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Abstract: Wind energy is becoming a common source of renewable energy in the world. Wind
turbines are increasing in number, both for onshore and offshore applications. One challenge with
wind turbines is in detecting anomalies that cause their breakdown. Due to the complex nature
of the wind turbine assembly, it is quite an extensive process to detect causes of malfunctions in
the system. This study uses the Mahalanobis distance (MD) to detect anomalies in wind turbine
operation, using SCADA alarm data as a comparison. Different predictive models were generated
as the bases for analyses in MD computations. Using the SCADA alarm data as a reference, trend
patterns that deviated from the threshold value were compared. Results showed that the MD could
be used to detect anomalies within a group of data sets, with behaviors learned based on the model
used. A large portion of those data sets deviated from the threshold level, corresponding to serious
alarms in the SCADA data. We concluded that the MD can detect anomalies in different wind turbine
components, based on this study. MD analysis of models can be used in conditions monitoring
systems of wind turbines.

Keywords: wind turbine; Mahalanobis distance; anomaly detection; SCADA alarm; predictive models

1. Introduction
1.1. Background of the Study

One crucial aspect of wind turbine maintenance is the reliability of the anomaly
detection system used for failures/faults. Such a system can improve the performance
of the wind turbine, as the component where failure is detected would be given proper
maintenance [1]. This method also reduces costs associated with maintenance, as affected
components will become the focus of maintenance work. With the current trends in improving
monitoring systems through research, anomaly detection is a significant part of this.

Different methods in anomaly detection can be developed and incorporated into the
wind turbine system. Alarms in the SCADA system can be used as references for determin-
ing the types of anomalies. Still, due to the complex and solitary function of the SCADA
system, it is seldom used in conditions monitoring systems [2]. In-depth failure analysis of
wind turbine components takes much time and effort, and comes with corresponding costs.
Currently, an emerging method in anomaly detection is data analysis in anomaly detec-
tion [3–5]. Contemporary research uses data analysis in detecting anomalies, conveniently
with the aid of computing software. In this paper, our aim is to use SCADA data and the
Mahalanobis distance approach as the primary method of detecting anomalies.

The main objective of this study is to incorporate the use of operational SCADA data
into the anomaly detection feature of a condition monitoring system. Different models
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will be created and used for the data analysis using the Mahalanobis distance approach.
A comparison with SCADA alarm data will verify the model’s performance using the MD.
The operational data used in this study were extracted from a wind farm in Taiwan with
fourteen wind turbines, during the year 2019.

The focus of this study is the development of an anomaly detection method for wind
turbines using SCADA operational data and the MD approach. Since this study is still
in the developmental stage, our approach was not yet integrated into a wind turbine’s
actual CMS. Furthermore, since different parameters are involved in different wind turbine
SCADA designs, this means that minor changes in this approach should be applied when
testing other wind farms [6]. Furthermore, the wind farm tested in this study is an onshore,
direct-drive type system.

This study will use the Mahalanobis distance to measure distance variations in the
data set generated from predictive models. This measure can provide insights into the
duration of the generated data where abnormal behavior can be observed. In this way,
abnormalities in the wind turbine can be checked using the SCADA alarm data generated
throughout the study.

In this study, anomalies detected by the MD method were analyzed based on the
SCADA alarm data. No count or measure of the frequency of various anomalies was
conducted. This means that there was no further analysis conducted in terms of the
frequency of alarms that were generated during the duration of the anomaly detected from
the MD analysis.

The following sections describe the Mahalanobis distance, which is the main approach
used in this study, followed by a summary of related research focused on the use of the
MD in fault detection and SCADA systems for conditions monitoring of wind turbines.
A description of the wind turbine data used and a description of the proposed method are
then detailed in the Materials and Methods section. This is then followed by a discussion
of the results and the conclusions, which address the future scope of this research.

1.2. Mahalanobis Distance

The Mahalanobis distance is the distance between two points in multivariate space.
This is similar to the Euclidian distance, except there is also a correlation between variables
that is involved for the MD approach [7]. One of the most common purposes of the MD is
in locating outliers in the multivariate space. This is commonly used in applications such
as fault detection in some measuring tools. The Mahalanobis distance between two objects
can be defined as follows by Equation (1):

dMD =

√
(xb − xa)

T ∗ C−1 ∗ (xb − xa) (1)

where xa and xb refer to a pair of objects, while C is the sample covariance matrix.
The advantage of using the Mahalanobis distance lies in its capacity to solve for the

limitation of the Euclidian distance. Since using the Euclidian distance in a multivariate space
would be inappropriate as it only deals with distances between points, the Mahalanobis dis-
tance solves this by measuring the distance between the point and the distribution itself [8].
This is achieved by using the covariance of the matrix distribution in the calculation, as
shown in Equation (2):

covx,y =
∑(xi − x)(yi − y)

N − 1
(2)

where xi and yi represent data values of the distributions, and x and y refer to the means
of the distributions. Figure 1 is an example plot of the Mahalanobis distance in which
a contour plot overlays the scatterplot of 100 random draws from a bivariate normal
distribution with a mean of zero, unit variance, and 50% correlation. The centroid defined
by the marginal means is noted by a blue square. It should be noted that the Mahalanobis
distance is capable of detecting outliers in the bivariate space.
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Figure 1. Illustration of the Mahalanobis distance in a bivariate space adapted from [9]; the contours
represent the behavior of the MD in the bivariate space. The Mahalanobis distance can detect outliers
in the bivariate space.

1.3. Related Studies

One study on the statistical evaluation of SCADA data for condition monitoring
indicates that there are advantages and limitations of using SCADA in condition monitor-
ing [10]. One such limitation is in its capacity to detect anomalies by itself. SCADA data are
limited to the operational values of the wind turbines which can not function for anomaly
detection alone. Statistical analyses can be conducted in order to address this limitation,
and one tool that can be used is the “Mahalanobis distance”.

Based on the characteristics of the Mahalanobis distance, its applicability in fault
detection for other applications has already been studied. One study made use of the MD
approach in detecting incipient sensor faults. In this study, the model used the MD approach
to compare with a conventional approach. The results showed that the MD approach’s
performance was comparable with the conventional one [11]. It was emphasized in this
paper that the MD approach is a data-driven monitoring method. Another study that
used the MD approach in detecting anomalies involved detecting multivariate outliers in
a data set. Multivariate outliers can cause disruptions in the data’s behavior, resulting in
erroneous results. This led to the application of the MD approach to detect these outliers in
the data set. The study results showed that the MD approach was able to detect multivariate
outliers, even though the accuracy was relatively low compared to other methods [12].

A study in [13] conducted an incipient fault diagnosis using the MD where the detec-
tion was based on empirical probability estimation. The results from the simulation showed
that the proposed methodology was effective for non-Gaussian data, and at the same time
sensitive for incipient fault detection. The case study presented also highlights the benefits
of the proposed methods compared to state-of-the-art-based solutions. The MD approach
was also used in methane detection using spectroscopy. The study aimed to incorporate
the MD approach in gas detection and calculate the corresponding effects of errors in the
detection method. Their results showed that the error was minimized for the methods that
incorporated the MD approach [14]. A better error detection performance was achieved
when the MD approach was incorporated into the anomaly detection method.

In terms of anomaly detection in wind turbines, several methods using data analysis
were developed. The paper in [15] developed an anomaly detection method based on
SCADA data mining. This method extensively used the data in the SCADA to create
correlations between abnormalities and performances of wind turbines. The results showed
a promising use of SCADA data in detecting abnormalities in wind turbines.

Two studies in [16,17] proposed new methods that can be used for wind turbine
diagnosis using SCADA data. Parameter features from the SCADA data were used in [16],
while vibration measurements in the tower were used in [17]. Both of these methods were
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seen to be promising in developing future wind conditions monitoring systems. Another
paper [18] showed how SCADA data for a gearbox was used in creating a new anomaly
detection technique. The paper used machine learning algorithms in the creation of a model
that was used for anomaly detection. Compared to other techniques, this technique was
able to reach a comparable efficiency.

Using SCADA data in anomaly identification was emphasized in another article [19].
In this study, an improvement in the deep belief network was used as the basis for anomaly
detection. Results showed considerable efficiency in terms of accurately detecting abnor-
malities in wind turbines. These papers used SCADA data and analyzed them in a variety
of ways to create an abnormal detection method.

Mahalanobis distance control charts were used in determining anomalous behaviors
in [20], which were compared with other methods, particularly the multivariate exponen-
tially weighted moving average. It was found that using MD control charts were more
effective in identifying outliers within the data set, and could moreover be used for de-
tecting anomalies in data-extensive applications. Another study in [21] showed how the
MD can be used in identifying diagnoses in non-linear systems. Since non-linear systems
are more prevalent in real-world scenarios, it was advised that the MD be used to obtain
more reliable diagnostics of systems. A different study conducted also assessed the struc-
tural health of offshore wind turbines, using autoencoders and the MD distance [22]. The
combination of the MD and autoencoders resulted in a more robust unsupervised novelty
detection pipeline for structural health monitoring.

The proposed method in this study will focus on the use of operational data of the
SCADA system paired with the MD approach in order to investigate abnormalities in the
operation of wind turbines. This is an improved version of the related literature cited above,
as this method will be able to relate the MD approach to the actual alarm event. This could
be beneficial to the future of conditions monitoring for wind turbines.

2. Materials and Methods

The general data of the wind turbine from the wind farm used in the study are
presented in Table 1. It should be noted that in using the SCADA system of the wind
turbine, knowledge of the different characteristics of the wind turbine is essential. Knowing
the different characteristics of the wind turbines used in the study can help ensure accuracy
in the conclusions generated. For this study, a direct-drive onshore wind turbine located in
Taiwan was used.

Table 1. General data of the wind turbine and SCADA system from the wind farm used in this study.

Parameter Data

Location Taiwan
Number of wind turbine heads Fourteen (14)

Nominal power capacity of wind turbine 2.0 MW
Transmission connection Direct-drive

Number of parameters in SCADA system Thirty-two (32)
Number of component models generated Seven (7)

A flowchart presented in Figure 2 is used to accomplish the study’s objectives. It begins
with the extraction of operational and alarm data from the SCADA system. These data are
then pre-processed to filter abnormal data underlying different periods. The pre-processed
data are then used to generate predictive models using the algorithm presented in [23].

Figure 2. Flowchart used in the study.
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Table 2 shows the specifications of the models that use neural networks. Based on
the SCADA parameters used, seven output component models were generated. Using the
different models generated from the predictive model algorithm, the MD was calculated
between predicted and actual values. In the generation of the predictive models and the
calculation of the Mahalanobis distance, the computing programming software MATLAB
was used.

Table 2. Specification of the models that use neural networks.

Artificial Neural Network Type Feed Forward Neural Network

Layer Hidden Output

Neurons 20 1

Activation function Sigmoid Threshold

List of possible inputs

Air gap temperature, generator voltage, generator current,
inverter current, inverter voltage, cooling water low
pressure, cooling water low pressure, cooling water

temperature, control cabinet temperature, impeller angle,
motor current, blade angle, rotor temperature, wind speed,

wind direction, vibration

List of possible outputs
Generator speed, generator stator temperature, alternator
bearing temperature, cooling water high pressure, rotor

speed, brake hydraulic pressure, active power

The MD for the ten-minute duration points for anomaly detection was averaged for
the first twelve hours of the day and for the following twelve-hour points. The method
employed provides two averaged data points for each day. These averaged data points are
then plotted for the entire year or duration of the study to show abnormalities based on
the threshold value. The threshold value for the study was calculated based on the typical
characteristics of the data points [24]. The healthy data of the SCADA system was used in
calculating the threshold value using the same MD approach. The averaged MD value was
used as the threshold value.

In order to backtrack the estimated date of occurrence of the anomaly, reverse engi-
neering was used. The point or time of the year where the anomaly occurred was divided
by two, and this value represents the date in the year of the occurrence. The time of the
year was divided by two, since the averaging of the MD distance was done twice a day.
Calculating this would result in the estimated date of occurrence of the anomalies.

Anomalies detected with the MD approach were then compared with the SCADA
alarm data for the duration of the study. The component of concern was also part of the
comparison with the SCADA alarms. The different input parameters were also considered
in comparison with the SCADA alarms. In other words, the input parameters were checked
to see if they coincided with the SCADA alarms. Table 3 shows the list of these input
parameters for each output model used in the study. The different parameters were
combined with their correlations to the output parameters [25]. Using MATLAB software,
the different input and output parameters were used for the generation of the specified
model. This ensured that these input parameters were related to the output parameters in
terms of data behavior.
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Table 3. List of input parameters for each output model.

Output Model Input Parameters

Generator speed

average alternator bearing temperature
generator voltage
generator current

active power

Stator temperature

average generator air gap temperature
average alternator bearing temperature

generator current
active power

Bearing temperature

average generator stator temperature
generator speed

average generator air gap temperature
generator voltage

Cooling water
high pressure

average inverter current
average inverter voltage

cooling water low pressure
active power

Rotor speed

blade 2 motor current
blade 3 motor current
average blade angle

active power

Brake hydraulic pressure

XY direction resultant force vibration
X direction vibration
Y direction vibration

active power

Active power

average generator stator temperature
generator current

average inverter current
rotor speed

The procedure for checking the anomaly was to determine the days covered by certain
deviations from the threshold. The days covered by this anomaly were then backtracked to
trace the month and day of the occurrence. The alarms in the SCADA system were then
checked using the dates of occurrence of the deviations.

The threshold for the data set was calculated by using the data set for normal behav-
iors. In this way, the MD calculated represented the threshold of such a data distribution.
Paper [26] illustrated this type of method in determining the threshold of such data distri-
bution; the healthy data values are used in both model generation and calculating the MD
in this instance. The averaged MD value represents the threshold of the data distribution.

3. Results and Discussion

The Mahalanobis distance for each model and wind turbine is plotted for the entire
duration. Figure 3 shows the results of these plots for the brake hydraulic pressure model
for all the wind turbines in the wind farm. The plot shows some abnormal behavior for
some wind turbines. An example would be wind turbine H11, where abnormal behavior
can be seen at the end of the year. The different output models show different durations or
periods of occurrence of abnormal behavior, and these are subject to comparison with the
SCADA alarm data.
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Figure 3. Plotted Mahalanobis distances based on the brake hydraulic pressure model of some wind
turbines in the wind farm.

The results show that abnormal behavior can be detected in the calculated MD for the
data set. This shows the ability of the MD to detect faults in a component where data is
extensively used, and where data characterizes the system’s performance [27]. The expected
behavior of the data set shows slight variations, while portions with faulty behavior show
widespread deviations with the rest of the data set.

Using the plotted results in Figure 3 can help assess the wind turbine behavior for
different parameter data sets. Observing the plot can help one infer the different wind
turbines where clear abnormal behavior in the data set was generated, based on the MD
measure. Thus, this plot can be useful for generating observations that can lead to the
detection of anomalies based on the MD measure.

An example would be a plot based on the brake hydraulic pressure model where the
MD measures for the different wind turbines are shown. It can be noted that different
behaviors can be observed for the wind turbines in the wind farm. This observation can
also be used in implying the efficiency of the generated models in going deep into the
predictive models. However, this is not covered in this study.

As shown in the plot for the MD measure of different wind turbines for the brake
hydraulic pressure model, certain observations can be generated for durations where there
is abnormal behavior. A good observation example is the end part of the year for wind
turbine H11, where there is a clear abnormal behavior in the data set. This will then be
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tested using the threshold value generated from the normal behaviors of the data set. This
shows that having a summary of plotted MD measures for different wind turbines of
different predictive models can be useful in making observations that may lead further to
anomaly detection.

The brake hydraulic pressure model for wind turbine H11 shows a period where
abnormal behavior is detected. Figure 4 shows this period emphasized inside a dashed
red box within the plot. The thick threshold line shows within the plot which data are in
typical or faulty behavior.

Figure 4. Mahalanobis distance based on the brake hydraulic pressure model for H11.

The period of occurrence of the faulty behavior is calculated by tracing the period
corresponding to the day of the year of the occurrence. It should be noted that the day of the
year presented in the plot should be divided into two, since the averaged MD is calculated
twice a day. Table 4 further looks into the MD value and time-stamp around the SCADA
alarm region. It can be observed that the highest MD value of 6.42 occurred at time-point
645, which means a time period between 19 November 2019 00:00 and 19 November 2019
12:00.

Table 4. Detailed MD value and timestamp list around the SCADA alarm region for H11.

Time-Points of the Year Real Time-Stamp MD Value

641 2019/11/17 00:00 0.077828383

642 2019/11/17 12:00 0.200583207

643 2019/11/18 00:00 1.202948234

644 2019/11/18 12:00 2.032181356
645 2019/11/19 00:00 6.421187127
646 2019/11/19 12:00 1.909682528

647 2019/11/20 00:00 0.221972715

648 2019/11/20 12:00 0.273416611

The different SCADA alarm data are then checked for correspondence with the com-
ponent where the MD faulty behavior is detected. Relevant data in Table 5 show that
alarm data for November for wind turbine H11 indicate a very low pressure on the yaw
brake system. This corresponds to the detected anomaly in the calculated MD of the brake
hydraulic pressure model. In terms of the component analysis of the different parameters,
the MD approach detected the faulty behavior of the wind turbine.
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Table 5. Part of the SCADA alarm system corresponding to anomalies for H11.

Wind Turbine Alarm Code Alarm Description Date/Time

H11 228 Yaw Brake Pressure Very Low 19 November 2019 4:02
H11 228 Yaw Brake Pressure Very Low 19 November 2019 17:15

Another example is based on the stator temperature model plots for the calculated
MD. Wind turbine H07 shows faulty behavior among the plots in the wind farm for stator
temperature. Figure 5 shows the plot for the calculated MD for the stator temperature model
for H07. Tracing the period of occurrence for this abnormal duration results in October.

Figure 5. Mahalanobis distance based on the stator temperature model for H07.

The SCADA alarm data for wind turbine H07 shown in Table 6 shows a very high
temperature in the generator stator and bearing temperature fault for October. It should be
noted that bearing temperature is part of the input parameters for the stator temperature
models. In terms of parameters in different components, the MD approach was able to
detect the faulty behavior of the wind turbine.

Table 6. Part of the SCADA alarm system corresponding to anomalies for H07.

Wind Turbine Alarm Code Alarm Description Date/Time

H07 249 generator stator temperature very high 9 October 2019 10:56
H07 242 bearing temperature fault 4 October 2019 11:40

In summary, calculating the percentage of the detected faulty behaviors based on the
SCADA alarm data shows that over 97 percent of the faulty behaviors were detected using
the MD approach based on different models of the wind turbines in the wind farm. This
accuracy is comparable to the studies presented in [28,29], as shown in Table 7. These
papers used anomaly detection methods involving data analysis and machine learning
methods. They were able to generate efficiencies of more than 95%, which is comparable to
the efficiency generated in this study.

Table 7. Efficiency comparison of proposed method to other methods.

Method Percentage Accuracy

Deep Small-World Neural Network [28] 95%
Statistical Process Control and Machine Learning [29] 92.16%

SCADA Alarm Data and MD approach (proposed method) 97%
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Results of the plotted MD for each wind turbine model show that abnormal behaviors
can be detected based on the threshold of the data set. The characteristics of the Mahalanobis
distance can be used to detect faulty behaviors in the wind turbine and can be integrated
into the condition monitoring system. This could imply using the MD approach in a
condition monitoring system that uses data extensively.

Comparison with the SCADA alarm data shows that parameters used in the gener-
ation of the predictive models affect how the MD approach detects the faulty behaviors
of the wind turbine. Different components of the predictive models could detect abnor-
malities corresponding to the wind turbine component concerned. This is important in
the construction of the predictive models to be used in the condition monitoring system.
The results also show that the MD approach was able to detect faulty behaviors at a high
percentage. This is important in considering the MD, a data-intensive approach for fault
detection in wind turbines. A higher percentage of fault detection using a data-driven
approach could be sustainable in the long run [30].

Although the MD measure can be effective in detecting abnormalities in wind turbines,
certain defects and challenges can still occur while using this method. One sophisticated
challenge and defect is integrating the MD measure into the available CMS of wind turbines.
Having a data-intensive method may create problems in maintaining the performance of
the system incorporated into the wind turbine. Another possible defect of the method is
its reliance on powerful computing software, which may affect the performance of the
CMS in the wind turbines. Although this defect can be addressed with improvements in
technology, further studies need to be developed to cope with this situation.

There are also uncertainties in fault detection using the proposed method. Aside
from SCADA network problem where data can be erratic or not at all available, missing
SCADA data will affect calculations of times of fault occurrences in the MD approach.
This can result in uncertainty in the method if not addressed properly. An uncertainty
model presented in [31] is applied in the proposed approach. This model is presented in
Equation (3), as follows:

B =
Xtrue

Xpred
(3)

where B is the model uncertainty, Xtrue is the true value (SCADA alarm value) and Xpred
is the predicted value (MD distance). The calculated model uncertainty was averaged for
instances of failures detected, and the results show a final uncertainty of 0.965.

4. Conclusions

Based on the results of this study, the following conclusions can be generalized:

1. The Mahalanobis distance approach can detect faulty behaviors of wind turbines at a
high accuracy rate of 97%.

2. The input and output parameters of the predictive models where the Mahalanobis
distance approach is calculated are essential factors in determining the component
affected by faulty behavior.

3. In a data-driven monitoring system, the Mahalanobis distance approach can be used
to further sustain and enhance the features of such a system.

In order to further improve this study, future researchers can address the following
aspects of the study:

1. Integrate the proposed approach into the CMS of the wind turbine, and investigate its
efficiency in the system.

2. Improve the reliability of the Mahalanobis distance approach by creating variations in
the duration averaging of the approach, and choose the optimum in the process.

3. Integrate the Mahalanobis distance approach and the condition monitoring system
into an automatic system environment to facilitate the recording of failure reports and
further enhance productivity.

4. Develop a predictive model for the MD method that can detect anomalies at early stages.
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Abbreviations

dMD Mahalanobis distance
xa, xb a pair of objects for the MD calculation
C the sample covariance matrix
covx,y covariance of distribution
xi, yi data values of the distributions
x mean value of x distributions
B model uncertainty
CMS condition monitoring system
MD Mahalanobis distance
SCADA Supervisory Control and Data Acquisition system
Hxx (H01~H14) represents the turbine number in the harbor area
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