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Abstract: Cloud computing brings convenience to the users by providing computational resources
and services. However, it comes with security challenges, such as unreliable cloud service providers
that could threaten users’ data integrity. Therefore, we need a data verification protocol to ensure
users’ data remains intact in the cloud storage. The data verification protocol has three important
properties: public verifiability, privacy preservation, and blockless verification. Unfortunately,
various existing signcryption schemes do not fully provide those important properties. As a result,
we propose an improved version of a signcryption technique based on the short signature ZSS that
can fulfill the aforementioned data verification important properties. Our computational cost and
time complexity assessment demonstrates that our suggested scheme can offer more characteristics
at the same computational cost as another ZSS signcryption scheme.
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1. Introduction

Cloud computing is not a new concept and has had rapid development since it was
first introduced. Cloud computing serves various services that bring convenience to its
users. This technology allows users to employ computational resources and services such
as infrastructure, storage, and applications—well-known cloud service providers (CSPs)
such as AWS, Azure, Google Cloud, and IBM. It enables users to access their data every
time from everywhere.

Unfortunately, cloud computing also comes with security challenges such as unreliable
CSPs [1,2]. Users grant CSPs the right to do any operation on their data when they outsource
data to CSPs. As a result, the user has limited control over what happens to their data.
Furthermore, because the original data is already kept in CSPs, users may remove it from
their local storage. The ability of CSPs to conceal errors from users for their own gain
is a serious issue with loss of data possession [3,4]. Additionally, CSPs could encounter
internal or external security issues, including mistakenly erasing or modifying infrequently
accessed user data to lessen storage requirements and claims that all data is still saved in
the cloud [2]. Data integrity could also be in danger if a malicious actor infiltrated the CSPs’
systems [1–5]. Therefore, data integrity verification is necessary to ensure the integrity of
users’ data stored in cloud storage.

In the data verification process, it is impractical and inefficient for the verifier to
download all the data in advance because stored data may be huge. Additionally, the
verifier might not have sufficient resources. More importantly, there is no assurance
of neutral data verification, and thus endangers users’ privacy. As a result, numerous
studies have been conducted to provide auditing protocols for cloud systems. A survey
in [2] describes some desirable properties of data auditing protocol. There are three main
properties that are vital to the verification process.

• Public verifiability. The size of data to be verified may vary. Users may have limited
resources which can cause an expensive verification process cost. Therefore, public
verifiability enables other parties to do a verification process.
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• Privacy-preserving. Prevent data leaks to the verifier during the verification process.
Concerns about data privacy arise as a result of the public verifiability characteristic.
This property requires that the verifier, as an outsider, not receive any confidential
information but still be able to verify the data integrity.

• Blockless verification. The verifier does not need to download all the data for the
verification process. Furthermore, it will decrease communication overhead at the
server and increase the efficiency of the verification scheme.

Research on data integrity verification in cloud servers without having access to all of
the data is particularly attracting attention. Ateniese et al. [6] are pioneers in addressing
this problem. Provable data possession (PDP) is the auditing mechanism that the authors
suggested. They present the idea of probabilistically verifying the data integrity kept on
the cloud server by users. Users could effectively validate the data integrity using this
method without having to save the original data locally. Proof of retrievability (PoR) is the
proposed idea put out by the authors of [7]. They use spot-checking and error-correcting
codes on remote storage systems to assure data ownership and retrievability. However,
those two schemes do not support privacy-preserving to prevent data leaks to the verifier
and public verifiability properties.

In [8], the authors suggested using signature-then-encryption as part of a public data
integrity verification approach for cloud storage. Privacy-preserving is provided through
encryption and public verifiability property through generating the tag signature of the data
using an algebraic signature. Unfortunately, this scheme lacks the blockless verification
property. In addition, separately performing the signature and encryption comes with an
expensive cost. Fortunately, Yulia Zheng came up with a concept called signcryption [9,10]
that performs the dual tasks of public-key encryption and digital signature in a single step.
The work shows that the cost (signcryption) < the cost (signature) + the cost (encryption).
However, the original signcryption concept does not allow for public verification; therefore,
the only possible verifier is the recipient of the signcryption messages.

Refs. [11,12] proposed an identity-based signcryption, and Ref. [13] proposed a
signcryption scheme based on elliptic curve. Unfortunately, those signcryption schemes
did not provide important properties needed in data verification: public verifiability,
privacy-preserving, and blockless verification. Refs. [14–17] gives a public verifiability
property to their works. However, it lacks privacy-preserving and blockless verification
in the verification process. The user must forward the original message to the verifier,
threatening the user’s data privacy. Furthermore, the verifier needs to download the
message first in order to verify the data that is not efficient. Therefore, we propose a data
verification protocol using a signcryption scheme based on a short signature by Zhang,
Safavi-Naini, and Susilo (ZSS) [18] that supports not only public verifiability but also
privacy-preserving to prevent data leaks to the verifier and blockless verification. To
support the last two properties, in our proposed scheme, the verifier will not be required
to receive the original message to do the verification process. The verifier only requires a
mathematically generated proof from the CSP in its replacement. By doing so, the user’s
data privacy is preserved; furthermore, the verifier will not need to download the original
message beforehand, making our proposed scheme a blockless verification protocol.

Our contribution:

• Proposed an improved signcryption scheme that provides three desirable properties
in data verification, public verifiability, privacy-preserving, and blockless verification.

• Presented a use case of data verification for data stored in cloud storage using a
signcryption scheme to ensure data integrity, confidentiality, and non-repudiation.

The remainder of the paper is organized as follows. We first describe preliminaries
in Section 2. Then, we present the proposed improved signcryption scheme in Section 3
along with the data verification use case using our improved ZSS signcryption scheme.
Discussion and security analysis about our equations’ correctness, unforgeability from
malicious CSP and verifier, computational cost, and time complexity of our proposed
scheme will be presented in Section 4. Finally, we conclude the paper in Section 5.
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2. Preliminaries
2.1. Bilinear Pairings

Let G1 be a cyclic additive group and G2 be multiplicative cyclic groups with prime
order p, P is the generator of group G1. The mapping e : G1 × G2 → G2 is a bilinear map
with the following properties:

1. Bilinearity: e(aP, bQ) = e(P, Q)ab, and e(P + R, Q) = e(P, Q) · e(R, Q) ∀P, Q, R ∈ G1,
a, b ∈ Zp.

2. Computability: There is an efficient algorithm to compute e(P, Q) ∀P, Q ∈ G1.
3. Non-degeneracy: There exists P ∈ G1 such that e(P, P) 6= 1.

We consider the following problems in the additive group G1.

• Discrete Logarithm Problem (DLP): Given two group elements P and Q, find an
integer n ∈ Z∗p, such that Q = nP whenever such an integer exists.

• Computational Diffie-Hellman Problem (CDHP): For a, b ∈ Z∗p, given P, aP, bP, com-
pute abP.

There are two variants of CDHP:

• Inverse Computational Diffie-Hellman Problem (Inv-CDHP): For a ∈ Z∗p, given
P, aP, compute a−1P.

• Square Computational Diffie-Hellman Problem (Squ-CDHP): For a ∈ Z∗p, given
P, aP, compute a2P.

2.2. ZSS Signature

ZSS is a short signature based on bilinear pairing first proposed by Zhang, Safavi-
Naini, and Susilo [18]. The main idea is to construct a signature that is difficult to CDH
problem in a group G. This signature required less pairing operation than other short
signatures, such as the Boneh–Lynn–Shacham (BLS) signature, making it more efficient [18].
There are four steps in the ZSS signature:

1. ParamGen. The system parameters are G1, G2, e, q, P, H.
2. KeyGen. Randomly selects x ∈R Z∗q , and computes Ppub = xP. The public key is

Ppub.

3. Sign. Given a secret key x, and a message m, computes signature S = (H(m) + x)−1P.
4. Ver. Given a public key Ppub, a message m, and a signature S, verify if e(H(m)P +

Ppub, S) = e(P, P). The verification works because of the following Equation (1).

e(H(m)P + Ppub, S) = e((H(m) + x)P, (H(m) + x)−1P)

= e(P, P)(H(m)+x)·(H(m)+x)−1

= e(P, P)

(1)

2.3. ZSS Signcryption

C. Ma [14] proposed a signcryption scheme that provides public verifiability for data
verification.

• ComGen. Given the security parameter k and n. Two cyclic groups (G1,+) and (G2, ·)
of the same prime order p > 2k, a generator P of G1, a bilinear map e : G1 × G1 → G2,
three hash functions H1 : {0, 1}∗ → Zp, H2 : G3

1 → {0, 1}n and H3 : {0, 1}k, and an
symmetric encryption scheme (E, D). Then, I = {k, n, G1, G2, P, e, H1, H2, H3, E, D}.

• KeyGen. Every user picks his private key SKU from Z∗p randomly and uniformly.
Then, he computes his public key PKU = SKU P.

• Signcrypt. Given a message m ∈ {0, 1}∗, the recipient’s public key PKR and the
sender’s private key SKS. The sender computes:

– pick r ←R {0, 1}n and compute u = (H1(m) + SKS + r)−1 mod p.
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– compute U = uP ∈ G1, V = r⊕ H2(U, PKR, uPKR) and then W = Eκ(m||PKS)
where κ = H3(r).

Finally, form the signcryptext C = (U, V, W).
• Unsigncrypt by recipient upon receiving (U, V, W).

– parse C as (U, V, W) and compute r = V ⊕ H2(U, PKR, SKRU).
– compute m||PKS = Dκ(W) where κ = H3(r).
– if e(U, (H1(m) + r)P + PKS) = e(P, P), then return the message m; otherwise

return ⊥means unsigncryption failure.

• Public Verifiability. The recipient wants to prove that sender actually signcrypted a
message m to the trusted third party (TTP). So, the recipient forwards (m, U, r, PKS)
to the TTP. Then, TTP accepts the proof if this equation is valid e(U, (H1(m) + r)P +
PKS) = e(P, P).

ZSS signcryption by [14] gives the public verifiability property. Unfortunately, it lacks
two other desirable properties, privacy-preserving, and blockless verification, for several
reasons. First, the user must forward the original message m to the TTP. By doing so, users’
data might leak to the TTP. Second, in the ZSS signature generation, the author included
a random value r. So, the user also needs to pass the r value to the TTP. The fact that
the TTP will be able to compute a symmetric encryption key, κ, by using H3(r) makes it
dangerous. The original message m can thus be decrypted by the TTP, endangering data
privacy. Third, the verifier needs to download message m to do data verification, which is
inefficient, especially if the size of message m is huge. Therefore, we proposed an improved
version of the ZSS signature scheme that provides three desirable properties, as explained
in Section 1.

3. Proposed Scheme
3.1. ZSS Signcryption

This section presents an improved version of the short signcryption scheme using
the ZSS signature based on bilinear pairings. We adopted the signcryption from [14] by
Changshe Ma in 2006. In [14], the author also gives a public verifiability property. However,
his work lack privacy-preserving and blockless verification during the verification process
because the user needs to forward the original message m to the verifier. By doing so, users’
data might leak to the verifiers. Furthermore, the verifier needs to download message m to
do data verification, which is inefficient. Therefore, in our proposal, we give two additional
advantages besides public verifiability that are important for data verification schemes,
privacy-preserving and blockless verification.

We chose the ZSS signature because it required less pairing operation than other short
signatures, such as the BLS signature [18]. Furthermore, ZSS does not need a special hash
function, i.e., MapToPoint, used in BLS. We can use a general hash function such as SHA
family, or MD5 [18]. As shown in Figure 1, a user will store a file in CSP. First, he will
compute signcrypted data σ. Then, he will send σ to the CSP. Before CSP stores data in
their storage, it will unsigncrypt the σ. The detailed process is described as follows.

Figure 1. Proposed scheme.
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• Setup Phase

– ParamGen. Given security parameter b and d. Let G1 be a cyclic additive group
and G2 be multiplicative cyclic groups with prime order p, P is the generator
of group G1. The bilinear mapping e : G1 × G2 → G2, three hash functions
Hash1 : {0, 1}∗ → Zp, Hash2 : G3

1 → {0, 1}d and Hash3 : {0, 1}d → {0, 1}b, and
symmetric encryption scheme (Enc, Dec). Therefore, the system parameters are
{b, d, G1, G2, P, e, Hash1, Hash2, Hash3, Enc, Dec}. We provided a list of notations
that we used in Table 1.

– KeyGen. The sender chooses a random number from Zp, sets it as their secret key
SKS and computes their public key PKS = SKSP. The recipient chooses a random
number from Zp, sets it as their secret key SKR, and computes their public key
PKR = SKRP.

Table 1. List of notations.

Notation Description

b, d Security parameter

G1 Cyclic additive group

G2 Multiplicative cyclic group

P Generator of group G1

Enc Symmetric encryption operation

Dec Symmetric decryption operation

SKS Sender’s secret key

PKS Sender’s public key

SKR Recipient’s secret key

PKR Recipient’s public key

m Original message

n Total number of shards

V ZSS signature of message m

X Randomness of encryption key generation

Y Encryption of message m

• Signcryption. User as sender S generated a signcryption σ for each message m as follows.

1. Generates v = (Hash1(m) + SKS)
−1.

2. Choose r ←R {0, 1}d and generate V = vP, X = r⊕ Hash2(V, PKR, vPKR). Then,
generate k = Hash3(r), which is a symmetric encryption key. So, Y = Enck(m).

3. Therefore, the signcryption σ = (V, X, Y) where V is a ZSS signature of message
m, X is the randomness of encryption key generation, and Y is the encryption of
message m.

• Unsigncryption. After receiving σ = (V, X, Y) from the sender S, the recipient R start
unsigncryption process.

1. R parse σ to get (V, X, Y).
2. Computes r = X⊕ Hash2(V, PKR, VSKR) and k = Hash3(r).
3. Decrypt Y to get message m. So, m = Deck(Y).
4. If the Equation (2) holds, unsigncryption success; otherwise, R rejects σ from

the sender.
e(Hash1(m)P + PKS, V) = e(P, P) (2)

In order to add randomization to the signature generation process, the author of [14]
inserts a random variable r. The consequence is the user must provide the verifier the r.
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As explained earlier, this presents a concern since r can also be used to create a symmetric
encryption key using the function Hash3(r). In this way, the verifier threatens data privacy
by being able to decrypt the original message. Different from [14], by removing the r, our
proposed scheme prevents leakage of the encryption key to the verifier. Furthermore, in
our scheme, the original message m will not be passed to the verifier during the verification
process. So, it assures data privacy and increases verification efficiency because the verifier
does not need to download the original message m beforehand.

3.2. Data Verification Use Case

We present a use case to implement our improved ZSS signcryption scheme for
verification of stored data in CSP by a Trusted Third Party Auditor (TPA) that can fulfill
three desirable properties, public verifiability, privacy-preserving, and blockless verification,
as shown in Figure 2. There are three entities involved: user, CSP, and TPA. The user has
stored data in the CSP storage. Then, he wants to check his data integrity by appointing a
TPA. The TPA generates a challenge variable and sends it to the corresponding CSP. After
receiving the challenge from the TPA, the CSP generates proof and sends it to the TPA.
Next, the TPA will verify whether the proof given by the CSP is correct through the validity
of an equation. The details are described as follows.

Figure 2. Data verification scheme.

1. User divided data F into n shards of m. F = {m1, m2, m3, ..., mn}.
2. User does a signcryption process for each data shard and generates σi, where i is the

index of each data shard.
3. Therefore, the Signcryption σi = (Vi, Xi, Yi). Set of signcrypted data is Sign = {σ1, σ2,

σ3, ..., σn}.
4. User stores set of signcryption Sign to the CSP.
5. User stores set of Signature Sn = {V1, V2, V3, ..., Vn} to their local storage.
6. CSP verify data from user by parsing each σi to (Vi, Xi, Yi). Then CSP does the unsign-

cryption process. If successful, store the user’s data; otherwise, reject it.
7. When the user wants to verify their stored data in CSP, they generate a set of ran-

dom numbers {i}i∈I and also the set of the signature of the challenged data shards
Sn = {Vi}i∈I , where i is the index of stored challenged data shards. Then, they send
those two variables to the TPA.

8. Upon receiving the request from the user, the TPA randomly chooses fi from Zp and
generates a challenge chal = {i, fi}i∈I . Then, it sends chal to the corresponding CSP.

9. After receiving chal from the TPA, the CSP computes ri = Xi⊕Hash2(Vi, PKR, ViSKR).
Then, they can compute ki = Hash3(ri) to decrypt Yi. Therefore, mi = Decki

(Yi). After
that, the CSP generates proof δ and sends it to the TPA.

δ = ∑
i∈I

fi Hash1(mi)P (3)

10. The TPA generates proof ω.
ω = ∑

i∈I
fiVi (4)
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11. Subsequently, the TPA checks whether Equation (5) holds.

e(δ + PKS, ω) = e(P, P) (5)

12. Finally, the TPA reports the verification results to the user.

4. Discussion and Security Analysis
4.1. Correctness

Below is the correctness proof of the signcryption scheme shown in Equation (2).

e(Hash1(m)P + PKS, V) = e(Hash1(m)P + PKS, (Hash1(m) + SKS)
−1P)

= e((Hash1(m) + SKS)P, (Hash1(m) + SKS)
−1P)

= e(P, P)(Hash1(m)+SKS)·(Hash1(m)+SKS)
−1

= e(P, P)

(6)

Below is the correctness proof of the data verification scheme shown in Equation (5).

e(δ + PKS, ω) = e(∑
i∈I

fi Hash1(mi)P + PKS, ∑
i∈I

fiUi)

= e(∑
i∈I

fi(Hash1(mi) + SKS)P, ∑
i∈I

fi(Hash1(mi) + SKS)
−1P)

= e(P, P)∑i∈I fi(Hash1(mi)+SKS)·∑i∈I fi(Hash1(mi)+SKS)
−1

= e(P, P)

(7)

4.2. Unforgeability

We present the unforgeability of two cases in our scheme, a malicious CSP cannot forge
proof δ to deceive the verifier, and a malicious verifier/TPA cannot forge the verification
results.

• Malicious CSP.
A malicious CSP cannot forge proof δ because every time the TPA sends a challenge,
a random value f will be given in the chal variable. The CSP will generate proof
δ based on f from the TPA as shown in Equation (3) and value f is different for
each data shard. Even if we further assume that the malicious CSP forges δ, namely
δ 6= δ′, the verification process done by TPA in Equation (5) shows that the TPA
must validate δ′ with two other variables, the sender’s public key PKS and proof
ω generated by TPA, which also consist of f value. Therefore, the δ′ cannot make
Equation (5) hold. Another case is when a malicious CSP tries to deceive the verifier
by replacing challenged data block mj with another data block mk when the former
data block is broken. Accordingly, the proof δ′ becomes

δ′ = ∑
i∈I,i 6=j

fi Hash1(mi)P + f j Hash1(mk)P (8)

So, the Equation (5) can be represented as

e(δ′ + PKS, ω) = e(δ + PKS, ω) = e(P, P) (9)

Hence, we have Hash1(mk) = Hash1(mj). However, Hash1(mk) cannot be equal
to Hash1(mj) due to the anti-collision property of the hash function. Therefore, it
is infeasible to make Equation (9) hold, and the proof from CSP cannot pass the
verification process.

• Malicious Verifier.
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A malicious verifier/TPA cannot forge verification results because verifier/TPA must
generate proof ω that required V, which is a signature generated by the user as
shown in Equation (4). We further assume that the malicious verifier forges proof
ω. To generate variable V, the malicious verifier needs the user’s private key SKS
and original message mi. Our proposed scheme provides privacy-preserving and
blockless verification properties, meaning the verifier capable of verifying the data
without receiving the original message mi from the user or CSP. So, without the
possession of those two variables, SKS and mi, it is impossible to generate a forged
m′i and make equation (Hash1(m′i) + SKS)

−1P = (Hash1(mi) + SKS)
−1P hold. Both

malicious CSP and verifier cannot calculate the user’s private key from the public
key under the Inv-CDHP assumption. Furthermore, in the verification process, the
verifier needs to validate ω with two other variables, the sender’s public key PKS and
proof δ generated by CSP as shown in Equation (5). Therefore, it is infeasible to make
equation e(δ + PKS, ω′) = e(P, P) hold, where ω′ 6= ω.

4.3. Desirable Properties Analysis

In this section, we present an analysis of the compatibility of our scheme with the
three desirable properties. Additionally, we compare our proposed scheme with four other
works related to data verification using the signcryption schemes in Table 2 as follows.

Table 2. Comparison of desirable properties.

Ref Public Verifiability Privacy-Preserving Blockless Verification

[14]
√

× ×

[19] ×
√

×

[20] ×
√ √

[21] ×
√

×

Proposed
Scheme

√ √ √

• Public verifiability.
Our proposed scheme provides the public verifiability property shown in Equation (5),
where we presented a use case in which a TPA can verify data stored in CSP. So,
the user can appoint another party besides CSP to do the data integrity verification
process. The comparison with four other works in Table 2 shows that only [14] fulfilled
this property. Unfortunately, in [19–21], only the appointed recipient that can verify
the data because their protocols did not permit other parties to verify stored data.

• Privacy-preserving.
Our scheme can guarantee that the TPA cannot know the users’ data during a veri-
fication process. As shown in Equation (3), the CSP sends proof δ to the TPA that is
not generated from the user’s original data. Furthermore, in Equation (4) generation,
the TPA only computes the message’s signature Vi, not the original data. Thus, our
scheme can prevent data leaks to the TPA during the verification process. The other
works that provide this property are [19–21]. Meanwhile, [14] does not support this
property because, in his protocol, the user must send the verifier the original message
that wants to be verified. By doing so, the user’s confidential data would be leaked to
other parties.

• Blockless Verification.
Our scheme supports blockless verification. In blockless verification, the verifier
does not need to download all the challenged data blocks to do the verification
process. Equation (5) shows that no original data is downloaded from CSP when TPA
does a verification process. It increases efficiency rather than downloading the data
beforehand. Table 2 shows that only [20] supports this property. While three other
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works [14,19,21] did not offer the availability of this property because the verifier must
possess the original message before he can do the verification process.

4.4. Computational Cost

To analyze our scheme performance, we present the computational cost comparison
of our scheme with four other signcryption schemes in Table 3. We will discuss several
aspects: signature type, computational cost, signature size, and time complexity. First, sig-
nature type. There are differences in the digital signature used in each scheme. Our scheme
and [14] are using ZSS signature scheme. This signature is more efficient because it has
fewer pairing operations than the BLS signature used in [21]. In addition, the ZSS signature
does not need a special hash function like in the BLS signature (i.e., MapToPoint). It can
use a general hash function such as the SHA family or MD5.

Table 3. Computational cost and time complexity comparison.

Ref S/R Signature
Type

Signature
Size (bits)

Computational
Cost

Time
Complexity

[19]
S Attribute-

based n/a
n(9Exp) O(n)

R P O(1)

[20]
S Attribute-

based n/a
n(8Exp) O(n)

R n(3Exp + 3P) O(n)

[21]
S

BLS 160
n(14Mul + 2P) O(n)

R n/a n/a

[14] S ZSS 260
n(1Exp + 1Inv + 1Mul

+1Add + 3Hash) O(n)

R n(1Add + 2Hash + P) O(n)

Proposed
Scheme

S
ZSS 260

n(1Exp + 1Inv + 1Mul
+1Add + 3Hash)

O(n)

R n(1Add + 2Hash + P) O(n)

S = Sender, R = Recipient, n = number of message, Exp = exponentiation, Inv = Inverse, Mul = multiplication,
Add = addition, Hash = hash function, P = Bilinear Pairings, n/a = not available.

The second is computational cost. Table 3 also shows costs for the sender that computes
signcryption and the recipient that computes the unsigncryption scheme. The pairing and
exponential operations are considered high-cost operations. Unfortunately, the attribute-
based signature required more exponential operations than other schemes. In the [19],
the sender needs to do nine exponential operations, and in [20], the sender requires eight
exponential operations. Unlike the two previous schemes, the BLS-based signature in [21]
required the sender to do fourteen multiplication and two pairing operations.

However, in our proposed scheme, the computational cost for the sender is n(1Exp +
1Inv + 1Mul + 1Add + 3Hash) and for the recipient is n(1Add + 2Hash + P). The sender
needs to do fewer exponentiation and multiplication operations than other schemes. The
recipient also has less operation when doing a unsigncryption scheme. Furthermore, in
our unsigncryption scheme, the bilinear pairing of e(P, P) can be precomputed. So, there is
only one pairing operation. In addition, even though our scheme has more hash operations,
the cost hash function is negligible compared to the other operations. Nevertheless, our
computational cost is the same as our based reference, which is [14].

Another variable to measure our scheme performance is to analyze the signature length
and time complexity. In terms of signature length, the BLS signature size is approximately
160 bits [22], while ZSS is around 260 bits [14]. The bigger the signature size means, the more
time needed to complete signcryption or unsigncryption. In terms of time complexity, our
scheme and four other schemes have linear time complexity (O(n)), except the recipient
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part in [19] that has constant time complexity (O(1)). The former indicates that the time in
this instance relies on the input n. The greater the value of n, the longer the required time.
The latter shows that the required time is always constant and does not depends on the
input variable.

The discussion above shows that [21] has a shorter signature size but high computa-
tional cost. Our scheme and [14] have lower computational costs than [21], but we have
longer signature sizes. However, with those conditions, our proposed scheme offers more
advantages than other schemes. The trade-off is that we can achieve three desirable proper-
ties in the data integrity verification process, public verifiability, privacy-preserving, and
blockless verification. More importantly, our proposed scheme can accomplish two more
properties with the same cost as our main reference [14].

5. Conclusions

We proposed an improved signcryption scheme that provides three desirable proper-
ties, public verifiability, privacy-preserving, and blockless verification. For the signature,
we utilize a ZSS short signature, which is more efficient than other short signatures such
as BLS due to fewer pairing operations. Furthermore, we presented a use case for sign-
cryption implementation in data verification to ensure data integrity, confidentiality, and
non-repudiation. Ultimately, we presented security analysis by demonstrating the validity
of our scheme equation, its unforgeability in the presence of malicious CSP and verifiers,
comparative studies analysis with four other works, and finally, by examining the compu-
tational cost and time complexity. The comparative studies show that only our proposed
scheme can fulfill three main desirable properties of data verification protocol. In addition,
our proposed system can accomplish two more attributes than our primary reference with
the same computational cost, according to the examination of computational cost and
time complexity.
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