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Abstract: Aiming to solve the problem of the low path-tracking accuracy of mobile robots in agri-
cultural environments, the authors of this paper propose a path-tracking method for agricultural
machinery based on variable look-ahead distance. A kinematic model of the four wheel indepen-
dent steering–four wheel independent drive (4WIS–4WID) structure based on pure pursuit was
constructed to obtain the functional equation of the current position and the four-wheel steering
angle. The fuzzy controller, which takes the lateral deviation and heading deviation as input and
the look-ahead distance in a pure pursuit model as output, was designed to obtain the look-ahead
distance that changes dynamically with the deviation of mobile agricultural machinery. The path-
tracking performance of 4WIS–4WID agricultural machinery in three scenarios (1 m, −90◦; 1 m,
0◦; and 0 m, 90◦) with different initial deviations was tested using a pure pursuit model based
on a variable look-ahead distance. The obtained field test results showed an average deviation of
19.7 cm, an average tracking time of 5.1 s, an average stability distance of 203.9 cm, and a steady state
deviation of 3.1 cm. The results showed that the proposed method presents a significant path-tracking
performance advantage over a fixed look-ahead distance pure tracking model and can be a reference
for high-quality path-tracking methods in automatic navigation research.

Keywords: look-ahead distance; pure pursuit model; fuzzy control; path tracking

1. Introduction

Automatic navigation technology for intelligent agricultural machinery is one of the most
important support technologies for modern agricultural equipment [1] that guarantees a high
level of agricultural production. Path tracking is a key technology of automatic navigation.
A pure pursuit model is a geometric method used to simulate a driver’s driving behavior
in which the steering radius is calculated in real time by its own posture information and a
preset look-ahead distance without relying on a vehicle dynamics model [2,3]. It is widely
used in unmanned agricultural machinery path tracking and path control.

In narrow environments, such as greenhouses, intelligent agricultural machinery
needs to have a good path-tracking ability [4]. The value change of look-ahead distance,
as the only parameter that can be adjusted in a pure pursuit model, has a great influence
on the path-tracking ability of agricultural machinery [5]. A number of researchers have
designed experiments and tests to improve the accuracy of path tracking. When the look-
ahead distance is equal to the width of the wheel, the obtained path-tracking accuracy
is limited [6]. With a tracking algorithm based on an optimal target point, although the
accuracy of path tracking could be improved, it is too complex for environments with high
real-time requirements such as greenhouses [7]. A pure pursuit model combined with
GPS used to obtain the parameters and positions of a vehicle, as well as the look-ahead
distance through simulation, could improve tracking accuracy but requires the simulation
of different speeds and too-complicated operation [8]. In research on fixed look-ahead
distance, researchers have found that a dynamic look-ahead distance performs better in
path tracking. Although it considered the influence of speed, a pure pursuit model with
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a PID algorithm used to change the look-ahead distance was not found to be efficient [9].
Based on Kalman filtering and a pure tracking model, Zhang et al. [10] used the IATE
optimization criterion to simulate the optimal look-ahead distance. Although the path-
tracking ability was improved in their study, the application of various complex functions
is needed, which is not conducive to the operation of agricultural machinery. A PI-based
path controller that changes the look-ahead distance without considering the influence of
speed is thus not dynamic [11]. An adaptive method that changes the look-ahead distance
could improve the pure pursuit algorithm, but its algorithm requires extensive analysis that
is too complex and not convenient for the operation of farm machinery [12]. Determining
the look-ahead distance of a pure tracking model with the fuzzy adaptive method requires
the construction of a self-adjustment function and complicated operation [13].

During travel, the determination of look-ahead distance is strongly related to each
driver’s experience, so researchers have attempted to find more intelligent methods to
determine the optimal look-ahead distance. An adaptive, look-ahead distance, pure pursuit
lateral controller that uses a greedy algorithm to improve the tracking accuracy was pro-
posed, but it is not suitable for complex terrain situations [14]. A path-tracking model based
on a fuzzy controller that could provide the optimal steering angle was constructed, but the
vehicle structure and kinematics model were different from our test prototype [15]. Hu de-
termined the optimal look-ahead distance according to the curvature of the reference path
and the current speed [16]. An improved pure pursuit algorithm using AGV to predict the
trajectory and turning speed could improve the accuracy of path pursuit, but the adopted
technology is not suitable for agricultural conditions [17]. With an extended Kalman filter,
the method could decompose speed into Cartesian components and improve path-tracking
accuracy, but the amount of calculations was large and unsuitable for the operation of
agricultural machinery [18]. When using pure pursuit and proportional integral speed
to improve the effect of path planning, vehicles will not collide with obstacles, but this is
not conducive to farming in farmland [19]. A lateral controller based on LPV-MPC was
shown to have some trouble handling uncertainties, while nonlinear active disturbance
rejection control was found to perform slightly worse regarding path tracking but had
strong robustness [20].

In conclusion, researchers have performed much research on the look-ahead distance
of pure pursuit models, but the above-mentioned methods require many experiments to
determine their key parameters, and the real-time performance of control algorithms needs
to be improved. Furthermore, few related studies on the adoption of pure pursuit on
4WIS–4WID vehicle have been found. Fuzzy control is an intelligent control algorithm
with artificial experience that is robust, fault-tolerant, and suitable for nonlinear and
time-varying system control [21,22]. Intelligent agricultural machinery field path-tracking
requires various inputs and outputs that are difficult to describe with a simple linear model.
Therefore, the authors of this paper propose an improved pure pursuit model using the
fuzzy control method to calculate the optimal look-ahead distance in real time to obtain
better agricultural machinery path-tracking quality and proved its effectiveness through
real vehicle tests. This method can provide new ideas for intelligent agricultural machinery
path-tracking research.

2. Materials and Methods
2.1. Test Prototype

The test prototype was a 4-wheel independent steering, 4-wheel independent drive
mechanical structure (4WIS–4WID), as shown in Figure 1. The body size of the test pro-
totype was 120 cm × 70 cm × 70 cm (length, width, and height, respectively), with a
left and right wheel tread of 54 cm and a wheelbase of 104 cm. With a lithium battery
(24 V, 20 Ah) as the power source, STM32F103ZET6 (32 bit, 72 MHz) was used as the main
controller to receive the attitude information of the vehicle position (x, y) and orientation
information θ sent by UWB (ultra-wideband; positioning error: ±5 cm) and electronic
gyroscope (WT901C; error: ±0.1◦), respectively. The PWM signal controlling the vehicle
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steering and movement were generated by the path-tracking model were transmitted to
the steering gear and drive motor. The steering of the wheels was independently controlled
by four steering gears (DH-03X, 120◦, 38 N/M) at [−90◦ 90◦] (setting a positive angle for
the wheel counterclockwise and a negative angle for clockwise deflection). The four hub
motors were driven by AQMD6015BLS drivers to realize prototype driving. The control
process is shown in Figure 2.
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Figure 2. System control process.

When tracking the prototype vehicle path, the main controller reads the angle data
of the position coordinates (x, y) and the deviation data ϕ provided by the UWB wireless
positioning system and the electronic gyroscope, respectively, according to the sampling
period and then converts the position and attitude information into the lateral deviation d
and heading deviation θ relative to the desired path. A dual-input and single-output fuzzy
controller was designed to construct a nonlinear transfer model between body deviation
and the look-ahead distance LD. The lateral deviation d, heading deviation θ, and look-
ahead distance LD are input into the pure pursuit model to calculate the steering radius
R of the prototype under the current state, and then the rotation angle of each wheel δ1,
δ2, δ3, and δ4 and the driving speed of the prototype wheel v1, v2, v3, and v4 are calculated
by the four-wheel, Ackermann low-speed steering model. The main controller converts
the rotation angle δ and speed v of each wheel into PWM signals that act as input of the
steering gears and the wheel motor to realize driving and steering so that the path-tracking
control of the prototype vehicle can be accomplished. The fuzzy control process is shown
in Figure 3.
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2.2. Path-Tracking Method Design
2.2.1. Pure Pursuit Model

The pure pursuit model was set as a lateral motion control algorithm for vehicles that
simulates the driver’s experience. In Figure 4, X is the geometric center of the 4WIS–4WID
prototype vehicle, line P1P2 is the desired path, and the angle between vehicle forward
direction and line P1P2 is the heading deviation θ. Crossing the center point X, line XN is
drawn perpendicular to line P1P2 and point N is the intersection points, so XN is the lateral
deviation d of the vehicle. If we set the length of MN equal to the look-ahead distance LD,
then point M is the look-ahead point of the prototype vehicle and XM is the look-ahead
straight line. For the pure pursuit model, the steering center O of the prototype vehicle
must be at the intersection of lines GO and XO. GO is the vertical bisection line of the
look-ahead line XM, and XO is the extension line of the vehicle’s lateral center. That is, OX
is the steering radius R of the prototype vehicle under the current posture state.

According to the geometric relationship in Figure 4, the steering radius R by Equation (1) is:

R =
LD2 + d2

2LD sin θ + 2d cos θ
(1)

where
R—steering radius, m;
d = the lateral deviation, m;
θ = the heading deviation, ◦.
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From Equation (1), when the deviation is fixed, look-ahead distance LD is the only
parameter to determine the rotation radius and there is a positive correlation between LD
and R, i.e., the greater the LD, the greater the value of R and vice versa.
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2.2.2. Kinematics Equation of the Vehicle

Different from traditional rear wheel-driven vehicles, to control a 4WIS–4WID vehicle,
steering angle δ1~δ4 and speed v1~v4 for each of the four wheels need to be considered,
thus leading to an even more complicated kinematics model as Figure 5.
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According to the Ackermann steering principle of Equation (2),

cot δ1 − cot δ2 =
2W

l
(2)

where:
l = wheelbase, m;
W = left and right wheel tread, m;
δ1 = steering angle of the front outer wheel, ◦;
δ2 = steering angle of the front inner wheel, ◦.
Since 2W/l > 0, the value of δ1 is less than δ2. In the simplified steering model, the

front and rear wheels on the same side have unique steering angles but opposite steering
directions, i.e., δ1 = −δ3, δ2 = −δ4, as in Equation (3).{

δ1 = −δ3 = arctan l
2R+W

δ2 = −δ4 = arctan l
2R−W

(3)

where:
l = wheelbase, m;
W = left and right wheel tread, m.
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The wheel is required to turn clockwise in a positive direction and counter-clockwise
in a negative direction.

Thus, rotation radii for the four wheels are determined by Equation (4).{
R1 = R3 = 2R+W

2 cos δ1

R2 = R4 = 2R−W
2 cos δ2

(4)

To ensure that the four wheels are always pure rolling with the ground during steering,
the rotation speeds of the four wheels should be in accordance, and the speeds of the four
wheels v1–v4 are listed as Equation (5).{

v1 = v3 = vR1
R

v2 = v4 = vR2
R

(5)

where: v = driving speed of the prototype vehicle, m/s.
Thus, the kinematic control model of the prototype vehicle could be constructed. In

the model, deviation (d, θ) can be transferred into the steering angle δ1~δ4 and wheel speed
v1~v4.

In the pure pursuit model, the forward distance LD has a significant impact on the
path-tracking quality. A smaller forward distance quickly converges the prototype to the
desired path (desired path) but also reduces the stability of the path tracking; a larger
forward distance enables the prototype to smoothly converge to the desired path, but it
takes a longer time and passes over a longer distance. The experience shows that when the
deviation of the prototype vehicle is large, a small look-ahead distance should be used to
quickly adjust the vehicle position and converge to the desired path; when the deviation of
the prototype vehicle is small, a large look-ahead distance is used to avoid the oscillation
caused by over-sensitive system adjustment. Currently, there is no mature mathematical
function used to determine the look-ahead distance for vehicle with a 4WIS–4WID structure.
A fuzzy controller was designed to dynamically determine the look-ahead distance LD
using the driver’s driving experience as the control rule.

2.2.3. Design of Fuzzy Controller

(1) Membership Function

The lateral deviation d and the heading deviation θ of the test prototype and the
desired path were taken as the input variables of the fuzzy controller. The domain of d
was [−1.2 m 1.2 m], and the domain of θ was [−90◦ 90◦]. The look-ahead distance LD
was regarded as the output variable, and the domain was [1 m 2.2 m]. The positive and
negative signs of each variable were defined as follows: when the vehicle is located on
the left forward side of the desired path, d is positive, and when the vehicle is located
on the right forward side of the desired path, d is negative. The heading deviation θ is
positive when rotated counterclockwise and negative when rotated clockwise; the steering
angle is positive when the front wheels turns left and negative when the vehicle turns
right. Comprehensively considering the precision of system control and the flexibility of
optimization, in the fuzzy controller, the input and output variables were quantified into
5 fuzzy subsets. Different from a traditional fuzzy controller, we adopted non-uniform
quantization scale instead of a uniform quantization scale in membership function. That
is, a large-scale quantitative level is used to obtain good control stability when vehicle
deviation is large. When the deviation is small and the vehicle is close to the desired
path, the high resolution (small scale) quantitative level is used to realize the more precise
adjustment of the vehicle position and posture. A triangle membership function is used for
each input and output variable. The basic information of each input and output variable is
shown in Figure 6.
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(2) Control Rules

Based on the experience of experts and drivers, the control rules should be in accor-
dance with following principles. When the deviation is very large, a small look-ahead
distance should be selected to quickly converge to the desired path to improve the efficiency
of path tracking. In contrast, when the deviation is small, the look-ahead distance should
be appropriately increased to prevent oscillation during path tracking, thus increasing
the stationarity of the prototype vehicle. Through repeated simulation and debugging,
25 control rules were determined, as shown in Table 1. In Table 1, the upper left and lower
right corners show that the vehicle is located in a position with large lateral deviation d and
heading deviation θ, so smaller look-ahead distance scales NB and NS are used; nearby, the
middle and secondary diagonals (the line from the lower left to the upper right corner in
the table) are the locations where the deviation of the vehicle (d, θ) is small, and the greater
look-ahead distances PB and PS are used.
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Table 1. Control rules.

LD
θ

NB NS ZO PS PB

d

NB NB NB NS ZO PS

NS NS NS ZO PS PS

ZO ZO PS PB PS ZO

PS PS PS ZO NS NS

PB PS ZO NS NB NB

3. Results
3.1. Path-Tracking Test Design

To verify the effectiveness of the method in path-tracking quality improvement, a
real vehicle test was conducted in Guan-Tang Greenhouse of Zhejiang Agricultural and
Forestry University located in Zhejiang province, south east of P.R. China from April to
May 2022. The UWB anchors were placed at four vertices of a 2 m wide and 10 m long
rectangle for receiving and transmitting position signals. The frequency of data and signal
sampling was 5 Hz, the vehicle speed v was set at 0.6 m/s, and the length of the straight
line for the path-tracking test was 10 m, as shown in Figure 7.
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Figure 7. Layout of test site.

Considering the frequent occurrence of the right angle steering of agricultural machin-
ery in actual greenhouse operation, three common deviation scenarios (1 m, −90◦; 1 m,
0◦; and 0 m, 90◦) were designed as the initial states of the prototype. The former data in
brackets comprise the lateral deviation d, and the latter comprise the heading deviation
θ. The pure tracking model with a fixed look-ahead distance was contrast-tested, and the
fixed look-ahead distance used in the comparison test was set to 1.5 m.

The average deviation, maximum deviation, stability distance, stability time, and steady-
state deviation were used as the evaluation indicators of path-tracking quality. The average
deviation refers to the average of the lateral deviation of all sampling points throughout
the whole path tracking. Stability distance refers to the distance that the prototype vehicle
travelled from the initial state to the stable state, i.e., the distance from converging to the
forward direction when the lateral deviation was less than 0.1 m. The maximum deviation
refers to the maximum lateral deviation of the actual path relative to the desired path. Stability
time refers to the time elapsed from the initial state to the steady state when lateral deviation
was less than 0.1 m. Steady state deviation refers to the mean of the lateral deviation of all
data points after the prototype vehicle reached the steady state.

3.2. Test Results

The tracks of the prototype vehicle path tracking with three different initial deviations
are shown in Figure 8. When obtaining the track, the starting point of the desired path was
taken as the origin. Ldynamic is the tracking track of the variable look-ahead distance in
the experimental group, and Lfixed is the tracking track of the fixed look-ahead distance in
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the control group. To better compare the test results, we locally enlarged the trajectories in
the initial stage of path tracking (0–4 m) as shown in Figure 9.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 13 
 

throughout the whole path tracking. Stability distance refers to the distance that the pro-
totype vehicle travelled from the initial state to the stable state, i.e., the distance from con-
verging to the forward direction when the lateral deviation was less than 0.1 m. The max-
imum deviation refers to the maximum lateral deviation of the actual path relative to the 
desired path. Stability time refers to the time elapsed from the initial state to the steady 
state when lateral deviation was less than 0.1 m. Steady state deviation refers to the mean 
of the lateral deviation of all data points after the prototype vehicle reached the steady 
state.  

3.2. Test Results 
The tracks of the prototype vehicle path tracking with three different initial devia-

tions are shown in Figure 8. When obtaining the track, the starting point of the desired 
path was taken as the origin. Ldynamic is the tracking track of the variable look-ahead 
distance in the experimental group, and Lfixed is the tracking track of the fixed look-ahead 
distance in the control group. To better compare the test results, we locally enlarged the 
trajectories in the initial stage of path tracking (0–4 m) as shown in Figure 9. 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Linear tracking track in different initial states. (a) Initial state (1 m, −90°) tracking track; (b) 
initial state (1 m, 0°) tracking track; (c) initial state (0 m, 90°) tracking track. 

Figure 8. Linear tracking track in different initial states. (a) Initial state (1 m, −90◦) tracking track;
(b) initial state (1 m, 0◦) tracking track; (c) initial state (0 m, 90◦) tracking track.

The further statistical analysis of the data shown Figure 8 was performed, as shown in
Table 2.

Table 2. Statistics of the linear tracking test.

Initial States
Look-Ahead

Distance
(m)

Average
Deviation

(cm)

Stability
Distance

(cm)

Maximum
Deviation

(cm)

Stability Time
(s)

Steady-State
Deviation

(cm)

Standard
Deviation of the

Steady-State
Deviation

(cm)

(1 m,−90◦) Ldynamic 12.5 64.6 100.0 3.2 2.0 1.3
Lfixed 17.5 274.7 100.0 5.6 3.4 2.1

(1 m, 0◦) Ldynamic 20.8 204.9 106.8 4.2 3.4 0.9
Lfixed 21.7 275.5 107.9 5.2 4.4 1.5

(0 m, 90◦) Ldynamic 25.7 342.3 100.9 7.8 3.8 1.6
Lfixed 34.2 372.9 109.1 8.4 4.6 1.9
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4. Discussion
4.1. Path-Tracking Accuracy

The accuracy of path tracking was evaluated with three indexes: mean deviation,
maximum deviation, and steady-state deviation. As shown in Figure 8 and Table 2, the
average deviations of path tracking for the variable look-ahead distance for three different
scenarios (three initial states) were 12.5 cm, 20.8 cm and 25.7 cm, and the average value
of deviation of the three scenarios was 19.7 cm. The steady-state deviations were 2.0 cm,
3.4 cm, and 3.8 cm, respectively, and the average value of the three scenarios was 3.1 cm.
The maximum deviations were 100 cm, 106.8 cm, and 100.9 cm, respectively. The above-
mentioned values were less than the corresponding value of the fixed look-ahead distance
in the control group. These results show that the path-tracking accuracy of the presented
method was higher than that of the traditional pure tracking model with a fixed look-ahead
distance. This is because when the initial deviation was large, the fuzzy controller provided
a small look-ahead distance so that the lateral deviation of the vehicle body was quickly
reduced, while when the vehicle body had a large look-ahead distance, it adopted a small



Appl. Sci. 2022, 12, 8651 11 of 13

deviation that effectively reduced the over adjustment of the lateral deviation control. Thus,
selecting the appropriate look-ahead distance in real time according to the current deviation
state could effectively control and stably control the actual tracking path of the prototype
vehicle closer to the desired path.

4.2. Convergence Rapidity

The stability distance and the stability time were used to evaluate the convergence
speed. According to Figure 8 and Table 2, with variable look-ahead distance, the stability
distances for the three different initial states were 64.6 cm, 204.9 cm, and 342.3 cm, respec-
tively, and the average value of stability distances was 203.9 cm. Stability times were 3.2 s,
4.2 s, and 7.8 s, respectively, and the average value was 5.1 s. In contrast, with the fixed
look-ahead distance, stability distances for the three different initial states were 274.7 cm,
275.5 cm, and 372.9 cm, respectively. Stability times were 5.6 s, 5.2 s, and 8.4 s, respectively.
The method used in this paper can be used to achieve a more rapid convergence to the
desired path and has a more sensitive response. In the early period of path tracking, the
small look-ahead distance shortens the “rise time” in the control process, thus shortening
the time required for the prototype vehicle to converge from the initial state to the steady
state. In real agricultural production situations, the characteristics of rapid convergence
can reduce the idle time to obtain a higher operational efficiency.

4.3. Path-Tracking Stability

The standard deviation of the steady-state deviation is used as an index to evaluate
the stability of path tracking. This index can reflect the transverse deviation dispersion
degree of a sample car after entering the stable state and can thus reflect the stability
degree of the sample car when driving at this stage. As shown in Figure 8 and Table 2,
the standard deviation of the steady state deviations of the present method under three
different initial deviations in the test were 1.3 cm, 0.9 cm and 1.6 cm, respectively, while the
standard deviations under the fixed look-ahead distance were 2.1 cm, 1.5 cm, and 1.9 cm,
respectively. The experimental data showed that the dispersion of the lateral deviation of
the prototype vehicle was significantly less than that of the control group with the fixed
look-ahead distance, so the path-tracking model with a variable forward distance had a
better performance than the fixed look-ahead distance. In the small-deviation situation,
the fuzzy controller was used to dynamically select a large look-ahead distance for path
tracking, which could preferentially reduce over-regulation in the control process, avoid
oscillation, and improve the stability of path tracking.

5. Conclusions

(1) To further improve the path-tracking quality of automatic navigation in agricultural
machinery with a 4WIS–4WID structure, a pure pursuit model based on a variable
look-ahead distance was adopted. A fuzzy controller was designed, with lateral
deviation and heading deviation as the input and look-ahead distance as the output,
to obtain dynamic variable look-ahead distances. A real vehicle path-tracking test
was implemented in a real agricultural environment to validate the effectiveness of
the algorithm in path tracking.

(2) The dynamic adjustment of the variable look-ahead distance according to the devia-
tion of the vehicle matches the driving habits of experienced drivers. The non-uniform
membership function quantization method can guarantee the accuracy of path track-
ing and consider the speed and stability of the path tracking. Compared with the
fixed look-ahead distance method, the method presented in this paper improved the
performance of average deviation, average steady-state deviation, average steady-
state distance, average maximal deviation, and the average stability time by 19.6%,
24.4%, 33.7%, 2.9% and 20.3%, respectively, according to the comparison test of the
test prototype. The path-tracking accuracy, convergence rapidity, and stability were
significantly improved compared to those of the traditional fixed look-ahead distance
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method. The path-tracking method can be applied to multi-input, nonlinear and
time-varying system control.

(3) The quantitative scale design of fuzzy control rules can be further refined. In follow-
up research, more fine fuzzy control rules can be used, and the input and output
variables can be quantified into more fuzzy subsets to determine a variety of deviation
states with more accurate look-ahead distances, further improving the path-tracking
accuracy of automatic navigation technology for agricultural machinery.

Author Contributions: Conceptualization, Y.Y. and F.F.; methodology, Y.Y., F.F. and L.Y., fata curation,
B.Y.; software, Y.Y., F.F. and Q.C.; writing—review and editing, Y.Y., L.X. and L.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Key R&D Program of Zhejiang, grant number 2022C02042.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Ru, J.; Kasimov, F.; Dong, Z.; Kulyash, K. Design and Implementation of Unmanned Agricultural Machinery. IOP Conf. Ser. Mater.

Sci. Eng. 2020, 799, 012032. [CrossRef]
2. Samuel, M.; Hussein, M.; Binti, M. A Review of some Pure-Pursuit based Path Tracking Techniques for Control of Autonomous

Vehicle. Int. J. Comput. Appl. 2016, 135, 35–38. [CrossRef]
3. Wang, R.; Li, Y.; Fan, J.; Wang, T.; Chen, X. A Novel Pure Pursuit Algorithm for Autonomous Vehicles Based on Salp Swarm

Algorithm and Velocity Controller. IEEE Access 2020, 8, 166525–166540. [CrossRef]
4. Liu, L.; Mei, T.; Niu, R.; Wang, J.; Liu, Y.; Chu, S. RBF-Based Monocular Vision Navigation for Small Vehicles in Narrow Space

below Maize Canopy. Appl. Sci. 2016, 6, 182. [CrossRef]
5. Li, J.; Wu, Q.; Wang, J.; Qin, H.; Li, J. Autonomous Tracking Control for Four-Wheel Independent Steering Robot Based on

Improved Pure Pursuit. J. Beijing Inst. Technol. 2020, 29, 466–473. [CrossRef]
6. Petrinec, K.; Kovacic, Z.; Marozin, A. Simulator of multi-AGV robotic industrial environments. In Proceedings of the IEEE

International Conference on Industrial Technology, Maribor, Slovenia, 10–12 December 2003. [CrossRef]
7. Yang, Y.; Li, Y.; Wen, X.; Zhang, G.; Ma, Q.; Cheng, S.; Qi, J.; Xu, L.; Chen, L. An optimal goal point determination algorithm for

automatic navigation of agricultural machinery: Improving the tracking accuracy of the Pure Pursuit algorithm. Comput. Electron.
Agric. 2022, 194, 106760. [CrossRef]

8. Duan, J.; Yang, C.; Shi, H. Path tracking based on pure pursuit algorithm for intelligent vehicles. J. Beijing Univ. Technol. 2016, 42,
1301–1306. [CrossRef]

9. Chen, Y.; Shan, Y.; Chen, L.; Huang, K.; Cao, D. Optimization of Pure Pursuit Controller based on PID Controller and Low-pass
Filter. In Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7
November 2018; pp. 3294–3299. [CrossRef]

10. Zhang, Z. Trajectory Tracking Control Method Based on Kalman Filter and Pure Pursuit Model for Agricultural Vehicle. Trans.
Chin. Soc. Agric. Mach. 2009, 40, 6–12.

11. Huang, P.; Zhang, Z.; Luo, X.; Zhang, J.; Huang, P. Path Tracking Control of a Differential-Drive Tracked Robot Based on
Look-ahead Distance. IFAC-PapersOnLine 2018, 51, 112–117. [CrossRef]

12. Shan, Y.; Zheng, B.; Chen, L.; Chen, L. A Reinforcement Learning-Based Adaptive Path Tracking Approach for Autonomous
Driving. IEEE Trans. Veh. Technol. 2020, 99, 10581–10595. [CrossRef]

13. Li, T.; Hu, J.; Gao, L.; Liu, X.; Bai, X. Agricultural machine path tracking method based on fuzzy adaptive pure pursuit model.
Trans. Chin. Soc. Agric. Mach. 2013, 44, 205–210.

14. Sukhil, V.; Behl, M. Adaptive Look Ahead Pure-Pursuit for Autonomous Racing. arXiv 2021, arXiv:2111.08873.
15. Yao, L.; Pitla, S.K.; Zhao, C.; Liew, C.; Hu, D.; Yang, Z. An improved fuzzy logic control method for path tracking of an

autonomous vehicle. Trans. ASABE 2020, 63, 1895–1904. [CrossRef]
16. Hu, C.; Chen, Y.; Wang, J. Fuzzy Observer-Based Transitional Path-Tracking Control for Autonomous Vehicles. IEEE Trans. Intell.

Transp. Syst. 2020, 22, 3078–3088. [CrossRef]
17. Pizá, R.; Carbonell, R.; Casanova, V.; Cuenca, Á.; Llobregat, J.J.S. Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor

Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels. Appl. Sci. 2022, 12, 3560. [CrossRef]

http://doi.org/10.1088/1757-899X/799/1/012032
http://doi.org/10.5120/ijca2016908314
http://doi.org/10.1109/ACCESS.2020.3023071
http://doi.org/10.3390/app6060182
http://doi.org/10.15918/j.jbit1004-0579.19110
http://doi.org/10.1109/icit.2003.1290794
http://doi.org/10.1016/j.compag.2022.106760
http://doi.org/10.11936/bjutxb2015060065
http://doi.org/10.1109/itsc.2018.8569416
http://doi.org/10.1016/j.ifacol.2018.08.072
http://doi.org/10.1109/TVT.2020.3014628
http://doi.org/10.13031/trans.13737
http://doi.org/10.1109/TITS.2020.2979431
http://doi.org/10.3390/app12073560


Appl. Sci. 2022, 12, 8651 13 of 13

18. Nguyen, P.T.-T.; Yan, S.-W.; Liao, J.-F.; Kuo, C.-H. Autonomous Mobile Robot Navigation in Sparse LiDAR Feature Environments.
Appl. Sci. 2021, 11, 5963. [CrossRef]

19. Yang, S.M.; Lin, Y.A. Development of an Improved Rapidly Exploring Random Trees Algorithm for Static Obstacle Avoidance in
Autonomous Vehicles. Sensors 2021, 21, 2244. [CrossRef] [PubMed]

20. Yang, X.; Xiong, L.; Leng, B.; Zeng, D.; Zhuo, G. Design, Validation and Comparison of Path Following Controllers for Autonomous
Vehicles. Sensors 2020, 20, 6052. [CrossRef] [PubMed]

21. Li, H.; Jing, X.; Lam, H.-K.; Shi, P. Fuzzy Sampled-Data Control for Uncertain Vehicle Suspension Systems. IEEE Trans. Cybern.
2014, 44, 1111–1126. [CrossRef] [PubMed]

22. Wang, H.; Liu, W.; Qiu, J.; Liu, P.X. Adaptive Fuzzy Decentralized Control for a Class of Strong Interconnected Nonlinear Systems
with Unmodeled Dynamics. IEEE Trans. Fuzzy Syst. 2018, 26, 836–846. [CrossRef]

http://doi.org/10.3390/app11135963
http://doi.org/10.3390/s21062244
http://www.ncbi.nlm.nih.gov/pubmed/33806992
http://doi.org/10.3390/s20216052
http://www.ncbi.nlm.nih.gov/pubmed/33114297
http://doi.org/10.1109/tcyb.2013.2279534
http://www.ncbi.nlm.nih.gov/pubmed/24043419
http://doi.org/10.1109/TFUZZ.2017.2694799

	Introduction 
	Materials and Methods 
	Test Prototype 
	Path-Tracking Method Design 
	Pure Pursuit Model 
	Kinematics Equation of the Vehicle 
	Design of Fuzzy Controller 


	Results 
	Path-Tracking Test Design 
	Test Results 

	Discussion 
	Path-Tracking Accuracy 
	Convergence Rapidity 
	Path-Tracking Stability 

	Conclusions 
	References

