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Abstract: This work shows that electrolyte current-density as an indicator can assist in the optimized
timing of the addition of the electrolyte to plasma electrolytic polishing (PEP) to keep it active and
in operation. In this experiment, 2 wt% ammonium sulfate was used as an electrolyte to polish
1 cm × 1 cm stainless steel SUS304. The hot-bath heating method was successfully used to heat it
from 60 to 90 ◦C, followed by suction filtration. The cathode was fixed at the beaker edge in the
electrolyte and the input voltage was 340 volts. Once the gas-phase layer formed stably around
the workpiece, the plasma went through the electrolyte to polish the workpiece surface. Then, the
anode was slowly immersed into the electrolyte and the current-density measured. It was found
that based on the current-density–temperature curve, for the timing of the addition of the electrolyte,
the current-density difference could be used to decide whether it needed to be supplemented or not.
When the temperature was from 75 to 80 ◦C and 85 to 90 ◦C, it was found that the 2 wt% ammonium
sulfate solution should be supplemented. The result showed that the electrolyte life indicator, using
the current-density, is a feasible method of practical technology for PEP.

Keywords: plasma electrolytic polishing; electrolyte life indicators; metal polishing

1. Introduction

Plasma electrolytic polishing (PEP) is a combination of reaction processes that re-
moves the surface of a metallic part via plasma-physical and electrochemical reactions [1].
Depending on the polished materials and the electrolyte, the voltage is usually set at a
high level between 200 and 400 V in order to generate a plasma discharge. The polishing
process and results are affected by many parameters, such as the electrolyte type, electrical
source, pretreatment, cathode, workpiece, etc. Among those parameters, the treatment time,
electrolyte, electrical source and voltage are the three main critical factors that affect surface
roughness [1,2]. A high electrolyte temperature is also critical to gas layer formation. The
continuous gas layer surrounding the sample does not appear in a low-temperature elec-
trolyte. High temperature in an electrolyte plays a key role in the PEP system, formatting a
steady and continuous gas-phase layer surrounding the surface sample [3].

Figure 1 shows the current–voltage characteristics of an anode in the polishing process,
which is divided into four sections. Firstly, the A–B section can be represented by Ohm’s
law and Faraday’s law, and it shows a positive correlation between the current and the
voltage. When voltages rise at point B, vapor and gas are regularly formed into a film
around workpiece but do not entirely cover it. Secondly, the B–C section can be described
as unstable plasma electrolytic polishing. The gas-phase layer of the workpiece is rendered
stable until the voltages increase to point C. Thirdly, the C–D section can be expressed as
the stable PEP process. Lastly, the D–E area of the current becomes stabilized [4].
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expressed as the stable PEP process. Lastly, the D–E area of the current becomes stabilized 
[4]. 

 
Figure 1. Current–voltage characteristics of the PEP anode process [5]. 

In the past, traditional polishing was extensively applied to medical instruments [6], 
and electronic devices and in aerospace. The purpose of traditional polishing is acquiring 
a low-roughness and high-gloss surface. Traditional polishing mainly includes mechani-
cal polishing, chemical polishing and electrochemical polishing. Mechanical polishing in-
volves making the surface smooth through plastic deformation; the disadvantages of this 
method are that it needs more workers to operate it, and it cannot be promised that each 
workpiece surface will be of the same quality. Chemical polishing can remove the work-
piece surface through a chemical reaction. Electrochemical polishing is similar to chemical 
polishing in that the workpiece is immersed in a chemical solution, but it is processed 
under a current. The metal workpiece is is an anode, while the electric tool is a cathode. 
Applying a direct current (DC), the workpiece anode is dissolved into metallic ions and 
removed atom by atom [7]. However, a high concentration of a strong acid or a strong 
base is used as an electrolyte. During the reaction, harmful gases and liquids will cause 
damage to workers and their environment [8]. Thus, it will produce waste liquid after the 
reaction. 

Unlike the strong acid and caustic alkali solutions used in chemical and electrochem-
ical polishing, the electrolyte used in the plasma electrolytic polishing process is a low-
concentration aqueous salt solution. The processing parameters used in the PEP process, 
such as electrolyte composition, temperature and high voltage applied to the metal alloys, 
result in the polishing effect of brought about by surface-material removal. The process is 
environmentally friendly and follows the safety requirements. 

Plasma electrolytic polishing applications have already been successfully used in 
steel [9–13], aluminum [10,14], copper [15], titanium and their alloys [5]. However, during 
the PEP process, polishing ability will be decreased because the electrolyte is evaporated 
at high temperatures and participates in electrochemical action. Thus, polishing ability 
will be affected by factors such as conductivity, the generation of metal impurities during 
the polishing process, electrolyte concentrations and pH value changes. Therefore, its sta-
tus must be monitored and maintained or replaced in the process. The objective of this 
study was to access the electrolyte life indicator by measuring the electrolyte, and to find 
the index that can represent the life of the electrolyte by establishing a determination curve 
of temperature vs. current-density. After acquiring the electrolyte life indicator, the oper-
ator can clearly know the timing of the addition of the electrolyte and keep the workpiece 
quality as high as possible during polishing. 

Figure 1. Current–voltage characteristics of the PEP anode process [5].

In the past, traditional polishing was extensively applied to medical instruments [6],
and electronic devices and in aerospace. The purpose of traditional polishing is acquiring a
low-roughness and high-gloss surface. Traditional polishing mainly includes mechanical
polishing, chemical polishing and electrochemical polishing. Mechanical polishing involves
making the surface smooth through plastic deformation; the disadvantages of this method
are that it needs more workers to operate it, and it cannot be promised that each workpiece
surface will be of the same quality. Chemical polishing can remove the workpiece surface
through a chemical reaction. Electrochemical polishing is similar to chemical polishing in
that the workpiece is immersed in a chemical solution, but it is processed under a current.
The metal workpiece is is an anode, while the electric tool is a cathode. Applying a direct
current (DC), the workpiece anode is dissolved into metallic ions and removed atom by
atom [7]. However, a high concentration of a strong acid or a strong base is used as an
electrolyte. During the reaction, harmful gases and liquids will cause damage to workers
and their environment [8]. Thus, it will produce waste liquid after the reaction.

Unlike the strong acid and caustic alkali solutions used in chemical and electro-
chemical polishing, the electrolyte used in the plasma electrolytic polishing process is
a low-concentration aqueous salt solution. The processing parameters used in the PEP
process, such as electrolyte composition, temperature and high voltage applied to the metal
alloys, result in the polishing effect of brought about by surface-material removal. The
process is environmentally friendly and follows the safety requirements.

Plasma electrolytic polishing applications have already been successfully used in
steel [9–13], aluminum [10,14], copper [15], titanium and their alloys [5]. However, during
the PEP process, polishing ability will be decreased because the electrolyte is evaporated at
high temperatures and participates in electrochemical action. Thus, polishing ability will
be affected by factors such as conductivity, the generation of metal impurities during the
polishing process, electrolyte concentrations and pH value changes. Therefore, its status
must be monitored and maintained or replaced in the process. The objective of this study
was to access the electrolyte life indicator by measuring the electrolyte, and to find the
index that can represent the life of the electrolyte by establishing a determination curve of
temperature vs. current-density. After acquiring the electrolyte life indicator, the operator
can clearly know the timing of the addition of the electrolyte and keep the workpiece
quality as high as possible during polishing.
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2. Materials and Methods
2.1. Plasma Electrolytic Polishing

A summary of the PEP process is shown in Figure 2. The polished workpiece is an
anode and connected to the plus pole of the DC energy source, to which a high voltage is
applied; meanwhile, the cathode is connected to the minus pole of the DC energy source. At
the start of the plasma electrolytic polishing process, the electrolyte is electrolyzed. The elec-
trolytic reaction happens near the anode, along with oxygen evolution and metal oxidation.
The Me is the metal workpiece element, which is expressed in the following equations:

2H2O + 4e− → O2↑ + 4H+

Me-ne− →Men+;

where Me represents the metal workpiece element.
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Figure 2. Schematic of plasma electrolytic polishing.

During polishing, a stable gas-phase layer is formed between the workpiece surface
and the electrolyte, meaning that the electric circuit is disconnected. Meanwhile, the
resistance is increased between the workpiece and the electrolyte, which forms a high
voltage. Discharge bombardment happens in the gas-phase layer. Then, plasma is produced
in the discharge channel, causing the metallic and gas-phase layers to produce strong
plasma-physical and electrochemical reactions [1]; this lets a chemical reaction be produced
and an electrical discharge removes the surface of the polished workpiece [6,16]. When the
discharge removal velocity is bigger than the chemical-reaction-producing rate, surface
peaks are removed and a smoother surface is achieved [14,17,18].

2.2. Experimental Setup of Plasma Electrolytic Polishing

Before polishing, the test piece was immersed into acetone; then, ultrasonication was
used to dissolve and remove surface grease and other organic impurities. The parameters
of the experiment are shown in Table 1. The electrolyte used was 2 wt% ammonium
sulfate (Shen Chiu Enterprise Co., Taichung, Taiwan) and 340 volts were applied to polish
the 1 cm × 1 cm stainless steel SUS304 workpiece (Regional R&D Service Department,
Taichung, Taiwan). The chemical compositions are shown in Table 2.

Table 1. Experimental parameters.

Parameters Value

Voltage 340 V
Electrolyte Ammonium sulfate

Electrolyte concentration (wt%) 2%
Electrolyte temperature From 60 to 90 ◦C

Workpiece Stainless steel (SUS 304)
Diving depth 30 mm



Appl. Sci. 2022, 12, 8594 4 of 8

Table 2. Chemical composition of SUS304 [17,19–21].

Element Percentage (%)

Carbon ≤0.08
Silicon ≤1.00

Manganese ≤2.00
Phosphorus ≤0.045

Sulfur ≤0.03
Chromium 18.00~20.00

Nickel 8.00~10.50

Figure 3a shows the workpiece, on which the anode is located in the central part of the
beaker, while the cathode is attached to the border of beaker. Figure 3b is a closer look at the
anode and cathode. Then, the hot-water heating method was used to heat the electrolyte
from 60 ◦C to 90 ◦C for the purpose of maintaining a stable system and undergoing less
energy loss. In order to form a stable gas-phase layer between the workpiece surface and
the electrolyte, a voltage of 340 volts was applied to the workpiece, which was regulated
by a DC power supply (ADC 4000, Preen, Taipei, Taiwan), as shown in Figure 3c. Finally,
the current-density was measured from 60 ◦C to 90 ◦C at 5 ◦C intervals.
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Current-density is defined as the amount of current flowing through an electrode per
unit area which can be represented by the following equation:

i =
(

I
A

)
=

(
Ke·∆U

g

)
(1)

where the I is current (A), A is the cross-sectional area which the current passes through
(m2), Ke is the conductivity of the electrolyte, ∆U is the potential difference between the
two electrodes and g is the electrode gap.
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3. Results and Discussion
3.1. Plasma Electrolytic Polishing
3.1.1. Color Changes of Polished Liquid

Figure 4 shows the process of plasma electrolytic polishing. It can be clearly seen
that the color of the polishing liquid was changed from transparent to dark as time went
on. Figure 4a shows the hot-bath heating method that was used to maintain a system
stable; however, there was a 10 ◦C temperature difference between the inside and the
outside of the beaker. As shown in Figure 4b, the solution was mixed with the metallic part
of the workpiece and the electrolyte. Nevertheless, it was better to analyze the residual
element using energy-dispersive X-ray spectroscopy. The color became darker because of
the reaction combined with the plasma-physical and electrochemical reactions. In Figure 4c,
electrolyte precipitation of the precipitate occurred. From Figure 4d to Figure 4f, suction
filtration of the electrolyte was applied after electrolyte precipitation. With the suction
filtration, the precipitate was removed.
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As shown in Figure 5, the use of the suction filtration method can effectively filter out
solid sediment from the polishing liquid. After polishing, residues were generated from the
reaction between the workpiece and the electrolyte. The goal of using the suction filtration
method was to keep the best polishing condition of the 2 wt% ammonium sulfate solution.
The fewer the residues produced from the workpiece and polishing solution, the higher the
quality can become.
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3.1.2. Contrast of Workpiece before and after Polishing

Figure 6 shows the contrast as a result of polishing the 1 cm × 1 cm stainless steel
SUS304, proving that the workpiece was well polished. Thereby, the surface gloss is
apparently improved. In this experiment we found that it is important to slowly drop
the workpiece in order to let the applied voltage and current become stable. On the other
hand, if the workpiece is dropped directly, it is unable to reach the predetermined voltage;
moreover, the gas-phase layer cannot form on the surface of the workpiece.
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Figure 6. Schematic of residues on filter paper after suction filtration.

Table 3 compares the plasma electrolytic polishing process parameters to previous
work. Compared to previous work, this work used the hot-bath heating method to main-
tain system stability, and the use of the suction filtration method enabled the reuse of
the electrolyte.

Table 3. Comparison of the plasma electrolytic polishing process parameters.

Metallic Material Electrolyte (wt%) Voltage (V) Reuse of Electrolyte Temperature (°C)
Hot-Bath Heating

Method and
Suction Filtration

Method
Reference

Stainless steel SUS304 0.4% (NH)2SO4 280 None 79–81 No Zong [22]
Stainless steel SUS304 3% (NH)2SO4 280 None 17 No Wang [21]
Stainless steel SUS304 2% (NH)2SO4 340,340 None 60–90 Yes This work

3.2. Current-Density–Temperature Curve

Figure 7 presents the density–temperature curve resulting from the use of 2 wt%
ammonium sulfate. Table 4 shows the measured data from the experiment. The difference
in the current-density drops down dramatically from 0.729 to 0.49 A/cm2 at the temperature
of 60 to 65 ◦C. As known from the current-density–temperature characteristic curve in
Figure 1, this stage has unstable polishing conditions, which mean the gas-phase layer
does not entirely cover the whole workpiece. From a temperature of 65 to 70 ◦C, the
variation in the current-density decreases to 0.032 A/cm2 as this stage is stable in the PEP
process. However, the current-density difference increases to 0.075 A/cm2 from 75 to 80 ◦C
which could indicate that the PEP process returns from a stable stage to an unstable stage.
Thus, the electrolyte should be supplemented. Between 85 and 90 ◦C, the current-density
difference is 0.057 A/cm2, which is slightly higher than the current-density difference of
0.034 A/cm2 at 80 to 85 ◦C, so it is necessary to add electrolyte at this interval. In addition
to finding out the electrolyte life index, the average consumption rate of the polishing
liquid is 7.08 mL/min when the temperature is maintained at 90 ◦C.
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Temperature (◦C) Current-Density (A/cm2)

60 0.729
65 0.49
70 0.458
75 0.415
80 0.34
85 0.276
90 0.219

4. Conclusions

This paper provided a practical method using a 2 wt% ammonium sulfate current-
density–temperature curve and improved two PEP processes. First, the hot-bath heating
method can increase the temperatures’ uniformity and stability in the polishing liquid;
further, the hot-bath heating method in the electrolyte maintenance mechanism can be
expanded to future production lines. Second, the use of the suction filtration method can
rapidly separate the sediment from the polishing liquid. Therefore, the suction filtration
method in electrolyte cleaning and the maintenance mechanism can be extended to future
production lines. Furthermore, it is crucial to conduct a study of the variable electrolyte life
indicator after the application of PEP in the future.
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