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Abstract: The stochastic high-patient-throughput surgery scheduling problem under a limited num-
ber of staffed ward beds is addressed in this paper. This work proposes a novel way to minimize
the risk of last-minute cancellations by bounding the likelihood of exceeding the staffed ward beds.
Given historical data, it is possible to determine an empirical distribution for the length of stay in the
ward. Then, for any given combinations of patients, one can estimate the likelihood of exceeding
the number of staffed ward beds using Monte Carlo sampling. As these ward patient combinations
grow exponentially, an alternative, more efficient, worst-case robust ward optimization model is
compared. An extensive data set was collected from the National University Hospital of Iceland for
computational experiments, and the models were compared with actual scheduling data. The models
proposed achieve high quality solutions in terms of overtime and risk of overflow in the ward.

Keywords: surgery scheduling; uncertainty; downstream resource; Monte Carlo sampling; mixed
integer programming; robust optimization

1. Introduction

Today, hospital managers seek ways to maximize the use of existing resources in
response to aging populations and increasing cost of care. In this respect, operating rooms
(ORs) have received considerable attention. They are both an expensive resource and
a significant source of income [1,2]. However, patient flow from ORs is constrained by
downstream resources, such as intensive care units (ICU) [3], the post-anesthesia care unit
(PACU) [4] and wards [5,6]. To achieve increased OR utilization, surgeries need to be
scheduled in such a way as to maximize throughput and to avoid last-minute cancellations
due to overtime or downstream bottlenecks. This is a challenging task due to the stochastic
nature of patient arrivals [7], surgery times [8,9], length of stay [3,10], and the competing
objectives of different stakeholders in the surgery process [11,12] that create artificial
variability for elective surgeries [13].

In practice, surgery scheduling is commonly divided into three distinct decision levels:
strategic, tactical, and operational [14,15]. The first decision level is the strategic level.
At this level, decisions are made about the overall surgical capacity, including ORs and
equipment. These decisions are long-term, i.e., they affect the scheduling for at least a
year [14]. The second decision level is the tactical level, where a cyclic master surgical
schedule (MSS) is decided. The MSS specifies the allocation of available OR time to
surgical specialties and/or operators for each day and room [15]. This strategy is referred
to as block scheduling. An open operating room is here referred to as a block, and the
opening hours are referred to as block length. Moreover, these schedules may also refer to
finding an ideal mix of surgical procedures [16–20]. Tactical decisions are medium-term,
i.e., they are usually made months in advance. Finally, at the operational level, patients
waiting for elective surgeries are scheduled to blocks and times based on the MSS [21].
These decisions are short-term, i.e., they are usually made at least one week in advance.
Commonly, a distinction is made between assigning patients to a block and sequencing
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patients within a block [22,23], even if both may be done at the same time [24]. Addressing
the stochastic and integrative nature of the surgery process is important for implementing
surgery scheduling systems in practice. In this paper, we focus on the assignment of elective
surgeries at the operational level, taking into account uncertainties in both surgery times
and length of stay (LOS) in the ward. Sequencing within blocks is not considered. Recent
literature reviews [15,21,25–27] give a general overview of the vast literature on surgery
scheduling.

Studies addressing uncertainties in both surgery times and LOS either use stochastic
programming [3,10,28] or robust optimization [2,29]. In stochastic programming (SP),
scenarios are used to represent uncertainty for surgery times and LOS in the downstream
resources [3]. In this case, expected values such as overtime and ward numbers are
minimized, guaranteeing good performance on average. The constraints are soft in this
case. In robust optimization (RO), constraints are dealt with in a hard manner, leading
to conservative solutions. Robust optimization (RO) uses uncertainty sets to guarantee
feasibility towards the worst-case outcome based on the selected level of robustness [2,29].
For example, uncertainty sets are created to represent the uncertainty for surgery times and
LOS. RO is also an alternative to SP when distributions of stochastic factors are hard to
identify [2]. Alternatively, distributional RO is an intermediate approach between SP and
the RO, where the worst-case distribution is chosen [30].

The focus of this work is to minimize the likelihood of exceeding the limited number
of staffed ward beds for a high-patient-throughput surgery schedule while minimizing
the number of ORs resulting in overtime in the planning horizon. Using historical data
for specific surgery types, empirical distributions for the LOS can be determined. Then, for
any given ward combination of patients, with their different probabilities of stay, the likeli-
hood of exceeding the number of staffed ward beds may be estimated using Monte Carlo
sampling. Unlike previous studies [2,29], our approach uses Monte Carlo sampling to
verify ward feasibility. The approach proposed is different from both SP and RO, as our
model will be explicitly based on looking at all possible patient ward combinations and
avoiding those exceeding the staffed ward beds within a specified probability. To the best
of our knowledge, resolving uncertainty in LOS with ward combinations has not been
attempted before. This enables us to bound the risk of exceeding the number of staffed
ward beds using an MIP model while also bounding the risk of overtime. Our approach is
not unlike the hard approach taken by RO; however, we do not hedge against the worst
case. As a result, we expect to achieve, for the same patient throughput, less overtime
for the surgeries. We compare this model with actual scheduling data. Furthermore, we
compare the formulation with robust formulation, which hedges against the worst case
outcome and requires less computational time.

The paper is organized as follows. In the next section, the general problem is stated,
followed by the development of the model to solve the problem in two steps. In the
experimental section, results from the different models are compared with actual scheduling
data. Furthermore, different parameter settings for the proposed models are also studied.
The paper concludes with a discussion of the main results.

2. Model Development

The general problem is scheduling a high throughput of in- and out-patient surgeries
over a certain time period to minimize the OR overtime while bounding the likelihood of
exceeding the limited downstream ward bed capacity. Patient priorities are included in the
model as hard constraints, i.e., if a patient requires scheduling within one week, it will be
done. We do not consider optimizing the flow of the emergency arrivals as they are treated
in a separate flow, in downtime and after hours. Further, we do not consider optimizing the
total number of patients scheduled since this requires discriminating between patients and
should be the responsibility of the hospital. If the ward beds and ORs are underutilized,
the hospital can add more patients to the list of patients to be scheduled.

In order to solve the problem, we propose a novel two step approach as follows:
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1. Operating Room Day Schedule Generation: An operating room day schedule (ORDS)
is a list of patients to be operated on in a particular day by a given operator. We
start by extracting all patients belonging to a specific operator. Next, we consider all
combinations of these patients subject to practical considerations (e.g., only one ICU
patient) and different block lengths. Using Monte Carlo sampling, with historical data
for surgery times needed for a given surgery type, we eliminate ORDS that exceed
the block length limit with probability δ.

2. Ward Combinations Optimization: Given a fixed number of staffed ward beds, we
consider all combinations of patient numbers nk with the discretized probability of
stay pk for k ∈ |K|, where the probability of stay is discretized into |K| groups and
dependent on the type of surgery performed on the patient. Each such combination is
then eliminated if the total patient number exceeds the number of staffed ward beds
by a probability Ω. This is computed using Monte Carlo sampling. Given the set of
feasible ORDS and ward combinations, a deterministic mixed-integer programming
(MIP) model is solved using a commercial solver. This is followed by a verification of
the solution by Monte Carlo sampling using the complete, undiscretized, empirical
distribution for the LOS in the ward.

Both steps will now be described in more detail in Sections 2.1 and 2.2. The second
step is then reformulated using a robust formulation described in Section 2.3. The notations
used by our models are defined in Appendix A.

2.1. Operating Room Day Schedule Generation

For a given MSS, we assume that each surgical specialty is assigned one or more
ORs r ∈ R on each day d ∈ D for the planning horizon D, where the available surgery
time for each block is given the capacity parameter Cd,r. Note that Cd,r can be of any
size, and different values can be specified for each block. These values are determined
by the hospital. Further, we assume that the surgical specialties allocate their blocks to
its operators where each operator has at least one assignment in D per week. A patient
i ∈ I then belongs to an operator’s list of patients (Io) and can be assigned to one of the
operator’s blocks.

For each operator’s block, we generate a set of feasible ORDS of patients to be sched-
uled. The feasibility of the ORDS is determined, on the one hand, by practical rules set
by the hospital and, on the other hand, by limits on overtime. The ORDS are all feasible
combinations of patients within the operator’s waiting list. The number of combinations
will grow exponentially. However, in real life, hospitals have a diverse set of practical
rules [29,31,32] that determine which ORDS are permitted. The application of these rules
significantly reduces the number of feasible combinations. Here, we make use of two rules.
First, we pose an upper bound on the number of patients assigned to an ORDS. Second,
we pose an upper bound on the number of ICU patients assigned to an ORDS. However,
these ORDS may not be feasible towards restrictions on overtime and are eliminated using
Monte Carlo sampling.

Let MP be the maximum number of surgeries assigned to an ORDS and zi,p be a binary
decision variable taking the value 1 if patient i is assigned to ORDS p; otherwise, it is 0.
Then, one may pose an upper limit on the number of patients assigned to an ORDS using
the following constraint:

∑
i∈Io

zi,p ≤ MP, ∀p ∈ P, o ∈ O (1)

Second, one may pose an upper bound on the number of ICU patients (MICU) for each
ORDS by

∑
i∈Io

gizi,p ≤ MICU , ∀p ∈ P, o ∈ O (2)
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where gi is a binary parameter taking the value 1 if patient i requires ICU admission;
otherwise, it is 0. It is assumed that a patient’s need for ICU admission is known in advance.

As the block length of each block (Cd,r) is finite and surgery duration differs signifi-
cantly across surgical types, only a subset of ORDS is feasible. That is to say, a set of patients
is considered a feasible ORDS p when the probability of exceeding Cd,r is no more than δ;
that is,

Pr[∑
i∈Io

S(i)zi,p ≥ Cd,r] ≤ δ, ∀p ∈ P, o ∈ O, r ∈ R, d ∈ D (3)

where S(i) is a random variable denoting the surgery duration of patient i, including
overhead such as preparation and cleaning. Note that only unique values for Cd,r need
to be considered. To make sure that all patients can be assigned to at least one ORDS,
an exception to this rule must be given to single surgeries. This is important since some
surgeries may span the entire block and exceed the limit of δ.

When generating the ORDS, a limit (δ) is set on the probability that the sum of surgery
duration in an ORDS surpasses the available surgery time Cd,r as posed by constraint (3).
For each ORDS, the expected value of this probability is calculated for regular overtime δp
and extended overtime δ∆

p , as

δp = Pr[∑
i∈Io

S(i)zi,p ≥ Cd,r],

δ∆
p = Pr[∑

i∈Io

S(i)zi,p ≥ Cd,r + ∆d,r],

∀p ∈ P, o ∈ O, r ∈ R, d ∈ D (4)

where ∆d,r is the time added to extend the block length. Our MIP model uses these values
to estimate the number of days resulting in regular and extended overtime along with the
set of feasible ORDS P.

2.2. Ward Combination Optimization

From historical data, for the different surgery types, it is possible to estimate the
probability that a specific patient is in the ward on any given day. If one discretizes these
probabilities (ρk) and counts (nk) how many within each bin or class interval k, then it
is possible to approximate the number of patients in the ward by the sum of binomial
distributions, or

W(l) ∼ ∑
k∈K

B
(
nk(l), ρk

)
, ∀ l ∈ L (5)

where l is an index to a particular combination of patient numbers in each interval class,
defined by

l = ∑
k∈K′

nk|A||K|−k+1 (6)

which is a base-|A| encoding where A = {0, . . . , MA − 1} is a set of available staffed ward
beds and K′ ∈ {2, . . . , |K| − 1}.

Indeed, the number of such combinations will grow exponentially in terms of the
number of staffed ward beds and the number of class intervals. However, not all are
feasible since those that exceed the number of available staffed ward beds with probability
Ω can be disregarded. That is, the feasibility of patients in ward combination l for a given
number of available staffed ward beds a must satisfy

Pr[W(l) ≥ a] ≤ Ω, ∀l ∈ L, a ∈ A (7)

Monte Carlo sampling can be used to verify each combination resulting in a binary
parameter Fl,a, denoting its feasibility. This parameter is utilized by a constraint in our
model to bound the likelihood of exceeding the staffed ward beds.
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In Figure 1, one can see how a distribution for an arbitrary surgery type has been
discretized to 5 levels, as illustrated by the dashed line. In this example, the discretization
assumes that for the day of the surgery and the day after (0 and 1), the patient will be in
the ward with probability ρ1 = 1. After the ninth day, the patient has left the ward and
the probability is ρ5 = 0. We are only interested in the levels between the first and the last,
which is, in this example, k ∈ K′ = {2, . . . , 5− 1}. The number of patients in the first level
(n1) are used to calculate the number of available staffed ward beds a = MA − n1, where
MA is the total number of staffed ward beds.

r5=0.00

r4=0.25

r3=0.50

r2=0.75

r1=1.00
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Figure 1. Approximating the expected length of stay (LOS) in ward with equal probability intervals
of length |K|. Here, |K| = 5.

Once all feasible ORDS and ward combinations have been generated, the scheduling
problem is reduced to allocating ORDS to days and rooms subject to the feasibility of the
resulting ward combination. Let us introduce a binary decision variable xd,p,r taking the
value 1 if an ORDS p is assigned on day d ∈ D and room r ∈ R. There are, however,
a number of restrictions on which ORDS can be assigned to any given day. These usually
center around the availability of the operators and the patients. Additionally, the ORDS’s
feasibility depends on the OR’s capacity for that day, Cd,r. As a result, the reduced set
(d, p, r) ∈ DPR ⊆ D× P× R is generated taking the following restrictions into account:

• The availability of the operators for a given day,
• The patients’ availability and priority,
• ORDS feasibility for a given day and room, dependent on Cd,r and ∆d,r.

Patient priorities are implemented in practice as a strict number of days that patients
can be on the waiting list.

As each ORDS spans the whole day, only one ORDS can be assigned to a room and
a day,

∑
p∈P,r∈R:(d,p,r)∈DPR

xd,p,r ≤ 1, ∀d ∈ D (8)

Similarly, any patient i can only be scheduled once,

∑
(d,p,r)∈DPR:i∈Ip

xd,p,r = 1, ∀i ∈ I (9)

where Ip is the set of patients included in ORDS p. It is assumed that all patients must be
scheduled, so the throughput is fixed. Additionally, each operator is only permitted to
work according to a single ORDS per day,

∑
p∈Po ,r∈R:(d,p,r)∈DPR

xd,p,r ≤ 1, ∀d ∈ D, o ∈ O (10)
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where Po ⊆ P are the ORDS containing the patients of operator o. Finally, we assume a
quota system for ICU admission as proposed by [31]; that is to say, for each day, no more
than M̄ICU patients can be admitted to the ICU,

∑
p∈P,r∈R:(d,p,r)∈DPR

nICU
p xd,p,r ≤ M̄ICU ∀d ∈ D (11)

where nICU
p denotes the number of ICU patients in ORDS p.

Given a schedule defined by the decision variables xd,p,r, a constraint is posed to
bound the likelihood of exceeding the staffed ward beds by a given probability. This is
important as exceeding the staffed ward beds may result in cancellations. To start with,
one must establish the daily availability of the staffed ward beds for any given surgery
schedule. For each schedule, the number of patients that will occupy a ward bed with 100%
certainty (ρ1 = 1.00) is assumed to be known for any given day. The number of staffed
wards beds that are available each day (ad) can be calculated as follows:

ad = MA −
(

n̄d,1 + ∑
r∈R,p∈P,j∈{0,1,...,MW−1}:

(d−j,p,r)∈DPR

Qj,1,pxd−j,p,r

)
, ∀d ∈ D (12)

where MW is the upper bound on LOS in the ward. The parameter n̄d,1 denotes the
number of patients still in the ward from previous weeks (prior to the start of our planning
horizon) with 100% (ρ1 = 1.00) certainty of occupying a staffed ward bed on the day j. This
evaluation may be carried out with a Monte Carlo sampling using the previous week’s
known schedule. The parameter Qj,1,p denotes the number of ward patients on the day
j after a surgery, belonging to ORDS p, with ρ1 = 1.00, or a 100% chance of being in the
ward that day. By multiplying the decision variable xd−j,p,r by this parameter for each day,
we can calculate the total number of patients within each scheduled ORDS that are in the
ward on the day d after their surgery, conducted on the day d− j. The daily availability of
staffed ward beds is bounded by the maximum number of staffed ward beds (MA), so

ad ≤ MA ∀d ∈ D (13)

The number of patients (nd,k) with the probability ρk, where k ∈ K′, of being in the
ward at given day d may be calculated as follows:

nd,k = n̄d,k + ∑
r∈R,p∈P,j∈{0,1,...,MW−1}:

(d−j,p,r)∈DPR

Qj,k,pxd−j,p,r, ∀d ∈ D, k ∈ K′ (14)

where Qj,k,p denotes the number of patients in ward with probability ρk on the day j after
the surgery belonging to ORDS p. n̄d,k is number of patients from the previous planning
period with the probability of ρk of occupying the staffed ward beds on day d.

As a final step in bounding the likelihood of exceeding the staffed ward beds that
are available, one must make sure that the combination of ward admission probabilities,
associated with the schedule defined by the decision variables xd,p,r, is feasible. That means
connecting the available staffed ward beds each day ad, the number of patients nd,k, with the
probability ρk of being in the ward at a given day and the set of feasible ward combinations
specified by Fl,a. We may now introduce the binary decision variable yd,l that takes the
value 1 if ward combination l is realized on day d; otherwise, it is 0. There can be only one
ward combination realized each day

∑
l∈L

yd,l = 1, ∀ d ∈ D (15)
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In order to discover which ward combination resulted from the scheduled ORDS,
a base-|A| decoder is constructed in the form of the following constraint:

∑
l∈L

lyd,l = ∑
k∈K′

nd,k|A||K|−k+1, ∀ d ∈ D (16)

This constraint may be thought of as searching for a specific row in a table. The right-
hand side decodes the combinations of nd,k into a specific row number, which corresponds
to the settings of ward combination l.

To make the connection from a certain ward combination to the available staffed ward
beds each day, a binary variable zd,a is introduced, taking the value 1 if on the day d ∈ D
there are a ∈ A staffed ward beds available; otherwise, it is 0. This variable is linked to the
actual number of available staffed ward beds using the following constraint:

∑
a∈A

azd,a = ad, ∀ d ∈ D (17)

where zd,a can only take one value each day

∑
a∈A

zd,a = 1, ∀ d ∈ D (18)

Now, one can force the selection of a feasible ward combinations as follows:

yd,l ≤ ∑
a∈A

Fl,azd,a, ∀d ∈ D, l ∈ L (19)

where Fl,a is a binary parameter value taking the value 1 if a ward combination l is feasible
with respect to the risk of ward overflow specified by Ω; otherwise, it is 0 for a given number
of available staffed ward beds a ∈ A. As explained at the start of this section, the parameter
Fl,a is calculated by Monte Carlo sampling prior to the start of the optimization. The purpose
of constraints (14) to (19) is to guide the ORDS assignments so that each day’s resulting
ward combination is feasible.

Having specified the constraints that hedge against the risk of ward overflow, we
now turn to the objective function. The problem considered in this paper is to schedule a
given set of patients (fixed throughput) over the period D so that both overtime and the
likelihood of exceeding the limited number of staffed ward beds are minimized. As we
have already set bounds to the likelihood of exceeding the limited number of staffed ward
beds with the parameter Ω, the focus in the objective function is on minimizing the OR
overtime and the amount of overtime.

Let us introduce the binary variable ud,r, taking the value 1 if δp > δ′ and otherwise
taking the value of 0, as forced by the following constraint:

∑
(d,p,r)∈DPR:δp>δ′

xd,p,r ≤ ud,r (20)

and similarly, the binary variable vd,r taking the value 1 if δ∆
p > δ∆′ and otherwise taking

the value of 0, as posed by the following constraint:

∑
(d,p,r)∈DPR:δ∆

p >δ∆′
xd,p,r ≤ vd,r (21)

The former binary variable (ud,r) determines the number of times that the probabilities
of the selected ORDSs surpass the accepted risk (δ′) of entering regular overtime, while the
latter (vd,r) determines the number of times that the probabilities of the ORDSs surpass the
accepted risk (δ∆′ ) of entering extended overtime. The objective function minimizes the
total number of times a selected ORDS results in overtime, but with more weight w� 1
on the extended overtime. A further penalty is added for the degree of surpassing the
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accepted risk limits by minimizing the squared probabilities δp and δ∆
p , again with more

weight on extended overtime, resulting in the following objective function:

min ∑
d∈D,r∈R

(
ud,r + wvd,r

)
(22)

+ ∑
(d,p,r)∈DPR

(
[δp]2

+ w[δ∆
p ]2)xd,p,r (23)

2.3. Robust Ward Optimization

In robust optimization, distributional information about the LOS is ignored [2]. Instead,
constraints that reflect the worst-case realization of uncertainty are added. The difficulty of
describing the worst-case realization, the so-called uncertainty set, is the challenge remain-
ing. The subject matter experts, knowing the patients’ conditions, may be able to estimate
the worst-case scenario. Depending on the risk-attitude of the hospital, a probabilistic
guarantee for the feasibility can be made.

Let us assume that the decision-maker is very conservative and requires an ω level of
certainty that the number of staffed ward beds occupied in the ward are kept below their
capacity MA. Let the probability of patient i being in the ward on day d be denoted by ρ′i,d.
Then, the worst-case realization should satisfy the following condition:

n̄d + ∑
p∈P,j∈{0,...,MW−1},r∈R:

((d−j),p,r)∈DPR

xd−j,p,r

(
∑

i∈Ip

1ω≤ρ′i,j

)
≤ MA, ∀d ∈ D (24)

where n̄d are the patients with certainty ω in the ward from the previous plan and 1ω≤ρ′i,j

takes the value 1 when ω ≤ ρ′i,j; otherwise, it is 0. Constraint (24) replaces constraints
(12)–(19) described in the previous section; all other details of the MIP model remain
the same.

In Figure 2, one can see the distribution for the same surgery type as presented in
Figure 1, but now, for the worst-case LOS using ω = 0.25, as illustrated by the dashed-line.
In this example, the patient is in ward from days 0 to 7 (1ω≤ρ′i,j

= 1) but has left the ward

on day 8 (1ω≤ρ′i,j
= 0). The figure shows that the approach is conservative and may reduce

the number of scheduling possibilities.
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Figure 2. Approximating the expected length of stay (LOS) with the worst-case scenario as illustrated
by a dashed-line using certainty ω = 0.25.

Although the worst case for the LOS for a single patient is used, there is still the chance
that we will exceed the staffed ward beds with a high probability when there are many
patients in the ward. In the implementation of this constraint in [2], a slack is introduced to
allow for additional ward beds and thus guarantee feasibility. We do not consider this an
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option and suggest that the strategy in practice would be to increase the value of ω until
feasibility is met.

3. Experimental Study

The purpose of the experimental study is to compare ward combination optimization
(WCO) and robust ward optimization (RWO) with respect to computational time and
solution quality. In addition, we compare our optimized solutions to actual scheduling data.
Various parameter settings for the proposed models are also studied. For our analysis, we
have selected data from one typical month for a single surgical specialty, General Surgery
at Landspitali Hospital. The given month consists of |D| = 28 days, which corresponds
to the length of the planning horizon. During that month, 103 patients were operated
on, with around 30% requiring ward admission for one or more days. A total of 10 of
these patients required ICU admission. Moreover, 10 patients had a priority of one week.
For the experiments, we assume that the patients with a priority of one week must be
scheduled within 14 days (based on historical data) and that other patients have equal
priority. Semi-acute patients (32 of 103) arriving during the month are scheduled after their
arrival. To be comparable with actual scheduling data, the actual operators’ roster days
are used.

The experiments were performed on a Windows desktop machine with 32 GB Intel
Core i7-7700 3.60 GHz with four cores. The ORDS and the ward combination generators
were coded in C, whereas the MIP model was programmed using the AMPL mathematical
programming language and solved using Gurobi 8.1.

3.1. General Surgery at Landspitali Hospital

Landspitali Hospital is a national university hospital located in Reykjavik, Iceland.
The hospital has approximately 650 ward beds and 15,000 surgeries performed annually by
11 surgical specialties. Only one of these specialties, General Surgery (GS), will be the focus
of this study. The GS specialty performs upper and lower abdomen surgeries and consists
of nine surgical operators. The specialty performs around 1200 elective surgeries annually,
with up to 40% of the surgeries requiring ward admission.

Landspitali Hospital uses block scheduling, where the MSS has been predetermined
for the specialties and is repeated every five working days. The GS specialty is allocated to
13 blocks each week. The specialty then allocates these blocks to the operators in advance,
each receiving at least one day of the week. The Friday blocks are shared between operators
needing additional OR capacity. Each patient is assigned to an operator’s waiting list and
can be scheduled to one of the operator’s blocks. There are two types of patients considered
for the elective schedule: in- and out-patients. In-patients require a ward bed after their
surgery to recover for one or more days, while out-patients leave the hospital the same day.

In practice, patients are assigned to blocks by a human scheduler. Their selection is
mainly dependent on their medical priority determined by the operator, their availability
and readiness. At the hospital, two block lengths are available. On Mondays–Thursdays,
the OR’a block length is 450 min, but it is 330 min on Friday. Due to the time limitation,
patients must also be scheduled in such a way that the accumulated sum of their expected
surgery times fits within the given block. However, going beyond the block capacity is
possible, since two ORs are kept open longer for acute patients. As a result, the GS speciality
utilises extended overtime. That is to say, it is preferable to have a small number of ORs that
go into extended overtime rather than having a large number of ORs that go into regular
overtime over the entire planning horizon. However, the time added to the extended block
length is limited to 60 min.

The GS specialty has limited access to downstream resources shared with other spe-
cialties. The scheduler takes these limitations into account by applying the following
heuristic: each day, only one ICU patient can be admitted to the ICU, and in total, there
are six staffed ward beds. Due to the limitations on the number of staffed ward beds,
the scheduler uses the expected LOS (maximum of 7 days) for each surgery to determine



Appl. Sci. 2022, 12, 8577 10 of 21

the ward occupancy of each day. Using the expected values, however, has often resulted
in cancellations. The ORs are utilized close to full capacity, but uncertainties in surgery
duration and LOS in wards lead to last-minute cancellations, either due to overtime or
ward overflow. The GS specialty wants to maintain a high level of throughput and reduce
the number of last-minute cancellations. Today, it is common to plan patients up to two
weeks in advance. However, the specialty would like to plan further ahead.

3.2. Parameter Settings

In this section, we present the parameters used for the ORDS generation with the WCO
and RWO models. In addition, we describe the solution verification process necessary
to verify the solutions due to the nature of our approaches. The ORDS and the ward
combinations are created offline prior to the start of the optimization. These simulations
require a few minutes of computation time.

3.2.1. ORDS Generation

The following parameters were selected to create the ORDS based on general practise
at the General Surgery speciality. When ORDS are created, an upper limit on the number of
patients assigned to an ORDS is set to Mp = 6 and MICU = 1 on ICU patients.

There are two distinct block lengths available at Landspitali Hospital, so we set
Cd,r = {330, 450}min and the time added to the extended block length to ∆d,r = 60 min.
We posed a limit on the probability that an ORDS surpasses Cd,r to δ = 0.75. For each
patient, 1000 scenarios of surgery times were generated, dependent on the patient’s surgery
type, using Monte Carlo sampling from historical data. Note that pre- and post activity
times are included in the surgery times.

Lastly, a LOS distribution based on the patient’s probability of stay in the ward each
day was calculated for each patient requiring ward admission. The distribution is based on
the patient’s surgery type using a maximum of MW = 14 ward days.

3.2.2. Ward Combination Optimization

To create the ward combinations, the number of probability groups was varied with
|K| = 4, . . . , 7 and corresponding equal discretized probabilities

pk = (|K| − k)/(|K| − 1), ∀k ∈ {1, . . . , |K|}.

Each ward combination was simulated with Monte Carlo sampling 1000 times using
Ω = 0.15 and MA = 6.

Several parameters must be set for the WCO model. As for the ward combinations,
we used MA = 6 and set the number of ICU patients admitted to the ICU to M̄ICU = 1.
To estimate the parameter n̄d,k, we performed a Monte Carlo sampling using historical data
three weeks prior to the start of the planning horizon.

For the threshold of accepted risk of entering overtime, used by the objective function,
we selected δ′ = 0.25. This value is close to the values used by [17,20,32]. We selected
the same value for the threshold of the risk of entering extended overtime δ∆′ = 0.25.
The weight between regular and extended overtime in the objective was set to w = 10
based on importance.

3.2.3. Robust Ward Optimization

We employed the same parameter settings for RWO as were used for the WCO. In order
to be able to compare RWO to WCO, we set the RWO parameter ω = Ω.

3.2.4. Solution Verification

Due to the nature of our approach, exceeding the number of staffed ward beds is
still a possibility. As a result, each solution was verified by Monte Carlo sampling using
the complete, undiscretized, empirical distribution for the LOS in the ward and surgery
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times. We simulated each schedule 1000 times. For each simulation result, we measured
the discretization error, namely the degree of exceeding the values Ω and ω for a given
number of staffed beds (referred to as the risk of overflow). Median, mean and maximum
values are provided. In addition, we measured how many beds exceed the given number of
staffed ward beds for the entire planning period. Minimum, median, mean and maximum
values are provided.

3.3. Comparison

In Table 1, one can see the difference between optimal solutions from the WCO, RWO
and actual scheduling data. First, compared to actual data, ORDS are less likely to surpass
the accepted risk of regular overtime and the accepted risk of extended overtime for our
models. For the regular overtime, the difference is the lowest (up to 25% lower) but the
highest for the extended overtime (up to 71% lower). Comparing the ward results, one can
see that the values are also lower for the models. This is apparent for both the number of
beds over the given number of staffed ward beds of 6 (min, median, mean and max) and
also for the maximum risk of overflow. Comparing WCO and RWO, one can see that WCO
is of higher quality than RWO both in terms of overtime and ward overflow. To better
understand the sources of the difference between the models, a visual representation of the
actual, WCO and RWO scheduling are provided in Figures 3–5, respectively. The figures
illustrate the surgeries for each day and room (indicated with 1, 3 and 6) and boxplots
for the simulated ward occupancy. For the ward occupancy, the color is yellow if there
is a risk of overflow, but grey if not. In practice, the scheduler will use the accumulated
average surgery duration (AASD) to create ORDS by hand. Thus, the figures reflect what
the scheduler can see in their planning software. Different colors reflect the operators and
the text is the code of the surgical procedure. If the surgical procedure code is in upper
case, ward admission is required. The symbol + denotes if a patient arrived during the
execution of the schedule, ∗ denotes one-week priority and ICU denotes if ICU is required.
The tags u and v denote if the threshold for the risk of regular or extended overtime is
surpassed, respectively. In the figures, three dashed lines are shown. For the ORs, two lines
are shown to represent the opening hours of the ORs (the capacity parameter Cd,r). For the
ward, a single dashed line is shown for the maximum number of staffed ward beds (MA)
at the specialty.

Table 1. Comparison between optimal solutions of the ward combinations optimization (WCO),
the robust ward optimization (RWO) and actual schedule for the planning horizon. Regular and
extended overtime show how often selected ORDS surpass the accepted risk for each group. Risk of
overtime is the probability that the selected ORDS will surpass the block capacity. No. of beds over
measures how many beds exceed the given number of staffed ward beds while risk of overflow is the
likelihood of exceeding the number of staffed ward beds.

OR Ward

Overtime Risk of Overtime No. Beds over Risk of Overflow

Case Regular Extended Mean Median Max Min Median Mean Max Median Mean Max

Actual † 8 14 0.20 0.32 1.00 0 9 9.66 27 0.02 0.15 1.00
WCO * 6 4 0.10 0.17 0.68 0 1 1.79 14 0.01 0.06 0.25
RWO ‡ 7 5 0.08 0.17 0.69 0 1 1.47 18 0.01 0.04 0.26

Configurations: † MA = 6; * (MA, Ω, |K|) = (6, 0.15, 5); ‡ (MA, ω) = (6, 0.15).
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Figure 3. Visualisation of the actual surgeries for each day and OR (1, 3 and 6) and the corresponding
ward occupancy (for the ward occupancy, the color is yellow if there is risk of overflow and grey if
not. The dashed line represents the maximum number of staffed ward beds (MA)). Colors reflect the
operators, and the text is the code of the surgical procedure (if the surgical procedure code is in upper
case, ward admission is required. The symbol + denotes if a patient arrived during the execution
of the schedule, ∗ denotes one-week priority and ICU denotes if ICU is required. The dashed lines
represent the distinct opening hours of the ORs (Cd,r)). The tags u and v denote if the threshold for
the risk of regular or extended overtime is surpassed, respectively.
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Inspecting Figure 3, one may note the imbalance in the utilization of the ORs. Observ-
ing the AASD for each day and room, the ORs are, in many instances, utilized close to full
capacity, while in others, they are under-utilized. For example, on days 3, 9, 15, 17, 18, 22,
and 24, the AASD of at least one room is more than 7, 5 h. However, on days 4, 5, 8, 10, 11,
16, 19, 23 and 25, at least one room has a low OR utilization (low OR hours). As the AASD
is closer to full capacity, there is an increased risk of overtime, as can be seen from the tags
denoting the surpassing of the accepted risk of regular (u) and extended (v) overtime above
each OR in the figure. On some days, operating close to, or over, full capacity cannot be
avoided. One can see this occurs on days 1, 17, 18, 22, and 23, when the average duration
of a single surgery is close to the available opening time.

The imbalances detected in the utilization of the ORs are also apparent in our simu-
lation of ward occupancy (see Figure 3). The utilization of the ward is lowest during the
weekends but increases at the beginning of each week and commonly reaches a maximum
on Thursdays before decreasing again. In the first week, there is a high risk of overflow
already on Wednesday (day 3) to Saturday (day 6) and again on day 18. The risk of over-
flow is relatively low and the ward occupancy is balanced in the second week (days 8–14).
However, imbalances and a higher risk of overflow reappears in the last two weeks (days
15–28), even if they are not as severe as in the first week.

In Figures 4 and 5, the optimal solutions are visualized for the WCO and RWO
schedules in the same way as was done in Figure 3 for the actual schedule. Of the 103
surgeries included in both schedules, 28 are scheduled by the model on the same day
as they were actually performed on for the WCO; this number is 23 for the RWO. This
suggests that the optimized schedules and the actual one are different. Analyzing the
figures, one can identify that, for the optimized schedules, the utilization of both the wards
and the ORs is more evened out for the entire planning horizon. For example, the daily
ward admissions are relatively balanced, with most days in the range of 1–2 admissions
per day. Additionally, the risk of overflow is lower. For the ORs, one can observe that
overtime has been concentrated to fewer days, leading to improved and more evened out
utilization. Moreover, single surgeries that have, on their own, a high risk of entering
overtime (those spanning the whole day) are never combined with other surgeries in the
optimal solution (see e.g., Figure 4 on day 10 in room 1), whereas this occurs in the actual
data (see e.g., Figure 3 on day 18 in room 1).

Comparing the schedules of the WCO to the RWO, one can see that they differ in
terms of overtime and ward utilization. More overtime is apparent in the RWO in the
second week, but less is apparent in the third week. In terms of the wards, both solutions
contain three days with a risk of overflow but on different days. Since RWO is more
conservative as it depends on the worst-case outcome for the ward LOS, there is generally
lower ward utilization.
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Figure 4. Visualisation of the optimal solution for each day and OR (1, 3 and 6) for the WCO and
the corresponding ward occupancy (for the ward occupancy, the color is yellow if there is risk of
overflow, but is grey if not. The dashed line represent the maximum number of staffed ward beds
(MA)). Colors reflect the operators and the text is the code of the surgical procedure (if the surgical
procedure code is in upper case, ward admission is required. The symbol + denotes if a patient
arrived during the execution of the schedule, ∗ denotes one-week priority and ICU denotes if ICU is
required. The dashed lines represents the opening hours of the ORs (Cd,r)). The tags u and v denote if
the threshold for the risk of regular or extended overtime is surpassed, respectively.
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Figure 5. Visualisation of the optimal solution from the robust ward optimization (RWO) for each
day and OR (1, 3 and 6) and the corresponding ward occupancy (for the ward occupancy, the color is
yellow if there is risk of overflow and is grey if not. The dashed line represent the maximum number
of staffed ward beds (MA)). Colors reflect the operators, and the text is the code of the surgical
procedure (if the surgical procedure code is in upper case, ward admission is required. The symbol +
denotes if a patient arrived during the execution of the schedule, ∗ denotes one-week priority and
ICU denotes if ICU is required. The dashed lines represent the opening hours of the ORs (Cd,r)).
The tags u and v denote if the threshold for the risk of regular or extended overtime is surpassed,
respectively.
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3.4. Parameter Analysis

Parameter analyses are performed to explore the trade-offs between computational
requirements and quality of solutions of the WCO and RWO for a given range of model
parameters. The results are presented in Tables 2 and 3.

Table 2. Quality of solutions and computational requirements for different configurations of (MA,
Ω, |K|) for the ward combination optimization (WCO). Here, MA denotes the maximum number of
staffed ward beds, Ω denotes the limit on the likelihood that a ward combination exceeds the number
of staffed ward beds and |K| denotes the number of probability groups.

OR Ward MIP

Configuration Overtime 1 No. Beds over 2 Risk of Overflow 3 CPU

(MA, Ω, |K|) Regular Extended Min Median Mean Max Median Mean Max (s)

(5, 1.00, 5) 6 4 3 16 16.18 44 0.16 0.32 0.98 95
(5, 0.75, 5) 6 4 1 10 11.13 46 0.15 0.28 0.89 133
(5, 0.50, 5) - - - - - - - - - -
(5, 0.25, 5) - - - - - - - - - -
(5, 0.15, 5) - - - - - - - - - -
(5, 0.10, 5) - - - - - - - - - -

(6, 0.15, 4) 6 4 0 1 2.02 20 0.02 0.06 0.31 362
(6, 1.00, 5) 6 4 0 6 6.00 22 0.03 0.16 0.73 121
(6, 0.75, 5) 6 4 0 5 6.07 25 0.03 0.15 0.68 109
(6, 0.50, 5) 6 4 0 3 3.90 19 0.05 0.11 0.56 470
(6, 0.25, 5) 6 4 0 2 2.45 17 0.03 0.08 0.34 790
(6, 0.15, 5) 6 4 0 1 1.79 14 0.01 0.06 0.25 1080
(6, 0.10, 5) 6 4 0 1 1.58 12 0.02 0.05 0.21 3365
(6, 0.15, 6) 6 4 0 1 1.61 13 0.02 0.05 0.22 6505
(6, 0.10, 6) - - - - - - - - - -
(6, 0.15, 7) - - - - - - - - - -

(7, 1.00, 5) 6 4 0 4 4.56 22 0.00 0.09 0.88 135
(7, 0.75, 5) 6 4 0 2 2.13 20 0.01 0.06 0.47 170
(7, 0.50, 5) 6 4 0 1 1.88 13 0.00 0.06 0.41 185
(7, 0.25, 5) 6 4 0 1 1.42 12 0.01 0.04 0.28 175
(7, 0.10, 5) 6 4 0 0 0.75 11 0.00 0.02 0.14 325
(7, 0.10, 6) 6 4 0 0 0.21 5 0.00 0.01 0.03 1500

1 Regular and extended overtime show how often selected ORDS surpass the accepted risk for each group;
2 Measures how many beds exceed the given number of staffed ward beds (MA); 3 The likelihood of exceeding
the number of staffed bed.

In Table 2, one can see that changing the parameters (MA, Ω, |K|) has little effect on the
number of times the optimal solution surpasses the accepted risk of overtime, both regular
and extended. As we have already noted in Figure 4, most of the ORDSs that surpass the
threshold on the accepted risk of entering overtime are composed of few surgeries and are
unavoidable for any solutions that require all surgeries to be scheduled.

Changing the parameters affects the median and the maximum number of beds going
over the given bed limit and the maximum risk of overflow. Decreasing the bounds of
the risk of overflow (values of Ω), for the same resolution in the discretization of the LOS
distribution |K| and the number of staffed beds (MA), lowers the median and the maximum
number of beds over the given limits for each solution. For example, with MA = 6, |K| = 5,
and Ω = 1.00 (no bounds on the risk of ward overflow), the median number of beds over
the given bed limit has a maximum of 22. A similar effect can be seen for the mean,
median, and maximum risk of ward overflow, with the largest drop being in the value of
the maximum risk. Decreasing the discretization error for the same values of Ω and MA

lowers the maximum risk of overflow and also median/maximum number of beds over.
For MA = 6 and Ω = 0.15, the maximum risk of ward overflow decreases by 35% when
|K| increases from 4 to 6. Similarly, the maximum number of beds over decreases. It was
impossible for some settings to find a feasible solution. This was evident when a low value
for Ω was imposed.
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Altering the values of the different parameters impacts the time it takes to solve the
WCO. First, the maximum staff ward beds (MA) and the bounds on the risk of overflow (Ω)
influences the computational time. For MA = 6, feasible solutions are found for all values
of Ω for |K| = 5, but computation time increases from 121 s to 3365 s. A similar effect can
be identified for other settings. Second, computational time will also be dependent on the
discretization accuracy of the LOS distributions. As |K| is increased from four to six for
MA = 6 and Ω = 0.15, the computation time increases from 362 s. to 6505 s (17 times).
For some cases, when increasing the values of Ω, it was impossible to find feasible solutions
within the limit on computational time.

Table 3. Quality of solutions and computational requirements for different configurations of (MA, ω)
for the robust ward optimization (RWO). Here, MA denotes the maximum number of staffed ward
beds and ω denotes the limit on the likelihood that a ward combination exceeds the number of staffed
ward beds.

OR Ward MIP

Configuration Overtime 1 No. Beds over 2 Risk of Overflow 3 CPU

(MA, ω) Regular Extended Min Median Mean Max Median Mean Max (s)

(5, 1.00) 6 4 2 19 19.65 47 0.17 0.28 1.00 18
(5, 0.75) 6 4 0 10 10.76 31 0.20 0.27 0.86 27
(5, 0.50) 6 4 0 7 7.44 30 0.11 0.20 0.77 57
(5, 0.25) - - - - - - - - - -
(5, 0.15) - - - - - - - - - -
(5, 0.10) - - - - - - - - - -
(5, 0.05) - - - - - - - - - -

(6, 1.00) 6 4 0 9 9.37 35 0.03 0.17 0.96 13
(6, 0.75) 6 4 0 4 4.83 22 0.03 0.12 0.72 17
(6, 0.50) 6 4 0 2 3.01 17 0.03 0.09 0.37 21
(6, 0.25) 6 4 0 2 2.12 12 0.01 0.06 0.41 34
(6, 0.15) 7 5 0 1 1.47 18 0.01 0.04 0.26 16
(6, 0.10) - - - - - - - - - -
(6, 0.05) - - - - - - - - - -

(7, 1.00) 6 4 0 5 5.69 22 0.00 0.10 0.90 27
(7, 0.75) 6 4 0 1 1.11 12 0.00 0.03 0.36 34
(7, 0.50) 6 4 0 0 0.79 11 0.00 0.02 0.12 18
(7, 0.25) 6 4 0 0 0.72 21 0.00 0.02 0.16 18
(7, 0.15) 6 4 0 0 0.64 8 0.00 0.02 0.15 26
(7, 0.10) 6 4 0 0 0.59 8 0.00 0.02 0.29 136
(7, 0.05) - - - - - - - - - -

1 Regular and extended overtime show how often selected ORDS surpass the accepted risk for each group;
2 Measures how many beds exceed the given number of staffed ward beds (MA); 3 The likelihood of exceeding
the number of staffed bed.

In Table 3, one can identify similar effects by changing the values of ω when using the
RWO. When ω decreases, one can see that the number of beds over decreases (both median
and max). The same applies to the risk of ward overflow. For most settings, the regular and
extended overtime remains the same. However, for the configuration of (6, 0.15), regular
and extended overtime values increase. The results are similar for the WCO and the RWO
for the number of beds over (median and max), but they are generally slightly lower for
the WCO. This suggests that higher quality solutions are achieved for the WCO regarding
overflow and overtime. Comparing the computational time, one can notice that they are
significantly lower for the RWO. For example, the setting of (6, 0.15) for the RWO results in
16 s of computational time, whereas WCO with the setting of (6, 0.15, 6) results in 6505 s.

4. Conclusions

Compared to actual scheduling data, the results suggest that utilization of both the
wards and the operating rooms (ORs) is more evened out using the ward combination
optimization (WCO) for the same level of throughput. Since ORs and wards are operating
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close to full capacity, overtime cannot be avoided. However, using the WCO, the risk of
overtime is concentrated to fewer days, leading to fewer disruptions of the schedule and
improved utilization over the entire planning horizon. The robust ward optimization (RWO)
is more conservative, as it depends on the worst-case outcome for the ward LOS. As a
result, lower quality solutions in terms of OR overtime and ward utilization are produced.

Similar to [28], we observe a trade-off between the robustness of the solution and
computational tractability. The likelihood of exceeding the available staffed ward beds
is affected by the approximation of the empirical distribution of LOS in the ward and
the threshold set for accepted risk of overflow. Reducing the discretization error will
increase robustness, but at the cost of increased computational time. Similarly, increasing
the threshold for accepted risk also increases computational time, but this time due to the
reduced number of feasible ward combinations.

Higher quality solutions are achieved using the WCO and RWO compared to actual
scheduling data. First, the risk of overtime is lower compared to actual data. Second,
the overall ward numbers are substantially lower, suggesting that using WCO or RWO
can hedge against the risk of exceeding the number of staffed ward beds and thus reduce
the risk of last-minute cancellations. Nevertheless, as we noticed from the scheduler’s
notes, unforeseen last-minute cancellations disrupt the schedule and cause imbalances in
the utilization of ORs and the ward. Thus, a direction for future research is to anticipate the
uncertainty of arrivals of elective patients during long-term operational planning horizons.
Another possible future research is extending the RWO further by discritizing the worst-
case LOS for a single patient into at least three intervals. This would reduce the possibility
of exceeding the staffed ward beds when there is a large number of patients in ward.
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Appendix A. Notations

Sets and Indices
o ∈ O Operators within a surgical speciality.
d ∈ D Days in the planning horizon.
r ∈ R Available operating rooms.
a ∈ A Available beds in the ward.
i ∈ I All patients.
i ∈ Io Patients of operator o.
p ∈ P Operating room day schedule (ORDS).
p ∈ Pi ORDS including patient i.
p ∈ Po ORDS including operator o.
(d, p, r) ∈ DPR ORDS p for days d and rooms r for which patients and

operators are available.
l ∈ L Combinations of ward admission probabilities (ward

combinations).
k ∈ K Groups of length of stay probabilities.
k ∈ K′ Groups of length of stay probabilities, excluding ex-

tremes (first and last).
j ∈ J Days of stay in the ward after surgery.

Parameters
MP Upper bound on the number of patients assigned to

an ORDS.
MICU Upper bound on the number of surgical procedures

assigned to an ORDS and requiring ICU admission.
M̄ICU Upper bound on the number of surgical procedures

per day requiring ICU admission.
MW Upper bound on the number of days a patient stays in

the ward.
MA Upper bound on the number of available beds in

the ward.
Cd,r Available surgery time on day d in room r.
Fl,a Feasibility of ward combination l when there are a beds

available in the ward.
gi 1 if patient i requires ICU admission following surgery,

otherwise 0.
nICU

p Number of patients in ORDS p that require ICU admis-
sion following surgery.

ρk Probability of ward admission for probability group k.
nk Number of patients that belong to probability ward

group k.
ρ′i,d Probability of a patient i being in ward on the day d.
Qj,k,p Number of patients on day j after surgery belonging

to probability group k and ORDS p.
n̄d,k Number of patients operated in the previous planning

period that occupy the ward on day d and belong to
probability group k.

δ Limit on the probability that an ORDS exceeds Cd,r.
Ω Limit on the likelihood that a ward combination ex-

ceeds the number of available beds in the ward.
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Parameters
ω level of certainty that the number of beds occupied in

the ward are kept below MA.
n̄d The number of patients with certainty ω in the ward

from previous plan.
1ω≥ρ′i,j

Robust parameter taking the value 1 if ω ≤ ρ′i,j.

δp Probability of the sum of surgery duration for ORDS p
surpassing Cd,r.

δ′ Accepted risk of entering overtime.
∆d,r Threshold for extended overtime.
δ∆

p Probability of the sum of surgery duration for ORDS p
surpassing Cd,r + ∆d,r.

δ∆′ Accepted risk of entering extended overtime.
w Factor weighing the relative contribution of regular

and extended overtime in the objective function.

Variables
ud,r 1 if δp > δ′, 0 otherwise.
vd,r 1 if δ∆

p > δ∆′ , 0 otherwise.
nd,k Number of patients that belong to probability group k

and occupy the ward on day d.

Decision variables
xd,p,r 1 if ORDS p is scheduled to day d and room r, 0 other-

wise.
ad Number of available ward beds on day d.
zi,p 1 if patient i is assigned to ORDS p, otherwise 0.
zd,a 1 if a beds are available in the ward on day d, other-

wise 0.
yd,l 1 if ward combination l is assigned to day d, other-

wise 0.

Random variables
S(i) Surgery duration for patient i.
W(l) Total number of patients belonging to probability

groups k ∈ K′ for ward combination l.

B
(

nk(l), ρk

)
Binomial distributed random variable for the nk(l)
number of patients in ward combination l belonging
to probability group k with probability ρk.
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