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Abstract: In this study, experiments, simulations, and optimization were performed to evaluate heat
transfer performance of ferrofluids. Ferrofluids are colloidal suspensions containing magnetic-nano
particles with a diameter of 5 to 15 nm in a base fluid such as oil or water. Recently, as many
devices are miniaturized, the design of heat dissipation systems are being diversified to consider
cost and safety, and it is becoming important to separate an ancillary device for cooling from main
unit. In ferrofluids, the behavior and vortex of magnetic-nano particles are actively generated by an
external magnetic field, and the cooling system can be designed in a simplified manner by using this
characteristic. The main design parameter is the arrangement of permanent magnets, and the output
variable is the temperature inside the magnetic nanofluid. The permanent magnet can be moved up
and down, and the temperature inside the magnetic nanofluid was measured at various locations. A
predictive model was created using a design of experiments (DOE) and response surface method
(RSM) using selected design and temperature variables. Based on the generated regression model,
an optimization was applied to find a permanent magnet arrangement that maximizes heat transfer
performance. Through the optimization technique used in this study, economic efficiency in terms of
time and cost was obtained by reducing the number of experiments.

Keywords: ferrofluid; heat transfer; permanent magnet; optimization; design of experiments;
response surface method

1. Introduction

Recently, interest in safety issues of electronic devices has increased. This is because,
as devices become smaller, risk of an explosion may occur if an efficient heat dissipation
performance system cannot be built. To solve this problem, various studies of methods
such as water cooling and air cooling have been conducted [1,2]. However, there is a limit
to the method of uniformly distributing heat or cooling the device in the conventional
way. In this study, an improved heat dissipation system was set by using a working fluid
called a ferrofluid that can control the heat flow. A ferrofluid is a fluid, whose base fluid
is water or oil, that is ferromagnetic because it contains ferromagnetic particles such as
Fe3O4, Fe2O3, Gd2O3 with a size of 3 to 15 nm [3]. Due to the magnetic particles, this fluid
flows in a direction along with kinetic energy when an external magnetic field exists [4,5].
The thermal conductivity of a ferrofluid is also increased. Various studies using ferrofluids
are being conducted due to the advantage of being able to control the flow in a desired
direction to improve the heat transfer rate.

Singh et al. [6] used a ferrofluid and external magnetic fields to increase heat transfer
on high temperature surfaces of solar photovoltaic (PV) systems. Parameter sets were set as
actuation frequency of alternating magnetic field (0.5~20 Hz), Reynolds number (Re = 24,
60 and 100). Using velocity and temperature contours, results were visually compared
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depending on whether magnetic field was applied. When an electromagnet was applied,
numerical results were compared and analyzed by increasing Re or changing the frequency.
Through this, a difference in the heat transfer performance between the high temperature
ferrofluid and the low temperature wall was confirmed. Finally, compared with the case
where no electromagnet was applied, the heat transfer was increased by 17.41% in the case
of Re = 100 and magnetic flux density (B) = 1 T.

Heidari et al. [7] set up a new cooling system for PV systems using a ferrofluid com-
posed of Fe3O4 based on pure deionized water (DIW) as a cooling medium and a rotating
magnetic field (RMF). The experimental setup consisted of four major components. There
was a PV system that generated heat, a metal halide lamp, a ferrofluid and permanent mag-
nets. The design variables were the concentration of magnetic nano particles (MNPs = 0.01,
0.02, 0.03, 0.04, 0.05%), the rotational speed of magnet, and the magnetic field induction
(B = 0.35, 0.45, 0.57, 0.72, 0.88 T). The system consisted of 72 cells, and 12 temperature
measurement points were set. Overall, the cooling performance of the cell surface was
improved as the concentration of magnetic nano particles, the strength of the magnetic
flux density, and the rotation speed increased. This was due to the performance change
by the magnetic torque of particles and the vorticity of the ferrofluid. Finally, a cooling
performance improvement of 17.8~30% and a maximum power improvement of 1.67~47.5%
was shown.

Bezaatpour et al. [8] tried to improve the performance of a flat plate solar collector by
using four rotary tubes and a magnetic field inducer. As the working fluid inside the collec-
tor tube, a ferrofluid composed of Fe3O4 and water was used. The design parameters were
set as the tube rotation speed (ω = 0~2.5 rpm) and magnetic field intensity (B = 0~8 mT).
Heat dissipation occurred through an external magnetic field and tube rotation, and the
performance was improved by setting the convective heat transfer coefficient as an output
parameter. In conclusion, 27.8% and 10.44% of energy loss was recovered by using a
magnetic field inducer and a rotary pipe, respectively.

Mehrez et al. [9] analyzed the heat transfer performance using a low temperature
ferrofluid flowing in a rectangular horizontal channel. Design parameters include nanopar-
ticles volume fractions (ϕ = 0~0.05), Reynolds number (Re = 50~500), and magnetic number
(Mn = 0~100). Heat exchange became active by using a magnetic field and the ferrofluid.
This is because a recirculation region was created around the magnetic source and the
thermal boundary layer was removed. Finally, compared to the case without an external
magnetic field, the heat exchange increased by 20% at ϕ = 0.05. In addition, in the case of
ϕ = 0.05 and Re = 500, the heat transfer performance was improved by 86%.

Ashjaee et al. [10] experimentally studied laminar forced convection using a ferrofluid
by applying an external magnetic field around a small heat sink device. The magnetic
field area was visually confirmed using the commercial program COMSOL Multiphysics.
In addition, the temperature of the heat sink was measured by using thermocouple wire
and a data logger. The magnetic field strength and Re were set as variables to analyze the
heat transfer performance by the ferrofluid. In the presence of an external fixed magnetic
field, the magnetic nanoparticles were maintained in a constant arrangement towards the
magnetic field in the base fluid. Finally, the thermal conductivity of the ferrofluid was
increased by the magnetic field, thereby improving the heat transfer performance.

Ghorbani et al. [11] set the magnetic field strength and position as variables and
studied the heat transfer performance of high temperature ferrofluid when it flowed over
a cold wall. The magnetic field strength was set to five variables and the location to six
variables. The higher the magnetic field strength, the better the heat transfer performance.
The heat exchange was most active when all magnets were located on the cold wall. This is
because small circulation is combined around the magnet to create a big vortex, and the
temperature exchange is activated by this vortex. Finally, the cooling rate was increased.

Studies have been recently conducted comparing the heat transfer performance of
ferrofluids under different arrangements of magnets. However, studies comparing the
performance of ferrofluids based on optimization techniques are insufficient [12]. Therefore,
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the experimental results were analyzed according to the arrangement of external perma-
nent magnets after containing the ferrofluid in a glass tube. Based on this, an arrangement
of permanent magnets with optimal heat dissipation performance was found by utiliz-
ing optimization techniques such as design of experiments (DOE) and response surface
method (RSM).

2. Experimental Process
2.1. Experimental Device

In this study, a ferrofluid was used as the heat transfer medium. It was a colloidal
solution containing Fe3O4 magnetic nanoparticles with a size of 5 to 15 nm in an oil-based
base fluid called EFH-1. It was composed of iron oxide magnetite, oleic acid dispersant,
hydrotreated light distillate. Surfactant treatment was applied to prevent agglomeration
between particles. Table 1 shows the physical properties of EFH-1 [13]. It has a property
of increasing thermal conductivity when an external magnetic field is applied, so heat
transfer performance can be improved by using ferrofluid. The overall experimental setup
is shown in Figure 1a. To contain the ferrofluid, a Pyrex glass tube with high heat resistance
was used. The temperature deviation was set to compare the heat transfer performance
inside the glass tube according to the arrangement of permanent magnets. A heating
pad was placed to transfer high temperature heat to the lower portion of the glass tube.
The heating pad was the principle of generating heat by the internal coil. This device
can set the target temperature through the control box. Permanent magnets were placed
around the glass tube to apply an external magnetic field. Neodymium permanent magnets
(20 mm × 15 mm × 3 mm) were used, and they were arranged as shown in Figure 1c. The
magnetic field strength was set to 0.325 T. When permanent magnets are fixed in one
position without movement, magnetic nanoparticles aggregate only around the magnets,
and the fluidity of the ferrofluid is limited. Therefore, linear motors were used to ensure
the dispersion of the particles and to promote heat exchange by the fluid. Permanent
magnets were placed on the front side of the motors; the magnets moved according to the
reciprocating motion of motors. Through various arrangements of the permanent magnets,
the behavior of the ferrofluid inside the glass tube could be diversified, thereby affecting
the heat transfer performance. A T-type thermocouple TC wire was used to measure the
temperature inside the glass tube in real time. The TC wires were placed at four points
at regular height intervals, and the location was set at the center of the glass tube. The
temperature data obtained from the TC wires was confirmed in real time through a data
acquisition system DAQ (DAQ970A, of Keysight). Temperature data using the DAQ was
measured and stored at 2 s cycle.

Table 1. The properties of EFH-1 [13].

Properties Value

Thermal conductivity 0.19 W/(m·K)
Thermal expansion coefficient 0.00086 1/K

Relative permeability 2.552
Heat capacity at static pressure 1840 J/(kg·K)

Density (T = 298.15 K) 1221 kg/m3

Dynamic viscosity 0.00727 Pa·s
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Figure 1. Total experimental device configuration applied in this study (a) Total experimental device,
(b) DAQ (DAQ970A of Keysight), (c) Permanent magnet and linear motor.

2.2. Experimental Procedure

For the experiment, the glass tube was filled with the ferrofluid to 80% of its height
(40 cm). Four TC wires for real time temperature measurement were arranged at equal
intervals of 7.5 cm from the bottom of the glass tube as shown in Figure 2b. In this
experiment, the temperature deviation at the glass tube was set using the outside air and
heating pad. The outside temperature (air) was maintained at 19.5 ◦C (±0.1 ◦C) during the
experiment. The heating pad was placed at the bottom of the tube as shown in Figure 2a,
and the experiment was conducted by setting Th(=60 ◦C) as the reference temperature.
The linear motor installed for the permanent magnet movement was set to reciprocate at a
speed of 17.5 cm/s to maximize the movement of ferrofluid (Table 2). The experiment was
conducted for 4 h and 30 min for each case to obtain converged result for all cases.
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Figure 2. (a) Schematic of total experimental device, (b) Figures of Pyrex glass tube and TC wire
configuration, (c) Parameter sets for permanent magnets.



Appl. Sci. 2022, 12, 8666 5 of 14

Table 2. Operating and boundary conditions applied in this study.

Properties Value

Temperature of Air 292.65 K
Initial temperature of the Ferrofluid (Ti) 292.65 K

High temperature (Th) surface of the Pyrex glass tube 333.15 K
Magnetic flux density of the permanent magnet (M) 0.325 T

Velocity of reciprocating linear motor 17.5 cm/s

2.3. Design of Experiments

To analyze the heat transfer performance according to the permanent magnet arrange-
ment, a design of experiments (DOE) was conducted [14]. As design parameters, the
height of permanent magnets (D1, D2 of Figure 2c) was set. The center position of the
permanent magnet was set to (A), and the upper surface of the heating pad was set to
(B) (see Figure 2c). Based on the glass tube, the distance corresponding to the side is D1,
and to the right side is D2. The DOE was processed using Ansys Design Xplorer software.
Latin hypercube sampling (LHS) was selected as the DOE type, and the parameter sets
for the design variables (height of the permanent magnet) were set according to LHS. The
advantage of LHS is the permanent magnet arrangement can be randomly determined
without overlapping the design points between the parameter sets. Nine experiments were
conducted with different permanent magnet arrangements (see Table 3). The resulting
temperature for each of the TC wires in each experiment is shown in Table 4. In experiment
4 and 8, it was numerically confirmed that temperature was high. Based on this result, an
optimization process was performed.

Table 3. Parameter sets based on DOE.

Experiment Distance of D1 Distance of D2

Experiment 1 13.3 ± 0.025 cm 8.0 ± 0.025 cm
Experiment 2 21.3 ± 0.025 cm 13.3 ± 0.025 cm
Experiment 3 5.3 ± 0.025 cm 5.3 ± 0.025 cm
Experiment 4 18.7 ± 0.025 cm 16.0 ± 0.025 cm
Experiment 5 8.0 ± 0.025 cm 24.0 ± 0.025 cm
Experiment 6 26.7 ± 0.025 cm 10.7 ± 0.025 cm
Experiment 7 16.0 ± 0.025 cm 26.7 ± 0.025 cm
Experiment 8 24.0 ± 0.025 cm 21.3 ± 0.025 cm
Experiment 9 10.7 ± 0.025 cm 18.7 ± 0.025 cm

Table 4. Temperature result for each TC based on all DOE cases.

Experiment TC 1 (◦C) TC 2 (◦C) TC 3 (◦C) TC 4 (◦C)

Experiment 1 34.5627 34.5769 34.5188 34.4329
Experiment 2 34.7507 34.7574 34.7345 34.6549
Experiment 3 34.0390 34.0583 33.9920 34.0150
Experiment 4 35.0921 34.9866 34.8003 34.9575
Experiment 5 35.0339 34.8213 34.8070 34.7308
Experiment 6 34.7378 34.7169 34.7249 34.3848
Experiment 7 34.9472 34.7990 34.7724 34.5860
Experiment 8 35.2011 34.1153 35.1518 34.9218
Experiment 9 34.8204 34.9160 34.8537 34.8118

In addition, we considered two experimental uncertainties; the random error was the
permanent magnet vertical position adjustment (D1, D2), and the systematic error was the
measurement error caused by the thermocouple (TC). It was assumed that a random error
occurs about 0.25 mm in the D1 and D2 adjustment. The uncertainty of the TC is known to
be about 0.013 ◦C at 0.006 mV/◦C at 25 ◦C and was ignored.
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3. Numerical Analysis
3.1. Governing Equations

Prior to the experiment, numerical analysis was performed using the COMSOL Multi-
physics, CFD (Computational Fluid Dynamics) commercial software program. Numerical
analysis was set under the same conditions as the experiment. To analyze changes accord-
ing to the vertical arrangement of permanent magnets, numerical analysis was performed
in 2D. The equations for continuity, momentum, and energy are as follows [15]:

- Continuity:

∇·(ρ
⇀
V) = 0 (1)

- Momentum:

∇·(ρ
⇀
V

⇀
V) = ∇·µ

((
∇

⇀
V
)T

+∇
⇀
V

)
−∇p− 2

3
µ(∇·

⇀
V)I + F (2)

- Energy:

∇·
(
⇀
V(p + ρE)

)
= ∇·((=τ·

⇀
V) + k∇T −∑ hj

⇀
J j) + Sh (3)

The last F term of momentum Equation (2) is the force term that corresponds to both
the buoyancy force and the magnetic force. Therefore, the F term can be replaced with

the sum of ρβ
(
T − Tre f

)
corresponding to buoyancy force and

(⇀
M·∇

)⇀
B corresponding

to magnetic force. The final Equation (2) with these terms is as follows:
- Momentum:

∇·(ρ
⇀
V

⇀
V) = ∇·µ

((
∇

⇀
V
)T

+∇
⇀
V

)
−∇p− 2

3 µ(∇·
⇀
V)I + ρβ

(
T − Tre f

)
+

(
⇀
M·∇

)
⇀
B

(4)

Additionally, the expression for Gauss’s laws is as follows [16]:

⇀
B = µ0(

⇀
M +

⇀
H) (5)

where B is the magnetic flux density, M is the magnetization, and H is the magnetic
field strength. Furthermore, µ0 is a constant value, meaning a permeability value
in a vacuum state (=4π × 10−7); B and H as expressions for Maxwell’s equation,
respectively, are as follows [17]:

⇀
∇·

⇀
B = 0 (6)

⇀
∇×

⇀
H = 0 (7)

Moreover, the relation for M and H in Equation (5) is expressed as follows:

M = χm
⇀
H (8)

In Equation (8), χm is the magnetic susceptibility, and is defined as follows [18]:

χm =
χ0

1 + β(T − T0)
(9)

In this expression, β means a thermal expansion coefficient, and it is confirmed that an
inverse relationship between χm and T is established. This is, high temperature ferrofluid
responds loss to the external magnetic field, and low temperature fluid actively responds
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to the magnetic field. Due to these characteristics, the convection phenomenon occurring in
the magnetic field is called a thermomagnetic convection, and it promotes heat exchange.

3.2. Grid Systems and Operating Conditions

To reduce the simulation result error, a grid dependency test was conducted. This pro-
cess was carried out six times. As shown in Figure 3a, the x-axis of the graph is the number
of elements, and the y-axis is the total heat flux. Starting with about 110,000 elements, the
number of elements was increased by about 100,000 and the results were analyzed. As a
result, there was an error in the previous three cases. After about 140,000 elements, it was
determined that the total heat flux converged to about 13.5 W/m2. Therefore, numerical
analysis was performed on about 140,000 elements in consideration of time and efficiency.
Additionally, eight inflation layers were arranged to precisely observe the flow pattern
around the permanent magnets and the wall of the glass tube. Finally, mesh configurations
in these conditions are shown in Figure 3b. The operating conditions and boundary condi-
tions of the simulation were basically set to the same as those of the experiment. As shown
Figure 3c, the heating pad temperature Th (=60 ◦C) at the lower part of the glass tube and
the initial temperature Ti (=19.5 ◦C) of the ferrofluid were set as in the experiment, and the
magnetic flux density (M) of the permanent magnet was set to 0.325 T. Since the effect of
the outside temperature was not large in the actual experiment, the boundary condition of
the glass tube except for the heating pad were assumed to be walls in the simulation. Then,
numerical analysis was performed.
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4. Optimization Process
4.1. Response Surface Methods

In this study, a response surface based on design of experiments was created. A neural
network (NN) and a non-parametric regression (NPR) method were used to generate the
response surface [19–21].

The first regression method is a neural network. The NN’s fundamental schematic
is shown in Figure 4. Three layers make up a NN: the input side, the hidden layer, and
the output layer. A hidden layer may include one or more layers, and a NN is trained
by establishing mathematical connections and weights between neighboring layers. The
hidden layer’s layers repeat learning and provide the output layer with the chosen input.
When building a regression model, 70% of the data are used for training and 30% are



Appl. Sci. 2022, 12, 8666 8 of 14

used for checking. For nonlinear issues, NN-based regression has a high success rate. The
number of layers was one of the NN factors that were changed for this investigation.
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The second method is a non-parametric regression. In contrast to previous RSM
approaches, the non-parametric regression method estimates the values of the one design
point that must be determined. Error in a particular data set can be reduced or eliminated
using this kind of non-parametric regression analysis. This enables the creation of a
regression model that is more like the original data. The basic formula of NPR method is
as follows:

f (
→
X) = 〈W, X〉+ b =

N

∑
i=1

(Ai − A∗i ) ∗ K(
→
Xi,
→
X) + b (10)

Here W is weighting factor, X is input sample from DOE, b is bias, K is Gaussian kernel,
A is Lagrange multipliers, N is number of DOE points, a and b are the unknown parameters.

4.2. Response Surface Result of Neural Networks

Figure 5 shows the response surface using the NN method. The x-axis means D1, the
y-axis means D2, and the z-axis means values from TC1 to TC4, respectively. For (a) TC1
and (b) TC2, the overall trend was very similar. As the D1 value increased, the temperature
of TC1 increased, and the maximum point of the temperature value was shown at D1 and
D2 = 25. (c) TC3 and (d) TC4 showed a similar relationship. The maximum point was
shown when D1 was a low value, and the maximum point was shown when D2.

4.3. Response Surface Result of Non-Parametric Regression

Figure 6 shows the response surface using the NPR method. In the case of the NPR
method, an overall similar trend was shown from TC1 to TC4. In the case of D1, the
maximum TC value was shown at about 16, and in the case of D2, the maximum TC value
was shown at about 20.
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4.4. Accuracy of Response Surface

Root mean square error (RMSE) and coefficient of determination (R2) were used to
evaluate the regression models. Both methods are generally used to assess the correctness
of a regression model, and the formula is as follows [22]:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (11)

R2 =
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − yi)

2 (12)

where yi is the function value of an experimental point’s response variable, ŷi is the
function value of the regression model and N represents the number of design points for
the regression model evaluation.

Figure 7 schematically shows the goodness of fit for the three regression models. Each
figure (circle, diamond) for the two regression models is a generalized distribution for four
output variables (see Table 5). The x-axis and y-axis denote normalized test and predicted
data, and it can be judged that the prediction is better the more it matches the x = y line.
It can be judged that the NPR method better predicts the data. Based on this result, the
regression model to be used for optimization was selected as NPR.
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Table 5. Performance evaluation for each TC based on all DOE cases.

TC 1 TC 2 TC 3 TC 4

NN
R2 0.976 0.943 0.966 0.973

RMSE 0.246 0.126 0.091 0.0968

NPR
R2 0.998 0.998 0.998 0.998

RMSE 0.012 0.011 0.011 0.009

4.5. Optimization Formula

In this optimization, the screening method was used. The screening is non-iterative
sampling method using a quasi-random number generator. Besides, it can be available for
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both continuous and discrete input parameters. The objective function in the optimization
of this study is to maximize the temperature of TC4 that is farthest from the floor. This is
to ensure that the optimized magnet arrangement produces the best heat transfer. As a
constraint, the temperature of the remaining TC1~TC3 should be raised to 35 degrees or
higher. The optimization formula is as follows:

Find Di (i = 1, 2)
To maximize TC4
Subject to TC1 > 35 (◦)

TC2 > 35 (◦)
TC3 > 35 (◦)
3.6 < D1 < 26.66 (cm)
3.6 < D2 < 26.66 (cm)

(13)

5. Results and Discussion
5.1. Optimization Results

Table 6 shows the test results based on the optimal values (D1, D2) predicted by the
two regression models. Both NN and NPR predicted temperatures above 35 ◦C from TC1
to TC4, but in the actual experimental results, there was no result exceeding 35 ◦C in the
case of the NN model. However, in the NPR result, it can be judged that the temperature of
35 ◦C or higher was measured in the actual test from TC1 to TC3, and it is consistent with
the constraints condition of this optimization.

Table 6. Optimization results for the two regression models (NN and NPR).

D1 (cm) D2 (cm) TC 1 (◦C) TC 2 (◦C) TC 3 (◦C) TC 4 (◦C)

NN

Predict
18 21.06

35.16 35.19 35.19 35.08
Experiment 34.63 34.68 34.69 34.57

TC’s Relative error (Predict vs. Exp.) 1.5% 1.45% 1.42% 1.45%

NPR

Predict
17.78 18.80

35.51 35.35 35.25 35.09
Experiment 35.09 35.19 35.09 34.99

TC’s Relative error (Predict vs. Exp.) 1.18% 0.45% 0.45% 0.28%

The relative errors of the two regression models were compared. The average relative
error (predict vs. exp.) occurred about 1.5% in the NN models TC1 to TC4, but the relative
error in the NPR model was 0.6%. In Figure 7, the goodness-of-fit results showed that the
NPR model had a higher fit, which was also confirmed by the experimental results.

In the case of TC4 temperature, which is the objective of this optimization, the NPR
model showed better results in this optimization because a higher temperature was mea-
sured in the NPR model (34.99 ◦C) compared to the NN model (34.57 ◦C).

5.2. Numerical Results

To verify the reliability of the numerical analysis, experimental values and simula-
tion values were compared for NPR (the permanent magnets arrangement of the highest
temperature distribution) and experiment 3 (the arrangement of the lowest temperature
distribution) in Table 7. Only an error of maximum 1.08% was shown, proving the validity
of the numerical analysis results.
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Table 7. Validations of numerical analysis for two experiments (Experiment 3 and NPR).

TC 1 (◦C) TC 2 (◦C) TC 3 (◦C) TC 4 (◦C)

Experiment 3

Numerical analysis 33.88 33.86 33.84 33.83
Experiment 34.03 34.05 33.99 34.01

TC’s Relative error
(Numerical. vs. Exp.) 0.44% 0.56% 0.44% 0.53%

NPR

Numerical analysis 34.84 34.81 34.80 34.78
Experiment 35.09 35.19 35.09 34.99

TC’s Relative error
(Numerical. vs. Exp.) 0.71% 1.08% 0.83% 0.60%

The velocity contour was used to visualize the behavior of the ferrofluid in the Pyrex
glass tube. Numerical analysis was performed for all experiments. Figure 8 shows two
experiments (experiment 3 and NPR) among them. In experiment 3 (see Figure 8a), most
of the fluid behavior is located at the bottom of the glass tube. There were cells only near
permanent magnets, and heat diffusion of the fluid was concentrated near there. The high-
temperature fluid in the lower part could not reach the upper part of the tube. Therefore,
the overall temperature distribution was low. In the case of NPR (see Figure 8b), the fluid
behavior was different from experiment 3. The fluid concentration around the permanent
magnets was similar to experiment 3, but there was a difference in that ferrofluid circulated
over a wide range in the tube. An eddy was actively generated by the external magnetic
field. It means that the high-temperature fluid at the bottom affected the upper part of the
tube. That is, the energy exchange occurred most actively, and the temperature distribution
was the highest. Through numerical analysis, the variation of the fluid behavior was
confirmed according to the arrangement of permanent magnets.
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6. Conclusions

In this study, experiments, numerical analysis, and optimization were performed
using a ferrofluid that has the advantage of controlling flow by a magnetic field.

The vertical arrangement of permanent magnets around the glass tube containing the
magnetic fluid was selected as the design variable (input variable), and TC1 to TC4 for
measuring the temperature of the magnetic fluid were selected as the temperature variable
(output variable).

Design of experiments (DOE) was performed to establish experimental points for the
permanent arrangement. Among various DOE methods, Latin hypercube sampling (LHS),
which has the advantage of predicting the population well even with a small sample, was
selected. Experiments were conducted with a total of nine experimental arrangements
derived through this method (refer to Table 3). As a result, in experiment 4, the temperature
distribution was the highest in the four TCs (see Table 4). In particular, it was measured
about 34.95 ◦C at TC 4. That means the heat diffusion was actively distributed to the top
of the glass tube. On the other hand, experiment 3 had the lowest temperature at TC
4, about 34.01 ◦C. Through this, it was determined that the circulation of the ferrofluid
did not occur well when permanent magnets were placed at the bottom of the glass tube
(D1, D2 = 5.3 cm).

To determine the arrangement of permanent magnets in which optimal heat diffusion
occurs, an optimal design based on the response surface method was performed.

For the regression of the response surface method, two methods (NN, NPR) were
performed. The maximum temperature of TC4 was obtained by setting the range of
temperature from TC1~TC3 and constraints of the design variables D1 and D2. Through
the process, temperature values for NN and NPR were derived.

As a result of optimization, when the arrangement of D1 and D2 was 17.78 cm and
18.8 cm, thermal diffusion results of more than 35 ◦C were predicted for both TC1 and TC4.
In the experiment results, the average relative error of TC1~TC4 was about 0.6% compared
to the predicted value, from which it can be judged that the optimal value prediction of the
NPR model was good.

Numerical analysis was performed by reflecting the optimization results. The lowest
(experiment 3) and highest (NPR) temperature distribution were intensively compared. In
the case of NPR, the fluid behavior formed cell shapes throughout the glass tube in a rela-
tively wide range. Through this, the heat diffusion occurred actively, and the temperature
distribution was high.
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