme must operate on controlled sources obtainable in the IoT network nodes, and does
not mean that the system is simple.

This article focuses on the development of Planet Optimization with a deep con-
volutional neural network for lightweight intrusion detection (PODCNN-LWID) in a
resource-constrained IoT environment. The presented PODCNN-LWID technique primar-
ily aims to identify and categorize intrusions. In the presented PODCNN-LWID model,
two major processes are involved, namely, classification and parameter tuning. At the
primary stage, the PODCNN-LWID technique applies the DCNN model for the intrusion
identification process. Next, in the second stage, the PODCNN-LWID model utilizes the
PO algorithm as a hyperparameter tuning process. The experimental validation of the
PODCNN-LWID model is carried out on benchmark dataset, and the results are assessed
using varying measures.

2. Related Works

Gali and Nidumolu [11] present a novel, chaotic bumble bee mating optimization
(CBBMO) method for protected data communication, which has a trust-sensing method,
called the CBBMOR–TSM method. For enhancing the convergence rates of the BBMO
approach, the CBBMO approach is described as the incorporation of chaotic ideas into the
traditional BBMO method. The purpose of the presented method is to devise a trust-sensing
method and execute safe routing by utilizing the CBMO method. Mabayoje et al. [12] devise
a multilevel dimensionality reduction structure, dependent on metaheuristic optimization
and PCA. For attaining the research aim, PCA is implied for extracting features. GA and
PSO methods, i.e., GA–PSO, are utilized to select features for choosing the discriminatory
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attributes in order to advance the ID method. In the classifier phase, SVM and ANN
techniques are employed for developing ID.

Kareem et al. [13] introduce a novel FS method by fostering the presentation of a
Gorilla Troops Optimizer (GTO) related to the bird swarm algorithm (BSA). This BSA
can be utilized for fostering act exploitation of GTO in the recently advanced GTO–BSA,
due to a strong capability for finding possible areas for optimal solutions. In ref. [14],
for the optimization of energy utilization, the most suitable cluster-head (CH) can be
selected in the IoT. The presented study uses a hybrid metaheuristic method, such as WOA,
which has simulated annealing (SA). For the selection of the optimum CH in groups of
IoT systems, numerous presentation metrics such as the counting of alive residual energy,
nodes, temperatures, cost function, and load are employed. Haddadpajouh et al. [15]
devise a multi-kernel SVM for IoT cloud edge gateway malware-hunting, by utilizing the
GWO method. This metaheuristic technique can be utilized for optimal feature selection,
differentiating benign and malicious applications at the IoT cloud edge gateway. This
method can be well-trained by the bytecode and opcode of IoT malware samples, and
assessed utilizing the K-fold cross-validation method.

Li et al. [16] present an AI-related two-stage ID, authorized by software-based tech-
nology. It amenably stops network flows from a worldwide view, and identifies assaults
intelligently. The authors use the Bat method for binary differential mutation, and swarm di-
vision for choosing typical features. After that, the authors use RF, by adaptively varying the
sample weights by utilizing the biased voting system for classifying flows. Habib et al. [17]
provide a novel technique to convert the old IDSs into multi-objective, smart, and evolution-
ary IDSs for IoT networks. Furthermore, this work offers an adapted system for IDSs that
challenges the issue of selecting features. The adapted process stands on the incorporation
of multi-objective PSO with the Lévy flight randomization component (MOPSO–Lévy).

3. The Proposed Lightweight IDS Model

In this article, a new PODCNN-LWID technique is developed for the recognition of
intrusions in the IoT network. The presented PODCNN-LWID technique primarily aims to
identify and categorize intrusions. In the presented PODCNN-LWID model, two major
processes are involved, namely, classification and parameter tuning. Figure 1 depicts the
overall process of the PODCNN-LWID approach. At the initial stage, the input networking
data is preprocessed to fill missing values, using a median approach. Next, the preprocessed
data is fed into the DCNN model to detect and classify intrusions. Finally, the PO algorithm
is applied as a hyperparameter optimizer, to choose the hyperparameter values effectively.
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3.1. Stage I: Intrusion Detection Model

At the primary stage, the PODCNN-LWID technique applies the DCNN model for the
intrusion identification process. CNNs are established with the concept of local connec-
tivity. The spatial extension of all the connectivity is suggested as the receptive domain
of nodes [18]. The local connectivity is accomplished by exchanging weight sums in the
NN with Convs. In all the layers of the CNN, the input is Conv, with the weighted matrix
(filter) to generate a feature map. The local connectivity and shared weight feature of
CNNs decrease the entire amount of learnable parameters, resulting in further effective
training. The deep CNN is generally separated into two important parts: the primary part
is comprised of the order of two one-dimensional Conv blocks, with Conv1D layers of
32 and 64 channels in the first and second blocks, respectively, a Batchnorm layer, an ReLU
activation function, and a max-pooling 1D layer. Other parts comprise the order of the
fully connected (FC) layers. In two important Conv blocks, the input signal is encrypted by
decreasing their length and improving the number of channels. Figure 2 showcases the
infrastructure of the CNN.
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The resultant second Conv block is concatenated, with input signals employing the
remaining skip connections. However, it utilizes the network maintenance data as input at
the deeper layers. Next, by concatenating the input signal and resultant Conv blocks, the
FC layer is utilized for the final decision layer that creates the outcome. The resultant value
of the Conv 1D layer with input size (N, Cin, L) and output (N, Cout, Lout) is:

out
(

Ni, Coutj

)
= bias

(
Coutj

)
+

Cin−1

∑
k=0

weight
(

Coutj , k
)
∗ input (Ni, k) (1)

where ∗ refers to the valid cross-correlation function (in this work, it is the Conv function),
Ni signifies the batch-size ith, Coutj signifies the channel jth, and L denotes the length of
signal orders (when the input is image, width and height are employed rather than length).
The length of resultant signal order is computed by utilizing the equation:

Lout =
[ Lin + 2× padding− dilation× (kernelsize− 1)− 1

stride
+ 1
]

(2)

where:

• stride implies the stride of cross-correlation;
• padding signifies the number of zero-paddings on both sides;
• dilation denotes the space amongst the kernel element;
• kernelsize stands for the size of the Conv kernel.

In order to achieve the max-pooling 1D, the resultant value with input size (N, C, L)
and outcome (N, C, Lout) is represented as:

out
(

Nj, Coutj

)
= m = max

m=0,...,kernelsize−1

input
(

Ni, Cj, stride× k + m
)

(3)



Appl. Sci. 2022, 12, 8676 5 of 15

in which Ni signifies the input ith; Cj represents the channel jth.

• kernelsize denotes the size of windows needed to obtain max over;
• stride indicates the stride of windows;
• padding demonstrates the number of zeros added on both sides;
• dilation represents the parameter that deals with the stride of elements from the window.

The length of the resultant signal order to the max-pooling 1D layer is computed
utilizing the same equation from the ConvlD layer.

3.2. Stage II: Hyperparameter Tuning Model

In the second stage, the PODCNN-LWID model utilizes the PO algorithm as the
hyperparameter tuning process. The universe is extremely big and has no boundaries, and
large spaces are occupied with stars, planets, galaxies, and other stimulating astronomical
phenomena [19]. For ease of visualization, and simplicity of the study, the solar system
is used as representations. Initially, a structure comprised of the Moon, the Sun, and the
Earth is taken into account in these cases. It is clear to everyone that the Sun maintains
its’ gravitational force to maintain the Earth revolving around it. The mass of the Sun is
330,000 times larger than that of the Earth. However, the Earth generates gravitation pull
that is large enough to maintain the Moon’s orbit around it. This illustrates the two factors
that influence the movement of the planets, i.e., the mass, along with the distance between
the two planets. Therefore, the process mimicking the law of gravitational force is shown
below:

• The Sun acts as an optimum solution. In this problem, it has the highest mass, which
implies that it has a great gravitational moment for the planets near and around it;

• Concerning the Sun (red planet) and other planets, there exists a gravitational pull
between them. This moment can be determined by the mass and the distance between
those objects. This implies that, even though the red planet has the biggest mass out
of all the other planets, the moment on faraway planets is insignificant. This aids the
process of preventing the local optima.

At the t-th iteration, the mass of the red planet is the largest, hence, it signifies the Sun.
As the pink planet is closer to the red planet, it moves to the position of the red planet, due
to gravitational pull

(
Mt

p

)
between the planets and the red planet.

Nonetheless, the red planet at the t-th iteration does not have the preferred location
that we are trying to find, namely, the minimal optima. In other words, if all the planets
move towards the red planet, the procedure becomes trapped in the local optima. On the
other hand, the blue planet is in a prospective position and is farther from the red planet.
The communication of the red planet with the blue planet

(
Mt

b
)

is smaller, as it is farther
from the red planet at the t-th iteration. Therefore, it is wide open for the blue planet to
seek the best position in the following iteration.

The primary objective depends on the abovementioned two concepts. In addition,
the red planet is the accurate objective of examination, and obviously, we do not have its’
correct position. In such cases, the planet with the greatest mass at the t-th iteration acts as
the Sun simultaneously.

The application of the procedure is shown below:
Stage 1: Initially, the best process is the one wherein the last finest solution is au-

tonomous of the primary locations. Nonetheless, realism conflicts with most of the stochas-
tic approaches. When the target area is mountainous, and the global optimal is positioned
in a remote minor region, an early population has significance. When an early arbitrary
population does not make solution in the surrounding area of the global-searching phase
of the actual population, then the possibility that the population focuses on the correct
optimal could be lower.

On the other hand, with the construction of a primary solution near to the global
optimum location, the possibility of the convergence of the population to the optimum
position becomes higher. Indeed, globalization is comparatively large, and subsequently,
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the initial population performs a major part. Preferably, the introduction must utilize
crucial sampling methods, for example, the technique employed in the Monte Carlo model
for sampling the solution. Although this request possess sufficient intelligence from the
algorithm, it could not be fulfilled by almost all of the processes.

Similar to selecting the early population, selecting the finest solution in a new popula-
tion in the part of the red planet regarding other planets’ stirring towards the position is
significant. This process determines the accuracy and the convergence rate of the problem.

Consequently, the initial step is to discover a better solution for playing the role of the
optimum solution, in order to raise the accuracy and convergence of the algorithm in the
initial iteration.

Stages 2: M factor.

M =
∣∣→F ∣∣Rij = G

mimj

R2
ij
× Rij (4)

Here, the subsequent parameter can be determined:

• The mass of the planet:

mi, mj =
1

aobjij/α
(5)

in which a = 2 represents a constant variable, and α = |max(obj)− objsun|. This implies
that when the value of an objective function of a planet is small, the mass of a planet is
large. objij, max (obj), and objsun show the objective function value of i-th or j-th planets,
e.g., the worst planet and the red planet, respectively;

• The distance between the i-th and j-th objects with “Dim” as dimension, Cartesian
distance, is evaluated as follows:

Rij = ‖Xt
i − Xt

j‖ =

√√√√Dim

∑
k=1

(Xt
i − Xt

j)
2 (6)

• G indicates a variable, and it is equivalent to unity.

Stage 3: Global search. A formulation constructed to mimic global search is as follows

−−→
Xt+1

i =
→
Xt

i + b× β× r1 ×
(−−→

Xt
Sun −

→
Xt

i

)
(7)

The left side of the equation exemplifies the existing location of the planet i-th in the
(t + 1) iteration, whereas the right side contains the foremost components in the following:

•
→
Xt

i shows the existing location of planet i-th at the t-th iteration;
• β = Mt

i /Mt
mu, r1 = rand(0, 1), b indicates a constant variable;

• Xr
Sun indicates the existing location of the red planet in the t-th iteration.

The expression β indicates a coefficient that can be determined by M, Mt
i refers to the

gravity of the red planet i-th at the t-th iteration, and Mt
m indicates the max

(
Mt

i
)

value at
the t-th iteration. Consequently, the β coefficient has a value within (0, 1).

Stage 4: Local search. In this phase, the accurate position is often the preferred objective
to be established. This aim is easy or difficult to accomplish, based on how complex the
problem is. In all instances, there is only potential to find an estimated value that fits the
actual condition. Specifically, the correct Sun position is in the space between the solution.

Remarkably, while Jupiter is the largest planet in the solar system, Mercury is the
planet whose position is closer to the red planet. This implies that the optimum solution
location to the accurate position of the Sun at the t-th iteration might not be nearer than the
position of other solutions to the accurate Sun position.
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Once the distance between the planets and the Sun is smaller, the local search pro-
gression is implemented. From the abovementioned method, the planet with the highest
mass operates as the red planet, and in such cases, it is Jupiter that is nearer to the red
planet, and moves to the position of the Sun. In other words, the planet moves a smaller
distance between its’ own position and the red planet at the t-th iteration, rather than
moving directly towards the red planet. This step aims to improve the performance in a
narrow region of search space, and it is given below:

−−→
Xt+1

i =
→
Xt

i + c× r1 ×
(
r2 ×
−−→
Xt

sun −
→
Xt

i
)

(8)

In Equation (8), c = c0 − t/T, t refers to the t-th iteration, T shows the maximal
iteration count, and c0 = 2.r2 indicates the Gaussian distribution function as follows:

f (x, µ, σ) =
1

σ
√

2π
exp

(
− (x− σ)2

2σ2

)
(9)

Several evolutionary procedures are also randomized through stochastic processes,
namely, Lévy distribution and power-law distribution. Normal or Gaussian distribution
is the most common, because the maximum number of physical parameters involving
uncertainty or errors in the measurement, light intensity, etc., obeys these distributions. The
PO algorithm makes a derivation of a fitness function (FF), which results in an enhanced
classifier performance. In this article, the reduction in the classifier error rate can be
regarded as the FF, as presented in Equation (10).

f itness (xi) =
number o f misclassi f ied samples

Total number o f samples
∗ 100 (10)

4. Results and Discussion

The proposed model is simulated using Python 3.6.5 tool on a PC i5-8600k, with
GeForce 1050 Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. As the DCNN model has
parameters, the hyperparameter tuning process is performed. The learning rate is kept
as 0.01. The number of filters is 32 in the primary CNN layer, 64 in the succeeding CNN
layer, and 128 in the last CNN layer. The parameter max-pooling length is set to 2 in all the
max-pooling layers, and dropout to 0.01. When the number of CNN layers increases from
three to four, the performance is reduced and, therefore, a three-level CNN is used. Lastly,
two dense layers are included along with the CNN layer; the first dense layer is composed
of 512 neurons and the second layer is composed of 128 neurons. These layers use ReLU as
the activation function.

The experimental validation of the PODCNN-LWID model is tested using a dataset
comprising 5500 samples with 11 classes, as depicted in Table 1. We used the CICIDS2017
dataset, which is comprised of normal and the most up-to-date common attacks, and
resembles the true, real-world data (PCAPs). The dataset is available at https://www.unb.
ca/cic/datasets/ids-2017.html (accessed on 13 June 2022). It encompasses the network
traffic analyses results from the use of CICFlowMeter, with labeled flows based on the time
stamp, source and destination IPs, source and destination ports, protocols, and attacks
(CSV files). This dataset was gathered for five continuous days (Monday–Friday), with
various attacks as well as normal information. The proposed model is simulated using the
Python tool. The set of measures used to examine the results are accuracy, precision, recall,
specificity, and F-score.

Figure 3 illustrates the confusion matrix offered by the PODCNN-LWID model with
the entire dataset. The PODCNN-LWID model identifies 493 samples in class 1; 481 samples
in class 2; 490 samples in class 3; 484 samples in class 4; 483 samples in class 5; 485 samples
in class 6; 490 samples in class 7; 484 samples in class 8; 470 samples in class 9; 493 samples
in class 10; and 492 samples in class 11.

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
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Table 1. Dataset details.

Label Class No. of Instances

1 Normal 500
2 Botnet 500
3 DoSSlowhttptest 500
4 FTP-Patator 500
5 SSH-Patator 500
6 DoSGoldenEye 500
7 DoSslowloris 500
8 Heartbleed 500
9 PortScan 500
10 DDoS 500
11 DoSHulk 500

Total No. of Instances 5500
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Table 2 reports the intrusion classification output of the PODCNN-LWID model with
the entire dataset. In class 1, the PODCNN-LWID model provides accuy, precn, recal ,
specy, and Fscore values of 99.75%, 98.60%, 98.60%, 99.86%, and 98.60%, respectively. In
the meantime, in class 2, the PODCNN-LWID approach offers accuy, precn, recal , specy,
and Fscore values of 99.62%, 99.59%, 96.20%, 99.96%, and 97.86%, respectively. Likewise, in
class 3, the PODCNN-LWID technique presents accuy, precn, recal , specy, and Fscore values
of 99.82%, 100%, 98%, 100%, and 98.99%, respectively. Moreover, in class 4, the PODCNN-
LWID algorithm renders accuy, precn, recal , specy, and Fscore values of 99.67%, 99.59%,
96.80%, 99.96%, and 98.17%, respectively. Finally, in class 5, the PODCNN-LWID approach
grants accuy, precn, recal , specy, and Fscore values of 99.67%, 99.79%, 96.60%, 99.98%, and
98.17%, respectively.
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Table 2. Result analysis of PODCNN-LWID approach with distinct class labels for entire dataset.

Entire Dataset

Labels Accuracy Precision Recall Specificity F-Score

1 99.75 98.60 98.60 99.86 98.60
2 99.62 99.59 96.20 99.96 97.86
3 99.82 100.00 98.00 100.00 98.99
4 99.67 99.59 96.80 99.96 98.17
5 99.67 99.79 96.60 99.98 98.17
6 99.69 99.59 97.00 99.96 98.28
7 99.33 94.78 98.00 99.46 96.36
8 99.69 99.79 96.80 99.98 98.27
9 99.36 98.95 94.00 99.90 96.41
10 98.15 83.84 98.60 98.10 90.62
11 99.62 97.43 98.40 99.74 97.91

Average 99.49 97.45 97.18 99.72 97.24

Figure 4 demonstrates the confusion matrix offered by the PODCNN-LWID technique
for 70% of the TR dataset. The PODCNN-LWID algorithm identifies 344 samples in class 1;
340 samples in class 2; 350 samples in class 3; 341 samples in class 4; 339 samples in class 5;
336 samples in class 6; 351 samples in class 7; 338 samples in class 8; 322 samples in class 9;
335 samples in class 10; and 338 samples in class 11.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 
Figure 4. Confusion matrix of PODCNN-LWID approach with 70% of TR data. 

Table 3 portrays the intrusion classification output of the PODCNN-LWID technique 
for 70% of the TR dataset. For class 1, the PODCNN-LWID algorithm offers 𝑎𝑐𝑐𝑢 , 𝑝𝑟𝑒𝑐 , 𝑟𝑒𝑐𝑎 , 𝑠𝑝𝑒𝑐 , and 𝐹  values of 99.74%, 98.57%, 98.57%, 99.86%, and 98.57%, respec-
tively. In the meantime, for class 2, the PODCNN-LWID approach grants 𝑎𝑐𝑐𝑢 , 𝑝𝑟𝑒𝑐 , 𝑟𝑒𝑐𝑎 , 𝑠𝑝𝑒𝑐 , and 𝐹  values of 99.61%, 99.71%, 96.05%, 99.97%, and 97.84%, respec-
tively. In addition, for class 3, the PODCNN-LWID algorithm renders 𝑎𝑐𝑐𝑢 , 𝑝𝑟𝑒𝑐 , 𝑟𝑒𝑐𝑎 , 𝑠𝑝𝑒𝑐 , and 𝐹  values of 99.79%, 100%, 97.77%, 100%, and 98.87%, respectively. 
Additionally, for class 4, the PODCNN-LWID technique offers 𝑎𝑐𝑐𝑢 , 𝑝𝑟𝑒𝑐 , 𝑟𝑒𝑐𝑎 , 𝑠𝑝𝑒𝑐 , and 𝐹  values of 99.71%, 99.71%, 97.15%, 99.97%, and 98.41%, respectively. 
Lastly, for class 5, the PODCNN-LWID approach renders 𝑎𝑐𝑐𝑢 , 𝑝𝑟𝑒𝑐 , 𝑟𝑒𝑐𝑎 , 𝑠𝑝𝑒𝑐 , 
and 𝐹  values of 99.61%, 99.71%, 96.03%, 99.97%, and 97.84%, respectively.  

Table 3. Result analysis of PODCNN-LWID approach with distinct class labels with 70% of TR data. 

Training Set (70%) 
Labels Accuracy Precision Recall Specificity F-Score 

1 99.74 98.57 98.57 99.86 98.57 
2 99.61 99.71 96.05 99.97 97.84 
3 99.79 100.00 97.77 100.00 98.87 
4 99.71 99.71 97.15 99.97 98.41 
5 99.61 99.71 96.03 99.97 97.84 
6 99.69 99.41 97.11 99.94 98.25 
7 99.35 95.12 98.04 99.48 96.56 
8 99.58 99.71 95.75 99.97 97.69 
9 99.40 99.08 94.15 99.91 96.55 

10 97.90 81.71 98.24 97.86 89.21 
11 99.58 97.41 97.97 99.74 97.69 

Average 99.45 97.28 96.98 99.70 97.04 

Figure 4. Confusion matrix of PODCNN-LWID approach with 70% of TR data.

Table 3 portrays the intrusion classification output of the PODCNN-LWID technique
for 70% of the TR dataset. For class 1, the PODCNN-LWID algorithm offers accuy, precn,
recal , specy, and Fscore values of 99.74%, 98.57%, 98.57%, 99.86%, and 98.57%, respectively.
In the meantime, for class 2, the PODCNN-LWID approach grants accuy, precn, recal , specy,
and Fscore values of 99.61%, 99.71%, 96.05%, 99.97%, and 97.84%, respectively. In addition,
for class 3, the PODCNN-LWID algorithm renders accuy, precn, recal , specy, and Fscore
values of 99.79%, 100%, 97.77%, 100%, and 98.87%, respectively. Additionally, for class 4,
the PODCNN-LWID technique offers accuy, precn, recal , specy, and Fscore values of 99.71%,
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99.71%, 97.15%, 99.97%, and 98.41%, respectively. Lastly, for class 5, the PODCNN-LWID
approach renders accuy, precn, recal , specy, and Fscore values of 99.61%, 99.71%, 96.03%,
99.97%, and 97.84%, respectively.

Table 3. Result analysis of PODCNN-LWID approach with distinct class labels with 70% of TR data.

Training Set (70%)

Labels Accuracy Precision Recall Specificity F-Score

1 99.74 98.57 98.57 99.86 98.57
2 99.61 99.71 96.05 99.97 97.84
3 99.79 100.00 97.77 100.00 98.87
4 99.71 99.71 97.15 99.97 98.41
5 99.61 99.71 96.03 99.97 97.84
6 99.69 99.41 97.11 99.94 98.25
7 99.35 95.12 98.04 99.48 96.56
8 99.58 99.71 95.75 99.97 97.69
9 99.40 99.08 94.15 99.91 96.55
10 97.90 81.71 98.24 97.86 89.21
11 99.58 97.41 97.97 99.74 97.69

Average 99.45 97.28 96.98 99.70 97.04

Figure 5 exemplifies the confusion matrix presented by the PODCNN-LWID approach
with 30% of the TS data. The PODCNN-LWID technique identifies 149 samples in class 1;
141 samples in class 2; 140 samples in class 3; 143 samples in class 4; 144 samples in class 5;
149 samples in class 6; 139 samples in class 7; 146 samples in class 8; 148 samples in class 9;
158 samples in class 10; and 154 samples in class 11.
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Table 4 shows the intrusion classification output of the PODCNN-LWID approach with
30% of the TS dataset. For class 1, the PODCNN-LWID methodology presents accuy, precn,
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recal , specy, and Fscore values of 99.76%, 98.68%, 98.68%, 99.87%, and 98.68%, respectively. In
the meantime, for class 2, the PODCNN-LWID algorithm renders accuy, precn, recal , specy,
and Fscore values of 99.64%, 99.30%, 96.58%, 99.93%, and 97.92%, respectively. Similarly,
for class 3, the PODCNN-LWID technique produces accuy, precn, recal , specy, and Fscore
values of 99.88%, 100%, 98.59%, 100%, and 99.29% respectively. Further, for class 4, the
PODCNN-LWID technique offer accuy, precn, recal , specy, and Fscore values of 99.58%,
99.31%, 95.97%, 99.93%, and 97.61%, respectively. Finally, for class 5, the PODCNN-LWID
approach produces accuy, precn, recal , specy, and Fscore values of 99.82%, 100%, 97.96%,
100%, and 98.97%, respectively.

Table 4. Result analysis of PODCNN-LWID approach with distinct class labels with 30% of TS data.

Testing Set (30%)

Labels Accuracy Precision Recall Specificity F-Score

1 99.76 98.68 98.68 99.87 98.68
2 99.64 99.30 96.58 99.93 97.92
3 99.88 100.00 98.59 100.00 99.29
4 99.58 99.31 95.97 99.93 97.61
5 99.82 100.00 97.96 100.00 98.97
6 99.70 100.00 96.75 100.00 98.35
7 99.27 93.92 97.89 99.40 95.86
8 99.94 100.00 99.32 100.00 99.66
9 99.27 98.67 93.67 99.87 96.10
10 98.73 88.76 99.37 98.66 93.77
11 99.70 97.47 99.35 99.73 98.40

Average 99.57 97.83 97.65 99.76 97.69

The training accuracy (TRA) and validation accuracy (VLA) gained by the PODCNN-
LWID approach with the test dataset is shown in Figure 6. The experimental outcome
implies that the PODCNN-LWID methodology attains maximal TRA and VLA values. The
VLA is greater than the TRA.
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The training loss (TRL) and validation loss (VLL) obtained by the PODCNN-LWID
algorithm with the test dataset are displayed in Figure 7. The experimental outcome
indicates that the PODCNN-LWID method exhibits minimal TRL and VLL values. In
particular, the VLL is less than the TRL.
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A clear precision–recall inspection of the PODCNN-LWID algorithm with the test
dataset is portrayed in Figure 8. The figure denotes that the PODCNN-LWID approach
results in enhanced precision–recall values under all classes.
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A brief ROC investigation of the PODCNN-LWID algorithm on the test dataset is
displayed in Figure 9. The results indicate that the PODCNN-LWID method exhibits its
ability in categorizing distinct classes in the test dataset.
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Figure 9. ROC analysis of PODCNN-LWID approach.

Table 5 highlights the intrusion detection efficacy of the PODCNN-LWID model in
terms of distinct measures. The experimental results indicate that the PODCNN-LWID
model reports enhanced results. For instance, based on accuy, the PODCNN-LWID model
offers an increased accuy of 99.57%, whereas the CNN-MCL, XGB, RF, SVC, ANN, and E-ML
models accomplish decreased accuy values of 99.09%, 99.15%, 99.02%, 99.26%, 99.12%, and
99.48%, respectively. In contrast, based on sensy, the PODCNN-LWID approach renders
an increased sensy of 97.65%, whereas the CNN-MCL, XGB, RF, SVC, ANN, and E-ML
algorithms establish decreased sensy values of 97.19%, 96.89%, 96.06%, 96.21%, 97.01%,
and 96.20%, respectively. Finally, based on specy, the PODCNN-LWID technique has
an increased specy of 99.76%, whereas the CNN-MCL, XGB, RF, SVC, ANN, and E-ML
approaches accomplish decreased specy values of 99%, 99.23%, 99.60%, 99.11%, 99.21%, and
99.31% respectively. From the results and discussion, it is apparent that the PODCNN-LWID
model accomplishes the maximum intrusion detection performance, with an accuracy of
99.57%. The enhanced performance of the PODCNN-LWID model is due to the inclusion
of the PO-algorithm-based hyperparameter tuning process.

Table 5. Comparative analysis of PODCNN-LWID approach with existing algorithms.

Methods Accuracy Sensitivity Specificity

PODCNN-LWID 99.57 97.65 99.76
CNN-MCL 99.09 97.19 99.00

XGB 99.15 96.89 99.23
RF 99.02 96.06 99.60

SVC 99.26 96.21 99.11
ANN 99.12 97.01 99.21
E-ML 99.48 96.20 99.31
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5. Conclusions

In this article, a new PODCNN-LWID technique is developed for the recognition of
intrusions in the IoT network. The presented PODCNN-LWID technique primarily aims to
identify and categorize intrusions. In the presented PODCNN-LWID model, two major
processes are involved, namely, classification and parameter tuning. At the primary stage,
the PODCNN-LWID technique applies the DCNN model for the intrusion identification
process. Next, in the second stage, the PODCNN-LWID model utilizes the PO algorithm
as a hyperparameter tuning process. The experimental validation of the PODCNN-LWID
model is carried out on a benchmark dataset, and the results are assessed using varying
measures. The comparison study reports the enhancements of the PODCNN-LWID model
over other approaches. In the future, feature selection and outlier removal processes can be
integrated to boost the efficiency of the projected approach.
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