
 
 

 

 
Appl. Sci. 2022, 12, 8654. https://doi.org/10.3390/app12178654 www.mdpi.com/journal/applsci 

Review 

A Review of Ensemble Learning Algorithms Used in Remote 
Sensing Applications 
Yuzhen Zhang 1,*, Jingjing Liu 1 and Wenjuan Shen 2,3 

1 School of Automation and Electrical Engineering, University of Science and Technology Beijing,  
Beijing 100083, China 

2 College of Forestry, Nanjing Forestry University, Nanjing 210037, China 
3 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University,  

Nanjing 210037, China 
* Correspondence: yzhang@ustb.edu.cn 

Abstract: Machine learning algorithms are increasingly used in various remote sensing applications 
due to their ability to identify nonlinear correlations. Ensemble algorithms have been included in 
many practical applications to improve prediction accuracy. We provide an overview of three 
widely used ensemble techniques: bagging, boosting, and stacking. We first identify the underlying 
principles of the algorithms and present an analysis of current literature. We summarize some typ-
ical applications of ensemble algorithms, which include predicting crop yield, estimating forest 
structure parameters, mapping natural hazards, and spatial downscaling of climate parameters and 
land surface temperature. Finally, we suggest future directions for using ensemble algorithms in 
practical applications. 
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1. Introduction 
Remote sensing is widely used in applications such as military reconnaissance, anal-

ysis of natural hazards, detection of land use and land cover change, measurement of sea 
ice distribution, precision agriculture, and estimation and mapping of carbon stocks [1,2]. 
The primary properties of the target detected by the sensor in these applications are in the 
form of spatial, spectral, temporal, and polarization signatures [3]. Many models of phys-
ical processes have been developed that quantify the data relationships between sensor 
and target. These models include radiative transfer models, radiosity models, ray-tracing 
models, dynamic global vegetation models, and land surface microwave emission mod-
els, among others [4–9]. However, it is generally difficult to obtain the parametric input 
required for a physical process model, especially at a large scale. Some studies have cou-
pled a physical process model with a statistical method or used a statistical method with 
a machine learning algorithm to extract crucial predictions for a specific application. Since 
the remote sensing signals often provide a nonlinear representation of the target, machine 
learning and deep learning algorithms have been widely used in remote sensing applica-
tions, because they are not based on some underlying assumption regarding the distribu-
tion of the data and they have a potent capacity to capture nonlinear correlations [10,11]. 
Support vector machines (SVM) and random forests (RF) are two well-known nonpara-
metric machine learning algorithms that are used in many studies [12–14]. 

Some studies have claimed that no single algorithm could outperform every other 
machine learning algorithm under all situations (sometimes called the no free lunch the-
orem) [15]. The ensemble learning technique has been developed in response to this claim 
[16,17]. Ensemble learning techniques create multiple hypotheses and combine them to 
solve a given problem, in contrast to conventional machine learning techniques that aim 
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to learn a single hypothesis from training data. [18,19]. By combining multiple learners 
and taking full advantage of these learners, ensemble algorithms have produced im-
proved results and reduced the overfitting problem, and they possess the flexibility to 
deal with different tasks [17,20,21]. Bagging, boosting, and stacking are three well estab-
lished ensemble techniques, although there exist some variants and other ensemble algo-
rithms that have been used in practical applications [17]. Current implementations of 
these algorithms in R and Python are shown in Table 1. 

Table 1. Implementation of ensemble learning algorithms using R and Python. 

Algorithm 
Implementation with R and Python 

R Package Python Library 
Bagging ipred scikit-learn 

RF randomForest/caret scikit-learn 
ERT extraTrees scikit-learn 

AdaBoost Adabag/fastAdaboost scikit-learn 
GBM gbm scikit-learn 

XGBoost xgboost/plyr xgboost 
LightGBM lightgbm lightgbm 
CatBoost catboost catboost/scikit-learn 
Stacking stacks vecstack/scikit-learn 

We present a general overview of the bagging, boosting, and stacking ensemble tech-
niques used in remote sensing. We first review the principles underlying the three types 
of ensemble algorithms in Section 2 and describe our literature search for publications 
about bagging, boosting, and stacking ensembles in Section 3. In Section 4, we focus on 
several fields of study that widely use ensemble techniques for objectives such as crop 
yield prediction, estimation of forest structure parameters, mapping natural hazards, and 
spatial downscaling, as well as other applications. Finally, we examine the issues related 
to ensemble algorithms and future directions. 

2. Principles of Ensemble Learning Algorithms 
2.1. Bagging Algorithms 

Bagging is an ensemble technique that combines multiple learners trained on distinct 
subsamples of the original data. To build a bagging model, we generate multiple datasets 
by bootstrapping the training data and then develop models based on the individual da-
tasets and make predictions using these models. All the predictions are then combined to 
produce a representative value such as the mean, median, or majority vote for classifica-
tion and averaging, for regression, depending on the problem to be solved. Since an indi-
vidual learner is often sensitive to noise in the training data, bagging, by aggregating mul-
tiple results in a single prediction, should provide stable and improved results with de-
creased variance [22]. 

RF is a modified version of bagging, in which the classification and regression trees 
(CART) technique is often used as the individual learner. RF uses subsamples of the orig-
inal data to build trees and randomly selects a subset of variables to determine each split 
in the tree [23]. RF excludes approximately 30% of training samples from the modeling 
due to bootstrapping and random subspace techniques and is often used to compute the 
out-of-bag (OOB) prediction error. 

Many studies have shown that RF outperforms other machine learning and statistical 
regression algorithms [13]. It has many advantages, some of which are the following. Both 
classification and regression issues can be resolved using RF. In addition, RF is insensitive 
to noise or outliers in the training data because it bins them. RF trains rapidly since it 
incorporates only part of the features for training. RF is easy to use since only one or two 
hyperparameters (i.e., the number of trees in the forest and the number of predictor vari-
ables to be randomly selected at each junction) are required to be tuned. In addition, an 
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intrinsic estimate of the generalization error (the OOB error) is given. RF provides a meas-
ure of variable importance as identified by the Gini index [24]. Despite these advantages, 
the spatial correlation of nearby observable data is disregarded by RF. Thus, RF kriging 
(RFK), which couples RF with residuals interpolated by conventional kriging, was pro-
posed and successfully used for forest biomass mapping [25] and prediction of PM2.5 
concentrations [26]. 

Extremely randomized trees (ERT) is also a tree-based ensemble method. ERT differs 
from RF in the following ways: ERT uses all samples to train the base learner instead of 
using bootstrap resampling; and ERT randomly selects cutting points instead of calculat-
ing local optimal cutting points when splitting nodes, which injects more randomness 
than RF [22]. The results from different individual trees are therefore more diverse. Some 
studies have suggested that ERT produces more accurate predictions than RF [27]. ERT 
has been used in a wide variety of applications such as aboveground biomass estimation 
[28], prediction of ground level PM2.5 concentrations [29], modeling olive tree phenology 
[30], retrieval of downward longwave radiation [31], streamflow modeling [32], and esti-
mation of terrestrial latent heat flux [33]. 

2.2. Boosting Algorithms 
Boosting algorithms use a forward stagewise process to transform weak learners into 

strong learners by increasing the weights of training samples that were mistakenly iden-
tified or wrongly calculated in a successive iteration. The final output of boosting is ob-
tained by combining the results from all iterations using a weighted vote for classification 
or a weighted sum for regression [34]. Widely used boosting ensemble algorithms include 
adaptive boosting (AdaBoost), gradient boosting machine (GBM), extreme gradient boost-
ing (XGBoost), LightGBM, and categorical boosting (CatBoost). 

AdaBoost was initially developed to increase the efficiency of binary classifiers. In 
GBM, all the weak learners of GBM are decision trees. XGBoost is an improved version of 
GBM that implements parallel preprocessing at the node level, which makes it faster than 
GBM. XGBoost also introduces a variety of regularization techniques to reduce overfitting 
[35]. Studies have shown that of XGBoost is excellent in mapping plant species diversity 
[36], predicting PM2.5 concentrations [37], forest biomass estimation [38], and risk analy-
sis for flash floods [39]. LightGBM has many of XGBoost‘s advantages, such as parallel 
training, regularization, and sparse optimization. The major difference between the two 
lies in the method of constructing trees. LightGBM uses a leafwise split: after the first split, 
the node with a higher delta loss is selected for the next split [40]. This technique enables 
LightGBM to easily handle huge amounts of data. A histogram-based method is often 
adopted to select the best split in LightGBM to reduce the time used in training. However, 
LightGBM cannot perform well with a small number of samples. 

CatBoost is an improved gradient boosting decision tree (GBRT) algorithm and an 
alternative to XGBoost. As the name suggests, CatBoost can internally handle categorical 
variables in the data, and is thus suitable for dealing with machine learning tasks involv-
ing categorical and heterogeneous data [41,42]. Studies have found that CatBoost is supe-
rior to other machine learning algorithms, and it has been used to estimate forest biomass 
[28,43] and reference evapotranspiration [44]. 

2.3. Stacked Generalization 
Stacked generalization, also known as stacking, was proposed by Wolpert in 1992 

[45]. It is a heterogeneous learning technique that combines diverse base learners by train-
ing a model, unlike the homogeneous bagging and boosting methods which directly ag-
gregate the outputs of several learners to obtain the final prediction. If properly designed, 
stacking can take full advantage of different base learners and should perform better than 
an individual base learner, whether using majority voting or weighted averaging [20,46–
48]. 
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Generally, stacking consists of several base learners (level 0) and a meta learner (level 
1), in which the outputs of base learners serve as inputs of the meta learner. Both the pre-
cision and variety of base learners affect the performance of a stacking algorithm [49,50]. 
Diversity is a measure of the dependence or complementariness among learners [51]. That 
base learners have high diversity implies that they are skilled in different ways, and thus 
stacking them could lead to improved results. There are many measures of diversity, such 
as Q-statistics in classification, and the variance of ensemble predictions around their 
weighted mean in regression [52]; no one measure has been shown to be the best 
[51,53,54]. In addition to the diversity and accuracy of base learners, the number of base 
learners also affects the performance of stacking. More base learners are not always asso-
ciated with more accurate predictions, but they do require additional memory usage and 
computing time [55]. Some studies have suggested that three to four base learners stacked 
together are a suitable choice [56], and some action should be taken to ensure that an op-
timal subset of base learners is used in stacking. 

A two-layer stacking model is often adopted in practical applications, although stack-
ing models with more than two layers are sometimes used to further improve results [57]. 
A two-layer stacking model is constructed as follows (Figure 1). A k-fold cross-validation 
is initially used to create k verification datasets on all the base learners. The cross-vali-
dated predictions are then used as new training data for the meta learner in the second 
layer; the number of base learners in the first layer is equal to the number of predictors in 
the second layer, and the test data are created by adding the averages of the k-fold pre-
dictions of the base learners [47,58]. In some classification studies, class probabilities were 
used instead of predicted classes as input attributes for the meta learner, which provided 
an effective way of combining base model confidences [20]. The inclusion of engineered 
original features in stacking has been shown to give better performance [58,59]. There 
have also been studies that used weighted stacking to improve results [60]. 

 
Figure 1. Statistics of ensemble literature in the refined areas. 

3. Literature Search and Analysis 
We conducted a literature survey of the ISI Web of Science database using the search 

term TOPIC ensemble AND TOPIC remote sensing. The search was then refined to in-
clude research areas Remote Sensing, Geography, Agriculture, Forestry and Environmen-
tal Sciences Ecology and document types Articles, Meeting, and Review articles. This 
yielded a total of 2247 results that we refer to as ensemble literature. 

Research articles accounted for 84% of the records returned, conference papers for 
14% and review articles for 2% (Figure 1). The publication years of the refined search rec-
ords returned ranged from 1979 to 2022. In 2015–2022, more than 100 papers meeting the 
search criteria were published annually (Figure 1). 

We then constructed a co-occurrence network by identifying keywords in the 
searched ensemble literatures, calculating the frequencies of their co-occurrences, and 
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analyzing the networks to find central words and clusters of themes in the network (Fig-
ure 2). The constructed network showed that studies of ensemble learning algorithms 
were mainly related to classification, and studies of ensemble method use or ensemble 
models were primarily concerned with RF. In addition, the co-occurrence network sug-
gested that applications concerning crop yield, biomass, rainfall, landslides, and satellite 
products were connected to ensemble algorithms. 

 
Figure 2. Co-occurrence network of keywords in ensemble literature. 

4. Applications of Ensemble Learning Algorithms 
The co-occurrence network (Figure 2) combined with our reading of the ensemble 

literature shows that typical applications of ensemble learning algorithms were mainly 
concerned with the following issues: yield prediction, forest structure and biomass esti-
mation, mapping of natural hazards (e.g., land susceptibility to natural disasters), and 
spatial downscaling of land surface temperature and rainfall (Table 2). RF was the most 
frequently used ensemble algorithm (30 times) in the 43 applications listed in Table 2, 
followed by stacking (13 times), while boosting algorithms were less frequently used (Ta-
ble 3). Only seven studies used XGBoost; GBRT and AdaBoost were used four times. MLP 
and kNN often served as reference models to evaluate the performance of an ensemble 
algorithm. 

  



Appl. Sci. 2022, 12, 8654 6 of 19 
 

Table 2. Summary of reviewed applications that used ensemble learning algorithms. 

Reference Application 
Main Input Datasets or Causative 

Factors 
Algorithms Used 

Algorithm with the 
Best Accuracy 

[61] Oil palm yield prediction Landsat time series imagery RF, AdaBoost RF 

[62] Flood susceptibility mapping 

Slope, elevation, plan curvature, 
topographic wetness index (TWI), 
topographic position index, conver-
gence index, stream power index 
(SPI), distance to stream, drainage 
density, rainfall, lithology, soil 
type, land use/land cover (LULC), 
and normalized difference vegeta-
tion index distance (NDVI) 

J48 ensemble model,  
MultiBoosting J48,  
AdaBoost J48, random subspace J48 

Random subspace J48 

[63] Drought risk assessment 

Elevation, slope, distance from the 
stream, drainage density, tempera-
ture, humidity, precipitation, evap-
oration, soil moisture, soil depth, 
soil texture, NDVI, LULC, geomor-
phology, groundwater level, deep 
tone, agriculture-dependent popu-
lation, and population density 

SVM, RF, SVR, and their ensemble with 
bagging, boosting and  
Stacking 

SVR-stacking 

[64] Downscaling climate variables 
Sea surface temperature, air tem-
perature, geopotential height, and 
sea level pressure 

GBRT, SVR GBRT 

[65] 
Flash flood susceptibility pre-
diction 

Altitude, slope, aspect, plan curva-
ture, profile curvature, distance 
from river, distance from road, 
land use, lithology, soil depth, rain-
fall, SPI, and TWI 

BRT, RF, PRF, RRF, ERT ERT 

[66] Winter wheat yield prediction 
MODIS EVI, climate data, and the 
subseasonal-to-seasonal (S2S) at-
mospheric prediction data 

MLR, XGBoost, RF, SVR XGBoost 

[67] 
Estimation of canopy height 
and growing stock volume 

Airborne laser scanner (ALS), 
phased array type L-band syn-
thetic aperture radar (SAR), and 
Landsat data 

RF — 

[68] Flood susceptibility mapping 

Slope, elevation, plan curvature, 
NDVI, SPI, TWI, lithology, land 
use, rainfall, stream density, and 
distance to river 

LMT, logistic regression, Bayesian lo-
gistic regression, RF, Bagging-LMT 

Bagging-LMT 

[25] Forest biomass estimation 

Advanced land observing satellite 2 
L band, and Sentinel-1C band SAR, 
shuttle radar topography mission 
(SRTM) digital elevation model 
(DEM) data, and Sentinel-2 data 

RF, RF Kriging RF Kriging 

[46] 
Spatial interpolation of daily 
maximum air temperature 

LST, NDVI, elevation, slope, aspect, 
solar radiation, global man-made 
impervious surface, human built-
up and settlement extent, latitude, 
and longitude 

Cokriging, MLR, SVR, RF, stacking, 
simple average ensemble 

Stacking 

[69] Individual tree dendrometry 
Field data, unmanned aerial vehi-
cle(UAV)-Lidar data 

SVR, MLP, RF, XGBoost SVR 

[70] 
Reference evapotranspiration 
time series forecasting 

Maximum and minimum tempera-
ture, wind speed at 2 m high, av-
erage relative humidity, and the 
insolation 

Three CNN models CNN1, CNN2, 
CNN3, ensemble-CNN1, ensemble-
CNN2, ensemble-CNN3, hybrid en-
semble 

Ensemble models 

[71] 
Short term electricity con-
sumption forecasting 

Electricity consumption 
ANN, RF, GBRT, LR, DL, DT, evolu-
tionary algorithms for regression trees, 
ARMA, ARIMA, stacking,  

Stacking 

[72] Forest biomass estimation ALS data and Landsat 8 imagery 
ELM, BPNN, RT, RF, SVR, kNN, CNN, 
MLP, stacking 

Stacking 
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[73] 
Prediction of eucalyptus stand 
volume 

SPOT-5 raw spectral features, 
spectral vegetation indices, rain-
fall data, and stand age 

SGB, RF, stepwise MLR SGB 

[74] Alfalfa yield prediction 

Narrow-band indices (e.g., simple 
ratio index, NDVI, chlorophyll ab-
sorption ratio index, modified ver-
sions of these indices) derived 
from UAV-based hyperspectral 
images 

RF, SVR, kNN, stacking Stacking 

[75] Wheat grain yield prediction 
Vegetation indices derived from 
UAV-based multispectral images 

RF, SVR, GP, RR, stacking Stacking 

[76] Estimation of forest variables 
Statistics extracted from LiDAR 
data 

MLR, MLP, SVR, kNN, GP, RT, RF SVR 

[77] Forest biomass estimation 
Multi-temporal Sentinel-1 and 2 
data-derived variables (vegetation 
indices, SAR backscatter) 

RF, GBM, XGBoost, ensemble model 
based on weighted averaging  

Ensemble model 

[78] Land subsidence susceptibility 
mapping 

Elevation, slope, aspect, profile cur-
vature, plan curvature, TWI, dis-
tance to road, distance to river, dis-
tance to fault, precipitation, land 
use, lithology, drainage density, 
and groundwater drawdown 

Logistic regression, MLP, AdaBoost and 
LogitBoost 

AdaBoost 

[79] Forest disturbance detection 
Landsat Thematic Mapper (TM) 
and Enhanced Thematic Mapper 
(ETM +) imagery 

Eight automated change detection algo-
rithms, stacking 

Stacking 

[80] Downscaling LST 

topographic variables derived from 
SRTM DEM data, land cover, and 
surface reflectance in visible red 
and near-infrared bands 

RF, TsHARP RF 

[81] 
Landslide susceptibility map-
ping 

Altitude, slope, aspect, cross sec-
tional curvature, profile curvature, 
plan curvature, longitudinal curva-
ture, channel network base, conver-
gence index, distance to fault, dis-
tance to river, valley depth, and li-
thology map 

FDA, GLM, GBM, RF, ensemble based 
on weighted average 

Ensemble 

[82] Estimating wheat yields 
MODIS NDVI and climate data 
time series 

RF, Cubist, XGBoost, MLP, SVR, GP, 
kNN, MARS, average ensemble, bayes-
ian data fusion 

SVR 

[83] Downscaling soil moisture 
Sentinel-1 radar, monthly NDVI, 
land cover, topography, and sur-
face soil properties. 

RF — 

[84] Winter wheat yield prediction 
Spectral indices calculated from 
UAV-based hyperspectral data 

SVR, GP, RR, RF, stacking Stacking 

[43] Forest biomass estimation 
Landsat spectral variables, vegeta-
tion indexes, texture measures, and 
terrain factors 

RF, XGBoost, CatBoost CatBoost 

[47] 
Landslide susceptibility map-
ping 

Lithology, bedding structure, dis-
tance to fault, slope, aspect, plan 
curvature, profile curvature, eleva-
tion, distance to river , and NDVI 

DBN, CNN, ResNet, stacking, simple 
averaging ensemble, weighted averag-
ing ensemble, boosting 

Stacking 

[85] Spatial prediction of landslide 

Slope, aspect, elevation, curvature, 
lithology, land use, distance to 
roads, distance to faults, distance to 
rivers, and rainfall 

LSSVM, MADT MADT 

[86] Predicting flood probabilities 

Elevation, slope angle, aspect, plan 
curvature, SPI, TWI, sediment 
transport index, drainage density, 
mean annual rainfall, proximity to 

LWLR, random subspace, REPTree, RF, 
M5P model tree, stacking 

sSacking 
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rivers, proximity to roads, proxim-
ity to the coastline, soil texture, ge-
ology, land cover, wind speed, and 
mean sea level 

[87] Flood susceptibility mapping 

Elevation, slope, aspect, NDVI, 
mean monsoonal rainfall, plan cur-
vature, drainage density, popula-
tion density, land cover, proximity 
to rivers, proximity to roads, geol-
ogy, and soil texture 

Bayesian regularization back propaga-
tion neural network, CART, EBF, 
weighted average ensemble algorithm 

Weighted average en-
semble algorithm 

[88] 
Forecasting agricultural com-
modity prices 

Prices of energy commodities, ex-
change rate, interaction between 
commodities prices in domestic, 
and foreign markets 

RF, GBM, XGBoost, stacking, MLP, 
SVR, kNN 

XGBoost 

[89] Wheat yield prediction 

Normalized difference red edge in-
dex, temperature, precipitation, rel-
ative humidity, sunshine duration, 
solar radiation, growing degree 
days, Shannon diversity index   of 
precipitation evenness, abundant 
and well-distributed rainfall, and 
days after planting 

LR, RR, Lasso, ENR, SVR, kNN, DT, RF, 
GBDT, MLP, XGBoost 

XGBoost 

[90] 
Landslide susceptibility map-
ping 

Elevation, slope, slope aspect, gen-
eral curvature, plan curvature, pro-
file curvature, surface roughness, 
TWI, SPI, slope length, NDVI, 
LULC, and distance from roads, 
rivers, faults and railways 

Logistic regression, GBDT, VFI, SVM, 
DT, neural networks, Naïve bayes, RF, 
deep learning, majority-based voting 
ensemble  

Majority-based voting 
ensemble  

[91] 
Spatial downscaling of precipi-
tation data 

Enhanced vegetation index, alti-
tude, slope, aspect, latitude, and 
longitude 

RF — 

[92] Downscaling soil moisture 
Soil moisture related indices de-
rived from MODIS and a digital el-
evation model 

GBDT — 

[93] 
Estimating daily reference 
evapotranspiration 

Maximum and minimum air tem-
perature, relative humidity, wind 
speed at 2 m height, and solar radi-
ation 

RF, SVR, MLP, kNN, stacking, blending Stacking 

[94] Downscaling precipitation  
North American multi-model en-
semble model outputs 

Quantile mapping, wavelet SVM, 
wavelet RF 

Wavelet SVM and 
wavelet RF 

[95] Downscaling LST 
Landsat 8 and Sentinel-2A images, 
SRTM data, and daily minimum 
and maximum air temperatures 

multi-factor geographically weighted 
machine learning (MFGWML), thermal 
image sharpening (TsHARP), high res-
olution thermal sharpener for cities  

MFGWML 

[96] 
Growing stem volume estima-
tion 

Vegetation indices, spectral reflec-
tance variables, backscattering co-
efficients, and texture features ex-
tracted from the Sentinel-1A and 
Sentinel-2A image datasets 

Bagging (CART), Bagging (kNN), Bag-
ging (SVR), Bagging (ANN), AdaBoost 
(CART), AdaBoost (kNN), AdaBoost 
(SVR), AdaBoost (ANN), secondary 
ensemble with an improved weighted 
average (IWA) 

IWA 

[28] Forest biomass estimation 

Leaf area index, canopy height, 
net primary production, and tree 
cover data, climatic data, and 
topographical data 

SVR, MARS, MLP, RF, ERT, SGB, 
GBRT, CatBoost 

CatBoost 

[58] Forest biomass estimation 

Satellite-derived leaf area index, 
net primary production, forest 
canopy height, tree cover data, cli-
mate data, and topographical data 

CatBoost, GBRT, MLP, MARS, SVR, 
stacking 

Stacking 
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[97] 
Mapping fine spatial resolu-
tion precipitation 

MODIS NDVI, daily land surface 
temperature, and SRTM DRM data

RF, CART RF 

Table 3. Most-used ensemble learning algorithms. 

Most-Used Ensemble Learning Algorithms. Number of Times Used 
RF 30 

SVR 19 
stacking 13 

MLP 10 
KNN 8 

XGBoost 7 
GBRT 4 

Adaboost 4 
CART 3 

CatBoost 2 
ERT 2 
SGB 2 

4.1. Yield Prediction 
Machine learning algorithms have been widely used in crop yield prediction [98]. 

Van Klompenburg et al. [99] analyzed 50 machine learning papers and 30 deep learning 
papers concerning crop yield prediction. A neural network was the most frequently used 
machine learning technique in the machine learning papers; RF was used in 12 studies, 
and GBRT was used four times. Ruan et al. [89] included eleven statistical and machine 
learning techniques for predicting field-scale wheat yield and found that the two ensem-
ble learning models RF and XGBoost were most accurate in prediction, with R2 in the 
range 0.74–0.78 and RMSE in the range 0.78–0.85 t/ha. Cao et al. [66] adopted MLR, 
XGBoost, RF, and SVR algorithms and three datasets including MODIS EVI, climate data 
from the climatic research unit, and the subseasonal-to-seasonal (S2S) atmospheric pre-
diction data, to estimate winter wheat yield at the grid level. The results showed that 
among the four models, XGBoost reached the highest skill with the S2S prediction as in-
puts, with an R2 of 0.85 and RMSE of 0.78 t/ha. Ang et al. [61] employed the RF and Ada-
Boost algorithms to estimate oil palm yield prediction from multi-temporal remote sens-
ing data. Results of the study revealed that the RF model (RMSE = 0.384; MSE = 0.148; 
MAE =  0.147) outperformed the AdaBoost model (RMSE  =  0.410; MSE  =  0.168; MAE  =  
0.176). Kamir et al. [82] used nine base learners and two ensemble (average ensemble and 
Bayesian fusion) methods to estimate wheat yields across the Australian wheat belt from 
climate data, and satellite image time series. The results showed that SVR with radial basis 
function merged as the single best learner with the R2 of 0.77 and RMSE of 0.55 t/ha at the 
pixel level, and the ensemble techniques did not show a significant advantage over the 
single best model. 

Stacking models are also increasingly used in crop yield prediction. Feng et al. [74] 
predicted alfalfa yield from unmanned aerial vehicle (UAV)-based hyperspectral images 
using RF, SVR, k-nearest neighbors (kNN) and stacking ensemble algorithms. Compari-
son of the results indicated that stacking performed the best among all the base learners, 
with R2 = 0.874. Fei et al. [75] combined four base learners (RF, SVM, Gaussian process 
(GP) and ridge regression (RR)) to predict grain yield across growth stages and found that 
stacking improved prediction accuracy in both full and limited irrigation scenarios with 
respective R2 values of 0.625 and 0.628 at the mid grain filling stage. Li et al. [84] developed 
four base models (RF, SVM, GP, and RR) as well as stacking model, to predict winter 
wheat yields from UAV-based hyperspectral image data. They found that SVM outper-
formed the other learners and, compared with each base model, the stacking model was 
more accurate. 



Appl. Sci. 2022, 12, 8654 10 of 19 
 

4.2. Estimation of Forest Structure Parameters and Biomass 
Forest structure parameters (e.g., forest height) and forest biomass are critical indica-

tors of carbon stocks and are increasingly important in fields related to the carbon cycle 
and climate change [100]. García-Gutiérrez et al. [76] compared a multiple linear regres-
sion (MLR) model, a neural network, SVR, kNN, and RF in estimating forest parameters 
in the province of Lugo (Galizia, Spain) from lidar data and found that MLR was outper-
formed by ML algorithms and that SVR with Gaussian kernels outperformed the other 
algorithms. Corte et al. [69] used SVR, ANN, RF, and XGBoost to estimate tree dendrom-
etry parameters such as volume, height and diameter at breast height from UAV-lidar 
point clouds. Their results showed that all models were robust, with relative RMSE <29% 
for volume, <9% for height and <15% for diameter at breast height; SVR performed the 
best in terms of minimal error rates. SVR outperformed the ensemble algorithms in both 
studies and gave the most accurate predictions. 

Various ensemble algorithms have been developed to estimate forest parameters. For 
example, Cartus et al. [67] used a two-stage model to derive forest canopy height and 
growing stock volume (GSV) in Chile from a combination of airborne laser scanner (ALS), 
PALSAR and Landsat data. They developed an RF model of canopy height and GSV using 
ALS-derived values that were validated with in situ measurements and then used a sec-
ond RF model that used multitemporal PALSAR and Landsat data as predictor variables 
and ALS-based estimates as response variables. At three test sites, the retrieval of canopy 
height and GSV reached good accuracies with the R2 of 0.70–0.85. Xu et al. [96] developed 
a two-stage ensemble approach to increase the accuracy of forest GSV estimation. They 
selected variables using a collinearity test and ran four base learners (CART, kNN, SVR, 
and ANN) and combined them first using bagging and then using AdaBoost to generate 
eight ensemble models. The eight ensemble models were then aggregated using a 
weighted average method in which the weights were determined by the validated relative 
RMSE values of the eight ensemble models. The experimental results showed that the 
combined ensemble approach significantly reduced the uncertainty of GSV mapping from 
the Sentinel-1A and Sentinel-2A data, with relative RMSE values in the range 18.89–
21.34%. 

Dube et al. [73] used stochastic gradient boosting (SGB) to estimate the stand volume 
of eucalyptus plantations in South Africa from multisource data and found that SGB ac-
curately predicted stand volume, with R2 = 0.78 and RMSE = 33.16 m3/ha. These results 
were more accurate than the results given by RF or stepwise regression. Zhang et al. [28] 
comprehensively assessed the performance of eight algorithms (SVR, MARS, MLP, RF, 
ERT, SGB, GBRT, and CatBoost) in predicting forest biomass using several remote sensing 
datasets. Their results indicated that five ensemble algorithms (RF, ERT, SGB, GBRT and 
CatBoost) produced more accurate predictions than the other three individual algorithms 
and that CatBoost obtained slightly more accurate results than the other four ensemble 
algorithms, with R2 = 0.72 and RMSE = 45.63 t/ha. In a subsequent study, they developed 
a stacking model to combine several accurate base learners to further increase the accuracy 
of biomass prediction, and the results indicated that the stacking ensemble increased pre-
diction accuracy; in particular, it decreased the biases [58]. Ghosh et al. [77] used a stacked 
set of ensemble algorithms (RF, GBM, and XGBoost) to predict the aboveground biomass 
of Indian mangroves from Sentinel-1 and Sentinel-2 time series. The results indicated that 
stacking increased AGB prediction accuracy with RMSE = 72.864 t/ha and relative RMSE 
= 11.38%. 

Du et al. [72] developed a CNN model using ALS data and Landsat imagery and 
found that CNN was more accurate than an extreme learning machine (ELM), a backprop-
agation neural network, a regression tree, RF, SVR, KNN, and other standard machine 
learning techniques. The stacking algorithm significantly increased prediction accuracy 
when compared with base models. 
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4.3. Natural Hazards 
Natural hazards such as droughts, hurricanes, tornadoes, floods, and landslides can 

affect human life and property [101]. Accurate prediction or mapping the probabilities of 
natural disasters is therefore of great importance for human survival. Machine learning 
algorithms, particularly ensemble algorithms, have high prediction accuracy [85] and so 
have become increasingly used in identifying areas of long term drought [63], mapping 
landslide hazards [81,90], assessing the susceptibility of gullies to erosion [102,103] and 
mapping land susceptible to subsidence [78]. 

Arabameri et al. [62] combined three meta classifiers (Real AdaBoost, Random Sub-
space, and MultiBoosting) into a hybrid ensemble framework to predict the likelihood of 
flooding in the Gorganroud River Basin, Iran. Band et al. [65] used multiple ensemble 
algorithms (GBM, RF, parallel random forest (PRF), regularized random forest (RRF), and 
ERT) to quantify the likelihood of flash flooding in Markazi Province, Iran and found that 
ERT was the most accurate model with an area under curve (AUC) value of 0.82. Chapi et 
al. [68] combined bagging with logistic model trees (LMT) and developed a bagging–LMT 
ensemble model to map flood susceptibility. The results showed that in terms of accu-
rately mapping flood susceptibility, the bagging–LMT model performed better than LMT, 
logistic regression, Bayesian logistic regression, and RF. Hakim et al. [78] compared lo-
gistic regression, MLP and two meta ensemble machine learning algorithms (AdaBoost 
and LogitBoost) in predicting likely subsidence based on a land subsidence inventory map 
generated from Sentinel-1 synthetic aperture radar (SAR) data. The results showed that 
AdaBoost gave the greatest prediction accuracy (81.1%), followed by MLP (80%), logistic 
regression (79.4%), and LogitBoost (79.1%). Kalantar et al. [81] investigated the suitability 
of flexible discriminant analysis (FDA), generalized logistic models (GLM), GBM, and RF 
for mapping landslide susceptibility. The test results showed that FDA was similar in pre-
diction accuracy to GLM but was less accurate than GBM, which was in turn less accurate 
than RF. Rahman et al. [87] compared a Bayesian regularization back propagation neural 
network (BRBP), CART, an evidence belief function (EBF) and their various combinations 
in ensemble models to predict flood likelihood in Bangladesh. They found that the ensem-
ble model that combined BRBP, CART, and EBF using weighted averaging was more ac-
curate (AUC > 90%) than other models. In another study, Rahman et al. [86] found that 
stacking locally weighted linear regression (LWLR) and RF models increased the predic-
tion accuracy of flood susceptibility maps in Bangladesh, with R2 = 0.967–0.999, MAE = 
0.022–0.117, RMSE = 0.029–0.148. Sachdeva et al. [90] used a majority voting ensemble 
technique to predict landslide susceptibility and found that the ensemble model that com-
bined logistic regression, GBDT, and voting feature intervals produced predictions that 
were close in accuracy to the predictions of widely used machine learning algorithms such 
as decision trees, SVM, and RF. 

4.4. Spatial Downscaling 
Remote sensing data are often spatially downscaled to obtain fine resolution (FR) 

data from coarse resolution (CR) remote sensing data. The finer resolution data provide 
more spatial details and thus bridge the gap between what CR data provide and what 
regional applications require. Statistical downscaling methods have frequently been used 
in several domains to obtain FR parameters since they require less computation and run-
ning time, and are more accurate than other downscaling methods such as dynamic 
downscaling [104]. 

The statistical downscaling procedure for retrieving FR data from CR data is as fol-
lows: (1) develop models relating CR parameters and predictor variables or ancillary var-
iables at a coarse resolution; (2) apply the CR models to the FR data, assuming that the 
relationships between target parameters and predictor variables remain unchanged at dif-
ferent spatial scales; and (3) obtain the target FR parameters from the models and FR pre-
dictor variables at a fine resolution. A variety of machine learning algorithms, especially 
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the increasingly used ensemble learning algorithms, have been used as the relationships 
between target parameters and predictor variables are often nonlinear and complex. 

RF has been widely used to upscale large-scale precipitation, land surface tempera-
ture (LST), and soil moisture remote sensing data. For example, Shi et al. [91] established 
nonparametric relationships between precipitation and six indicators (EVI, altitude, slope, 
aspect, latitude, and longitude) using RF and spatially downscaled annual precipitation 
for 2001–2012 from 0.25° pixels to 1 km pixels over the Tibetan Plateau. Zhao et al. [97] 
used RF to downscale the Tropical Rainfall Measuring Mission (TRMM) monthly precip-
itation product from 25 km resolution to produce monthly precipitation data for China at 
1 km resolution. Hutengs and Vohland [80] developed a model relating LST to digital 
elevation data, land cover type, and surface reflectance in the red and near-infrared bands 
using RF; they downscaled the spatial resolution of LST from 1 km to 250 m, with the 
RMSEs from 1.41 to 1.92 K. When compared to the widely-adopted TsHARP sharpening 
method, downscaling accuracy using RF improved up to 19%. Karami et al. [83] created 
an RF-based regression tree to downscale the daily SMAP soil moisture product at 9 km 
resolution and created a 1 km soil moisture product using Sentinel-1 data, MODIS NDVI, 
land cover, and auxiliary topography and soil properties. Xu et al. [94] combined wavelet 
analysis with machine learning algorithms to create a wavelet support vector machine 
(WSVM) and a wavelet random forest (WRF) algorithm to downscale North American 
multimodel ensemble (NMME) precipitation forecasts. Their results showed improve-
ment over quantile mapping, with an average decrease in RMSE of 18–40 mm (21–33%). 

Several ensemble boosting algorithms have also been used for spatial downscaling. 
Wei et al. [92] created high resolution soil moisture maps covering the entire Tibetan Plat-
eau using GBRT with SMAP soil moisture data and related variables derived from MODIS 
and DEM. Using GBRT, Asadollah et al. [64] yielded a significant improvement in 
downscaling global climate model predictions, compared to SVR that was previously 
found as the most suitable for downscaling climate in Iran. Xu et al. [95] developed a mul-
tifactor geographically weighted machine learning algorithm using Sentinel-2A data that 
combined the results from three base learners (XGBoost, MARS, and Bayesian ridge re-
gression) and downscaled LST at 30 m resolution to 10 m resolution. 

4.5. Other Applications 
Other applications have used ensemble learning algorithms. In this section, we 

briefly mention some studies that recognized the importance of stacking. 
Wu et al. [93] developed a two-layer stacking and blending ensemble method to pre-

dict daily reference evapotranspiration in which level 0 models included RF, SVR, multi-
layer perceptron neural network (MLP), and kNN. Both stacking and blending were sig-
nificantly more accurate than the base models, and this approach is thus highly recom-
mended for predicting reference evapotranspiration. Cho et al. [46] used a stacking model 
to predict daily maximum air temperature that consisted of multiple linear regression 
(MLR) and support vector regression (SVR), and RF was optimized by SVR. The stacking 
ensemble method produced more accurate predictions than cokriging, three distinct data-
driven methods, and a simple average ensemble model. Divina et al. [71] showed that 
stacking was a suitable approach for short term electricity consumption forecasting. Hea-
ley et al. [79] showed that stacking increased the accuracy of detection of forest change. 
They investigated a stacking model using both parametric and RF-based image fusion 
rules as the meta learner to combine several forest disturbance detection algorithms and 
found that stacking using an RF model to build the meta learner reduced the rates of errors 
of omission and errors of commission by 50% in some instances when compared to indi-
vidual change detection methods and by 25% when compared with stacking using a lo-
gistic regression model as the meta learner. 
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5. Discussion and Future Directions 
5.1. Combining Feature Selection with Ensemble Learning 

Many studies have shown that using selected important features or variables instead 
of using all extracted variables can result in more accurate and robust predictions [105–
107]. Ensemble algorithms are essentially black box models that carry the risk of overfit-
ting, and the underlying physical mechanisms can be obscure [108]. It is therefore critical 
to identify important variables by selecting features before training a model; filter, wrap-
per, and embedded algorithms are just a few of the feature selection techniques that have 
been proposed [106,109]. 

Some studies have highlighted the importance of combining feature selection with 
ensemble learning algorithms in practical applications. For example, Luo et al. [43] found 
that recursive feature elimination (RFE) for feature selection in combination with a Cat-
Boost model produced the most accurate prediction of forest biomass for all forests in Jilin 
province, China with RMSE = 25.77 t/ha. There have also been studies that used a variance 
inflation factor (VIF) to quantify multicollinearity between independent variables, and 
only variables with VIF values <10 were finally included for modeling [62,110]. Of the 
three types of ensemble learning methods, tree-based bagging and boosting algorithms 
have identified important variables mainly by permutation importance [111,112]. Some 
other indicators, such as mean decrease in accuracy and mean decrease in impurity, have 
also been used in association with tree-based algorithms (e.g., RF) [113]. In contrast, stack-
ing ensemble algorithms appear to have difficulty in selecting important variables due to 
working with a set of models rather than an individual model, and it can be difficult to 
interpret the ensemble results [88,114]. Feature selection should thus be implemented with 
care when stacking, but this aspect of the technique has been little explored in published 
studies. 

5.2. Other Ensemble Learning Algorithms 
In this study, we primarily reviewed bagging, boosting and stacking ensemble algo-

rithms. Other ensemble learning algorithms have been developed in addition to these 
well-known algorithms, such as dynamic ensemble learning [115] and Bayesian additive 
regression trees [116]. The dynamic ensemble method, unlike static ensemble algorithms 
which combine fixed base learners, selects the single best learner or combines a subset of 
learners from the pool using a just-in-time condition that depends on the particular input 
pattern from which a prediction is to be made when making a prediction [117–119]. 

Blending is another ensemble technique that is derived from stacking. Blending dif-
fers from stacking in that it does not use k-fold cross-validation to generate training data 
for the meta learner but instead uses a one-holdout set. This technique results in only a 
small portion of the training dataset being used to generate predictions to be used as in-
puts to a meta model [93,120]. 

5.3. Deep Learning Algorithms 
Deep learning algorithms are used in many fields, including agriculture and remote 

sensing. The base learners in current ensemble models are mostly statistical and conven-
tional ML methods, and the possibility of combining deep learning models in several 
ways is worthy of investigation. Deep learning algorithms have been used as base learners 
in some studies with the intention of increasing prediction accuracy. For example, de 
Oliveira e Lucas et al. [70] used three CNNs to predict reference evapotranspiration time 
series and developed ensemble models consisting of the three CNNs. The CNN ensembles 
produced predictions with high accuracy and low variance. Lv et al. [47] developed a het-
erogeneous ensemble learning approach that combined three deep learning models (a 
deep belief network (DBN), a CNN and a deep residual network (ResNet)) to map land-
slide susceptibility in the Three Gorges reservoir area in China. 
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Deep learning algorithms well capture nonlinear relationships between target and 
sensor signals, so an ensemble of various deep learning algorithms should produce more 
accurate predictions than a single algorithm. The three principal ensemble methods we 
described in this study, particularly stacking, provide a framework for leveraging differ-
ent algorithms. Future studies will investigate optimal combinations of deep learning al-
gorithms in various applications. 

6. Conclusions 
In this paper, we reviewed bagging, boosting, and stacking ensemble learning algo-

rithms and their typical applications in the use of remote sensing data. RF was the most 
often adopted algorithm in several fields that used remote sensing data. In contrast, the 
other ensemble algorithms were often not considered for specific applications. Despite 
recent progress in increasing the prediction accuracy of ensemble algorithms, there are 
still some gaps in our knowledge, such as how to effectively combine feature selection 
with ensemble algorithms and how to incorporate deep learning algorithms in an ensem-
ble to increase prediction accuracy. The understanding of ensemble algorithms deserves 
to be the main focus of future study and will enable us to incorporate more advanced and 
diverse algorithms in practical applications. 
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Nomenclature 
AdaBoost adaptive boosting 
ANN artificial neural networks 
ARMA autoregressive–moving-average 
ARIMA autoregressive integrated moving average 
BPNN back propagation neural network 
BRT boosted regression tree 
CART classification and regression trees 
CatBoost categorical boosting 
CNN convolutional neural networks 
DBN deep belief network 
DL deep learning 
DT decision tree 
EBF evidence belief function 
ELM extreme learning machine 
ENR elastic net regression 
ERT extremely randomized trees 
FDA flexible discriminant analysis 
GBDT gradient boosting decision tree 
GBRT gradient boosting regression tree 
GLM generalized logistic models 
GP Gaussian process 
kNN k-nearest neighbor 
LMT logistic model tree 
LR linear regression 
LSSVM least square support vector machine 
LWLR locally weighted linear regression 
MADT multiclass alternating decision trees 
MARS multivariate adaptive regression splines 
MLP multilayer perceptron 
MLR multiple linear regression 
PRF parallel random forest 



Appl. Sci. 2022, 12, 8654 15 of 19 
 

REPT reduced error pruning tree 
ResNet residual neural network 
RF random forest 
RR ridge regression 
RRF regularized random forest 
RT regression tree 
SGB stochastic gradient boosting 
SVM support vector machine 
SVR support vector regression 
VFI voting feature interval 
XGBoost extreme gradient boosting 
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