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Abstract: To address the problems that most convolutional neural network-based image defogging
algorithm models capture incomplete global feature information and incomplete defogging, this
paper proposes an end-to-end convolutional neural network and vision transformer hybrid image
defogging algorithm. First, the shallow features of the haze image were extracted by a preprocessing
module. Then, a symmetric network structure including a convolutional neural network (CNN)
branch and a vision transformer branch was used to capture the local features and global features
of the haze image, respectively. The mixed features were fused using convolutional layers to cover
the global representation while retaining the local features. Finally, the features obtained by the
encoder and decoder were fused to obtain richer feature information. The experimental results show
that the proposed defogging algorithm achieved better defogging results in both the uniform and
non-uniform haze datasets, solves the problems of dark and distorted colors after image defogging,
and the recovered images are more natural for detail processing.

Keywords: image dehazing; convolutional neural network; vision transformer; hybrid feature fusion

1. Introduction

Fog is a relatively common atmospheric phenomenon, where the light in the process
of transmission, vulnerable to large amounts of water vapor condensation in the air of
smoke dust aerosols such as the absorption and dispersion, leads to the observed object
reflected light attenuation in reaching the imaging device, and the image contrast shows low
resolution, fuzzy white, color saturation, and decline [1]. At the same time, the observed
targets tend to lose a lot of important details in foggy scenes, which seriously affect the
effect of subsequent visual tasks such as target resolution and capturing details. Therefore,
it is particularly important to study effective fogging methods and enhance and restore
details of atmospheric degradation in images.

1.1. Traditional fog Removal Methods

At present, traditional defogging methods are mainly divided into the following two
categories. The first category is the image restoration method, based on the non-physical
model. This kind of method mainly achieves the purpose of defogging by enhancing the
contrast and saturation of the image, but it cannot solve the problem of image defogging
well because it does not analyze the essential cause of the image degradation in a foggy
environment from the root. The main algorithms based on this method include histogram
equalization [2], Retinex theory [3], the wavelet decomposition transformation method [4],
etc. The second type is the image restoration method based on the physical model. This
type of method deeply investigates the objective cause of image degradation, establishes
the mathematical formula according to the atmospheric scattering model, and uses it as the
theoretical basis to recover the fog-free image from the haze map. For example, He et al. [5]
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proposed the dark channel prior defogging algorithm (DCP), which solved the atmospheric
scattering model based on the prior knowledge that foggy images have a channel pixel
value with a low value. This method is simple and effective, but for images containing large
bright white areas such as snow, sky, and white buildings, the effect of defogging is not
ideal, and the recovered image will produce serious color distortion. Subsequently, KeYan
Wang et al. [6] used a sky segmentation algorithm to de-fog the sky region to a certain extent
to avoid the distortion of the sky region. Meng et al. [7] proposed a defogging algorithm
based on boundary constraint and regularization of the transmittance map, which solved
the problem of low brightness of the defogging image, but color distortion still occurred
in some areas of the defogging image. Although the above traditional image defogging
methods have made great progress and shown good results, most of them rely on various
prior information. Since these a priori and assumptions are introduced for specific scenes,
the quality of the fog-free images obtained when the a priori does not hold is poor, and the
features need to be extracted manually, which still has great limitations.

1.2. Defogging Method Based on Convolutional Neural Network

In recent years, with the rapid development of machine learning, particularly deep
learning, and its superior performance in the field of image processing, more and more
scholars are using convolutional neural networks to deal with image defogging problems.
The earliest deep learning fog removal network is the DehazeNet network proposed by
Cai et al. [8], which chunked the complete image as the input to the network, used multi-
scale convolutional neural networks and MaxPooling to learn the haze features and estimate
the transmittance map of the fogged image, and then inverse performed the fog-free image.
The method achieved a good defogging effect, but because the dataset was a local image
after cut, the features learned by the network lacked global representation, and the method
did not fuse deep and shallow information, the defogged image showed incomplete
defogging, inaccurate color reproduction, etc. Ren et al. [9] proposed the MSCNN network,
which takes the whole image as the input and first estimates the scene transmittance map
using a coarse-scale network, and then refines it using a fine-scale network to obtain the fine
transmittance map, which improved the accuracy of transmittance, but the method used
the pooling layer to lose the detailed information, and only estimated the transmittance
map, which is not accurate for atmospheric light estimation and affects the defogging effect.
The above method only uses neural networks to learn the haze features to estimate the
transmittance, but for the estimation of the atmospheric light value, another important
parameter in image defogging, the a priori-based method, is still used, resulting in image
defects such as color distortion in the recovered image due to the estimation error of the
atmospheric light value.

1.3. End-to-End Deep Learning Defogging Approach

In order to solve the problems of the inaccurate estimation of atmospheric light values,
we conducted the separate estimation of the haze image transmittance maps and the
cumulative effect of errors brought by atmospheric light. Recently, many scholars have
used convolutional neural networks to simultaneously estimate the atmospheric light and
transmittance of the haze images and directly output the defogged images, thus realizing
an “end-to-end” deep learning defogging method that obtains defogging maps from the
fog maps in one step [10]. Li et al. [11] proposed the AOD-Net network, which assumes
the atmospheric light value and transmittance as a parameter K, and then uses a large
number of cascaded convolutional layers and a neural network constructed across the
hierarchy to estimate the K value, thus completing end-to-end image defogging. The
method improved the quality of the defogged images while avoiding the accumulated
errors in the recovered images, but the network model was limited to a shallow structure
and failed to learn the features of the fogged images well, which affected the quality of the
recovered images. CHEN et al. [12] proposed an end-to-end gated contextual aggregation
network to generate clear and fog-free images directly. The network utilized a smooth
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expansion technique that eliminates grid artifacts and fuses different levels of features
through gated subnetworks. The input fogged image in this network was encoded into
a feature map by an encoder, and the image was enhanced by aggregating information
from nearby regions and fusing different levels of features. However, the current end-to-
end defogging method based on convolutional neural networks still has some limitations,
although it is free from the constraints of atmospheric scattering models. After the action
of shallower convolutional layers, each pixel point of the feature image is only a feature
extraction of the local information of the original image, the size of the convolutional kernel
determines the scope of the local weighting of the image, and the image is rich in detailed
information, but the image has little contextual information. Convolutional operations are
good at extracting local features, but it is difficult to capture the global representation, and
it is crucial to obtain a global perception when performing image recovery. To alleviate
these limitations, it is necessary to obtain a larger field of perception, and the classical
way to increase the field of perception is to downsample the image or feature map to
obtain multi-scale information. However, downsampling may lose some useful detailed
information that cannot be recovered by upsampling. The use of larger convolutional
kernels or more convolutional layers can also increase the perceptual field, but at the same
time, the computational effort increases significantly. Dilated convolution can expand the
perceptual field without increasing the computational cost, but as the dilation rate increases,
the information of neighboring elements of the convolution kernel varies widely, leading
to grid artifacts in the defogged results. Attentional mechanisms can quickly capture long-
range dependencies by calculating the relationship between two locations in the channel
and space to obtain a larger receptive field. Momenta Hu Jie’s team proposed the SENet
attention module, which uses global average pooling to aggregate the global contexts to
make them globally attentional information, and then reweighting the feature channels to
amplify the weights of important feature maps [13]. However, SENet only focuses on the
synthesis of information within the channel and does not take into account the importance
of adjacent channel information. “Attention is all you need” published by Vaswani et al., in
2017 introduces the transformer model with self-attention as the basic unit that makes the
attention mechanism really successful [14]. Transformer extracts global view features by its
core operation of self-attention, and the self-attention mechanism has a clear advantage in
capturing long-range dependencies in natural language processing. In contrast to CNN,
each hidden unit in each feature learning layer of the transformer involves the global
contextual information of the input. Therefore, the transformer architecture has been
widely introduced to vision tasks in recent years and has received more and more research
and attention. However, the vision transformer ignores local detailed features, and the
heavy computational load of the self-attentive mechanism limits the depth of application
of vision transformer in image defogging coding and decoding frameworks. Narasimhan
S G et al., published “Vision Transformers for Single Image Dehazing” in 2022 using the
network structure of vision transformer for haze removal [15]. The network borrowed the
network structure of the Swin transformer and U-Net and made some modifications based
on them, and then conducted haze removal experiments on the synthetic haze dataset and
remote sensing haze dataset, and achieved good results. However, its proposed method of
shifted window partitioning with reflection padding consumes a lot of cost and reduces its
operational efficiency. Second, the network is less effective in removing non-uniform haze,
and its ability to remove real haze is not outstanding.

In order to solve the problems that the convolutional neural network-based image
defogging algorithm model captures incomplete global feature information and incomplete
defogging, a parallel depth coding and decoding structure of a defogging network model
is proposed in this paper. The encoder and decoder consist of a CNN branch and a vision
transformer branch to capture the local and global features of the haze image, respectively,
and a convolutional layer is used to fuse the hybrid features, which covers the global
representation while retaining the local features. Finally, the features obtained by the
encoder and decoder are fused to obtain richer feature information.
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2. Atmospheric Scattering Model

In computer vision, the atmospheric scattering physical model is usually used to sim-
ulate the degradation process of foggy images. This model was proposed by Narasimhan
and Nayar [16,17], and it is believed that the degradation of the observed imaging image is
caused by two parts: one is the background light formed by the scattering of ambient light
such as sunlight by the scattering medium in the atmosphere, and the other is the absorp-
tion of the target object by the suspended particles in the atmosphere and the scattering
of the object itself. As a result, the brightness of the imaging system is reduced and the
contrast is reduced to form a fog map. The spatial representation of the physical model of
atmospheric scattering is shown in Figure 1, which can be mathematically represented as:

I(x) = J(x) t(x) + A[1− t(x)] (1)

where I(x) is the foggy image acquired by an imaging device; J(x) is a fog-free image to be
restored; A is the global atmospheric light value; t(x) is the image transmittance; x is the
pixel coordinates of the image. In addition, t(x) can also be expressed as:

t(x) = exp[−βd(x)] (2)

where β is the scattering coefficient of the atmosphere; d(x) is the distance from the object
to the imaging system.
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The deformation of Equation (1) can be obtained as

J(x) =
I(x)− A[1− t(x)]

t(x)
(3)

The above equation shows that to solve the fog-free image with a known fog image,
we need to estimate the transmittance map and the atmospheric light value from the fog
image first, and then solve it based on the atmospheric scattering model. Therefore, an
accurate estimation of the transmittance map and atmospheric light values is crucial to
recover fog-free images [18].

3. Method of This Paper

In response to the traditional image defogging algorithm model based on a convolu-
tional neural network with poor ability to capture global features and incomplete defogging,
this paper proposes a parallel end-to-end defogging network model with a deep coding
and decoding structure. The encoder of this model consists of two branches: a CNN and a
vision transformer, in parallel, which continuously downsamples the features of the image
to extract local and global features of haze images captured at different scales, respectively.
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The decoder part of the model consists of the vision transformer, which restores the image
to its original size by upsampling. To better fuse local and global features obtained through
the encoder and decoder, enhanced feature extraction was finally performed using feature
pyramid networks (FPN).

3.1. Network Structure

The CNN branch uses a feature pyramid structure in which the resolution of the
feature map shrinks with the increasing network depth and its number of channels expands
with the network depth. In this paper, the branch was divided into two parts: the downsam-
pling layer and the feature extraction layer. The downsampling layer uses a convolution
operation with a convolution kernel size of 2 and a step size of 2 to downsample the input
haze image for the first time, so the original shape of the haze image is reduced by half in
width and height and the number of channels becomes 96. A layer norm (layer normal-
ization) layer was also added for normalization to ensure the stability of the data feature
distribution while reducing overfitting. The feature extraction layer adopted a network
structure with two thin ends and a thick middle, starting with a grouped convolution with
a convolution kernel size of 7, followed by the addition of a layer norm layer. Then, the
number of channels was expanded by four times using a convolution operation with a
convolution kernel size of 1. The results were fed into the GELU activation function used to
add nonlinear factors as a way to improve the neural network’s ability to express the model,
and finally the number of channels was reduced back to its original size by a convolution
operation with a convolution kernel size of 1, and the inputs and outputs of the structure
were connected with residuals to achieve feature extraction in the convolutional neural
network. The overall network structure is shown in Figure 2. The downsampling and
feature extraction layers were alternated, with a total of three downsamplings, and each
downsampling feature map was reduced by half in width and height, and the number
of output channels was 96, 192, and 384, respectively. The number of cycles of the three
feature extraction layers was (1,1,3), and the local features of the learned haze map was
saved for fusion with the features obtained from the vision transformer structure.
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The vision transformer branch is first given a haze image I ∈ H ×W × 3, which is
convolved to obtain low-level features F0 ∈ H ×W × C, where H and W are the spatial
dimensions and C is the number of channels. These shallow features are then converted to
deep features Fd ∈ H ×W × 2C by a 4-stage symmetric encoder–decoder. Each layer of
the encoder contains multiple transformer blocks, where the number of blocks gradually
increases from top to bottom. Starting from the high-resolution input, the encoder reduces
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the space size of the feature map step-by-step while expanding the channel capacity.
The decoder takes the low-resolution potential features FL ∈ H

8 ×
W
8 × 8C as input and

gradually recovers the high-resolution representation. For feature downsampling and
upsampling, Pixel-unshuffle and Pixel-shuffle operations are used, respectively. In order
to fuse the semantic information at different levels, the encoder features are stitched with
the decoder features along the channel dimension by hopping connections to make the
number of channels twice the original size. Subsequently, a 1 × 1 convolution operation
is used for all feature layers, except for the top one, to change the number of stitched
and expanded channels to their original size. For the top feature layer, the low-level
image features of the encoder were aggregated with the high-level features of the decoder,
which facilitates the preservation of the fine structure and texture details of the recovered
image. Then, the feature map was cycled at high spatial resolution using four transformer
blocks to obtain high spatial refinement of the features, and this stage further enriched the
depth features. Finally, the haze-free image R ∈ H ×W × 3 was obtained by stacking the
residuals of the feature map obtained from the refinement layer with the haze map using
the convolution layer.

The main computational overhead in transformer comes from the self-attention mech-
anism. In traditional self-attention, the time and storage complexity of the key-query dot
product interaction grows quadratically with the spatial resolution of the input, which
is less suitable for certain high-resolution image restoration tasks that apply its larger
computational load. To alleviate the above problem, a deep separable convolution method
was used to implement the self-attentive mechanism, and the specific structure is shown in
Figure 3. The key factor is the application of the self-attention mechanism across channels,
rather than the spatial dimension (i.e., the calculation of cross-covariance across channels to
generate an attention map that implicitly encodes the global context). A deep convolution
was introduced to emphasize the local context before the feature covariance was computed

to generate a global attention map. We normalized the tensor Y ∈ R
∧
H×

∧
W×

∧
C by applying a

1 × 1 convolution to aggregate the cross-pixel level channel context and expand the number
of channels to three times to make the tensor shape H ×W × 3C. Then, the channel-level
spatial context was encoded using 3 × 3 deep convolution, and the resulting tensor was
divided equally into three parts along the channel dimension to obtain WQ

d WQ
p ,WK

d WK
p and

WV
d WV

p . W(•)
p is the 1 × 1 point convolution, W(•)

d is the 3 × 3 depth convolution. The
values obtained from the above operations were used to calculate the query (Q), key (K),
and value (V) projections, respectively, by using the formulas Q = WQ

d WQ
p Y,K = WK

d WK
p Y

and V = WV
d WV

p Y. Then, the mapping of queries and keys is reshaped so that their dot

products interact to produce a transposed attention map of size R
∧
C×
∧
C. In general, the

calculation process can be expressed as the following equation:

∧
X = WP Attention

(∧
Q,
∧
K,
∧
V
)
+ X (4)

Attention
(∧

Q,
∧
K,
∧
V
)
=
∧
V · So f tmax

(∧
K ·
∧
Q/α

)
(5)

where X,
∧
X are the input and output feature maps, respectively.

∧
Q ∈ R

∧
H
∧
W×

∧
C,
∧
K ∈ R

∧
C×

∧
H
∧
W

and
∧
V ∈ R

∧
H
∧
W×

∧
C are obtained by reconstructing the original size of R

∧
H×

∧
W×

∧
C. In the case of

the Softmax function, α is a learnable scale parameter used to control the size of the dot

product of
∧
K and

∧
Q before applying the Softmax function. Similar to the traditional multi-

headed self-attention, the number of channels is divided into multiple heads that learn
separate attention maps in parallel. In addition to the attention layer, the vision transformer
contains a fully connected feedforward network that performs the same operation on each
pixel location separately. It uses two 1 × 1 convolutions: one for expanding the feature
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channels (usually by a factor γ = 4) and the other for reducing the channels to the original
input dimension. A ReLU activation function between two convolution operations was
also applied in the hidden layer to incorporate nonlinear factors.
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3.2. Loss Function

The network model proposed in this paper uses two loss functions, denoted as
Loss_mse and Loss_ssim, where Loss_mse is the minimum mean square error of the pre-
dicted outcome and the corresponding Groundtruth, also known as the MSE loss function,
can be expressed by the formula:

L(yi, f(xi)) =
1
N

i=N

∑
i=1

(yi − f (xi))
2 (6)

where xi denotes the i-th group of fogged images;yi denotes the i-th group of non-fogged
images; f (xi) denotes the result of the network model after defogging the fogged images;
and i = 1,2, . . . , N denotes the number of samples for training. Loss_ssim is the SSIM loss,
and SSIM is also called the structural similarity, which is a measure of the similarity of two
images, comparing the defogged image with the real standard fog-free image, the larger
the value of SSIM, the smaller the distortion of the defogged image. Moreover, SSIM takes
values in the range of 0 to 1. Therefore, 1-SSIM was taken as the SSIM loss. The total loss
function is the sum of Loss_mse and Loss_ssim, which can be expressed by the formula:

Loss_sum = Loss_mse + Loss_ssim = Loss_mse+(1− ssim) (7)

The whole training process was optimized by the ADAM solver, the initial learning
rate was set to 0.0001, where β1 = 0.9, β2 = 0.999, and the learning rate was adjusted
using cosine annealing to set eight iterations to complete one cosine cycle, the number of
iterations was set to 10, and the number of batch images was set to 4.

4. Experimental Results and Analysis

In order to verify the real effect of the algorithm in this paper, the corresponding
experimental verification was carried out on both the synthetic fogged images and real
fogged images, and the results of this algorithm were compared with the current excellent
defogging algorithms. The hardware environment was AMD EPYC 7543 32-Core Processor,
NVIDIA GeForce RTX 3090, and the same hardware configuration environment was used
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for the comparison experiment. The experiments were conducted under Ubuntu18.04 using
the python programming language, applying the Pytorch deep learning framework to
build the network and programmatically implementing the training and testing of the
dataset and image defogging.

4.1. Training Data

It is normally difficult to acquire a large dataset of paired fog-free images and synthetic
datasets are usually used (i.e., images with fog are synthesized based on atmospheric scat-
tering models on the real dataset). RESIDE [19] is a large-scale synthetic dataset consisting
of five subsets: the indoor training set (ITS), outdoor training set (OTS), comprehensive
objective test set (SOTS), real test set (RTTS), and hybrid subjective test set (HSTS). Among
them, ITS and OTS are used for training on indoor and outdoor environments, respectively,
SOTS is used for testing on both indoor and outdoor scenes, and RTTS is used for testing on
real fogged images. The fog removal models in this paper were trained on outdoor datasets
including the outdoor training set (OTS) of RESIDE and the NTIRE2020-Dhaze dataset for
uniform haze and non-uniform haze removal, respectively. For the outdoor training set
(OTS), a sub-dataset of RESIDE, 41,240 samples were randomly selected from this paper for
training, and 500 outdoor synthetic haze images were randomly selected from the synthetic
target test dataset (SOTS) for testing. For the NTIRE2020-Dhaze dataset, 4800 samples were
synthesized from the first 50 original high-resolution samples of the dataset by random
cropping, flipping and rotating for training, and the last five samples of the dataset were
used for testing.

4.2. Experimental Results of Synthesizing Uniform Haze Images

In the experiment of synthesizing uniform haze images, 500 randomly selected outdoor
synthetic haze images from the target test dataset (SOTS) were used for testing, and some
of the experimental results are shown in Figure 4. The figure shows that the method in [5]
effectively removed the fog, but because the dark channel a priori theory is only suitable for
the non-sky area, resulting in overexposure of the sky area and low overall brightness of the
non-sky area after the fog removal (such as the first, second and fifth pictures in Figure 4b),
the visual effect is poor. The defogged images of the method in [6] solve the problem of dark
channel theory overexposure in the sky region, but the color deviation of the sky region
after defogging is larger than that of the sky region of the standard fog-free images (e.g.,
the first, second, and fifth images in Figure 4c), while the overall brightness of the non-sky
region is still lower compared to the standard fog-free images. After the method in [11]
for the test image defogging, individual images still had the problem of more residual
haze with incomplete defogging (e.g., the first and second images in Figure 4d), and the
recovered images did not show color distortion. The method of fog removal in [12] had
a good effect without obvious fog, but the fogged images showed local color deviations
such as the ships and city buildings in the first panel of Figure 4e and the yellowish color
of the ground in the fourth panel and the road in the fifth panel, which differed greatly
from the standard fog-free images. Comparing the above-mentioned various defogging
algorithms with the algorithm in this paper, it is obvious that the algorithm in this paper
effectively removed the fog from the image without color distortion, and the image was
recovered more naturally, which was closer to the real fog-free image compared with the
other methods. Comparing the resulting images in [15] and the algorithm of this paper
together, we found that there was no fog residue in the visual effect, and both could
accomplish the task of haze removal well on the same dataset. However, the haze situation
in this dataset was lighter, and when faced with complex haze situations, the algorithm in
this paper was better able to highlight the advantages.



Appl. Sci. 2022, 12, 8552 9 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW  9  of  15 
 

4.2. Experimental Results of Synthesizing Uniform Haze Images 

In the experiment of synthesizing uniform haze images, 500 randomly selected out‐

door synthetic haze images from the target test dataset (SOTS) were used for testing, and 

some of the experimental results are shown in Figure 4. The figure shows that the method 

in [5] effectively removed the fog, but because the dark channel a priori theory  is only 

suitable for the non‐sky area, resulting in overexposure of the sky area and low overall 

brightness of the non‐sky area after the fog removal (such as the first, second and fifth 

pictures in Figure 4b), the visual effect is poor. The defogged images of the method in [6] 

solve the problem of dark channel theory overexposure in the sky region, but the color 

deviation of  the sky  region after defogging  is  larger  than  that of  the sky  region of  the 

standard fog‐free images (e.g., the first, second, and fifth images in Figure 4c), while the 

overall brightness of the non‐sky region is still lower compared to the standard fog‐free 

images. After the method in [11] for the test image defogging, individual images still had 

the problem of more residual haze with incomplete defogging (e.g., the first and second 

images in Figure 4d), and the recovered images did not show color distortion. The method 

of  fog  removal  in  [12] had  a good  effect without obvious  fog, but  the  fogged  images 

showed  local color deviations such as  the ships and city buildings  in  the  first panel of 

Figure 4e and the yellowish color of the ground in the fourth panel and the road in the 

fifth panel, which differed  greatly  from  the  standard  fog‐free  images. Comparing  the 

above‐mentioned various defogging algorithms with the algorithm in this paper, it is ob‐

vious that the algorithm in this paper effectively removed the fog from the image without 

color distortion, and the image was recovered more naturally, which was closer to the real 

fog‐free image compared with the other methods. Comparing the resulting images in [15] 

and the algorithm of this paper together, we found that there was no fog residue in the 

visual effect, and both could accomplish the task of haze removal well on the same dataset. 

However,  the haze situation  in  this dataset was  lighter, and when  faced with complex 

haze situations, the algorithm in this paper was better able to highlight the advantages. 

 

Figure 4. The experimental results of synthesizing homogeneous hazy images. (a) Hazy image; (b) 

method in [5]; (c) method in [6]; (d) method in [11]; (e) method in [12]; (f) method in [15]; (g) pro‐

posed method; (h) standard haze‐free image. 

Figure 4. The experimental results of synthesizing homogeneous hazy images. (a) Hazy image;
(b) method in [5]; (c) method in [6]; (d) method in [11]; (e) method in [12]; (f) method in [15];
(g) proposed method; (h) standard haze-free image.

The effectiveness of the method in this paper cannot be fully explained by subjective
judgment alone, so two indices, peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [20] were selected for the data analysis of the experimental results in this paper.
PSNR is an important indicator of image quality, and the larger the value, the closer the
defogged image is to a standard fog-free image. PSNR is calculated as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (8)

PSNR = 10 · log10

(
MAX2

I /MSE
)

(9)

where I is the original fogged image; K is the defogged image; i, j are the horizontal and
vertical coordinates of the pixel values, respectively; and MAX was set to 255 for an image
with a bit depth of 8.

SSIM is also a fully referenced image quality evaluation metric that mainly describes
image similarity and consists of three contrast modules: brightness, contrast, and struc-
ture [21]. Comparing the defogged image with the real standard fog-free image, SSIM takes
the value range of [0, 1], and a larger value means less image distortion, which is calculated
as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (10)

where µxµy are the means of images x and y, respectively; σ2
x and σ2

y are the standard
deviations of images x and y, respectively; σxy is the x and y covariances of the images; c1,
c2 are constants to avoid denominators of 0.

Table 1 shows the quantitative evaluation of different defogging methods on the SOTS
dataset. It can be seen that the quantitative evaluation metrics of the recovered results
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using [4,5] were low, while the quantitative evaluation metrics of the recovered results
using these deep learning methods in [9,10] were improved to some extent. The algorithm
in this paper was 6.36 and 0.08 higher than that in [9] in the PSNR and SSIM, respectively,
and only below that in [15] in both the PSNR and SSIM. Therefore, from the combination
of the subjective comparison of the above algorithms and objective indicators, it can be
concluded that the algorithm in this paper can better remove the thin fog. Moreover, the
integrity of image information is retained, which is closer to the real fog-free image.

Table 1. The quantitative evaluation of different defogging methods on the SOTS dataset.

Dataset Evaluation
Indicators

Ref.
[5]

Ref.
[6]

Ref.
[11]

Ref.
[12]

Ref.
[15]

Propose
Method

SOTS
PSNR 15.42 19.52 21.58 25.22 30.28 27.94
SSIM 0.74 0.83 0.8 0.86 0.92 0.88

4.3. Experimental Results of Non-Uniform Haze Images

Since most existing deep learning-based defogging algorithms use a uniform dataset
to train their own defogging models, the excessive pursuit of higher evaluation metrics
on a single dataset leads to poor generalization ability of the models. Although most of
the defogging algorithms can obtain good results on the SOTS dataset, they are not fully
effective in recovering clear and fog-free images in the face of a complex and variable real
haze environment. Therefore, in order to improve the generalization ability of this paper’s
defogging model and better improve the effect of recovering real haze pictures, based
on the above problems, this paper proposed and produced a non-uniform haze dataset.
The NTIRE2020-Dhaze dataset provided by the NTIRE2020 Image Recovery Challenge
is shown in Figure 5b. This dataset is different from the synthetic dataset in that it was
produced by a professional haze machine with real haze to generate real hazy images, and
although the real dataset seems more attractive, it is difficult to obtain enough images. In
this paper, the non-uniform haze dataset was based on the first 50 high-resolution image
samples in the NTIRE2020-Dhaze dataset, and 4800 samples were synthesized from the
original samples by random cropping, flipping and rotating for training, and the last five
images of the dataset were used for testing.
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In the experiments of the non-uniform haze images, the experimental results of five
images tested after using the NTIRE2020-Dhaze dataset are shown in Figure 6. It can be
seen from Figure 6 that the method used in [5] was less effective in removing haze as it
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contained a large area of white bright area after fogging, which appeared as too much
exposure (such as in Figure 6b of the first, second, fifth) and in other areas after fogging, the
overall color was dark. The defogged image of the method used in [6] solves the problem
of overexposure after defogging the dark channel theory for bright areas containing large
white areas, but the color deviation between the defogged image and the standard fog-free
image was large, and the overall image was seriously dark (such as in Figure 6c). The
method used in [11] for the test images was found to remove only the thin haze at the edges
of the images, however, it was not effective for the areas with a higher haze concentration
(such as Figure 6d). The method of fog removal in [12] was unable to remove the areas with
high haze concentration, while the fogged images showed local color deviations, (such as
the yellowish color of the lawn in the first, second, and third panels of Figure 6e differed
significantly from the standard fog-free images). When the results of the dehazing method
in [15] and the dehazing algorithm in this paper were compared with the real fog free
images, it could clearly be seen that the algorithm in this paper effectively removed the
mist and fog in the images. There was no color distortion, and it was closer to the real
fog-free image than that of other methods.
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Figure 6. The experimental results of synthesizing inhomogeneous hazy images. (a) Hazy image;
(b) method in [5]; (c) method in [6]; (d) method in [11]; (e) method in [12]; (f) method in [15];
(g) proposed method; (h) standard haze-free image.

The quantitative evaluation of different defogging methods on the NTIRE2020-Dhaze
dataset is presented in Table 2, from which it is clear that the algorithm in this paper was
higher than the comparison methods in terms of the PSNR and SSIM obtained on the
non-uniform haze datasets. This shows that the model in this paper could recover fog-free
images better under different haze environments, which had obvious advantages compared
with other algorithms.
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Table 2. The quantitative evaluation of different defogging methods on the NTIRE2020-Dhaze dataset.

Dataset Evaluation
Indicators

Ref.
[5]

Ref.
[6]

Ref.
[11]

Ref.
[12]

Ref.
[15]

Propose
Method

NTIRE’20
PSNR 7.80 12.13 12.30 10.86 10.28 15.74
SSIM 0.24 0.28 0.26 0.33 0.31 0.44

4.4. Running Time

The above experimental results have verified the effectiveness of the method in this
paper, and in order to further verify the performance of the method in this paper in terms
of efficiency, the average running times of different algorithms were obtained by counting
the above experimental times, as shown in Table 3. In the algorithm running efficiency
experiments, we used the trained algorithm models on the uniform haze test set SOTS
and the non-uniform haze test set NTIRE2020-Dhaze for forward inference, to input the
foggy images into the model to infer the fog-free images, and calculate the average time
of different algorithms to remove the haze, where the model with a similar number of
algorithm parameters in [15] was chosen to be similar to this paper as dehazeformer-t for the
calculation. As can be seen from the table, the running time of the method in this paper was
significantly faster than that of the traditional defogging algorithms in [5,6], and the deep
learning methods in [15]; compared with the deep learning defogging algorithms in [11,12],
the method in this paper also had an advantage in running speed. Because the separable
convolution was used to build the multi-head attention mechanism, the computation cost
was greatly reduced and the running speed of the program was improved.

Table 3. The running time of the experimental algorithm.

Dataset Ref.
[5]

Ref.
[6]

Ref.
[11]

Ref.
[12]

Ref.
[15]

Propose
Method

SOTS 0.91 0.98 0.81 0.83 1.16 0.74
NTIRE’20 0.93 0.95 0.79 0.85 1.36 0.72

4.5. Experimental Results of Real Haze Images

In order to verify the effect of the model in this paper on recovering real foggy images,
four real outdoor foggy images were selected for the defogging experiments, and the
experimental results are shown in Figure 7. There was overexposure in the sky region
after the method in [4] for haze removal (e.g., panels 2 and 3 of Figure 7b) and more
serious color bias in the processed images (e.g., panel 4 of Figure 7b). The defogged image
of the method in [5] solved the defect of the method in [4], in which the halo appeared
in the sky region, but the serious problem of color bias of the processed image remains
unresolved (e.g., the fourth panel of Figure 7b). The method in [9] had more fog residue
after defogging the test images. The fog removal by the method in [10] was better, with no
visible fog, but the fogged images showed local color deviations (e.g., the building area in
panel 1 in Figure 7b). A few images after the method of haze removal in [15] often showed
noise points in the picture quality, (e.g., the building area in the second panel in Figure 7f).
Moreover, the restoration effect of the fog picture was not as good as the algorithm in this
paper (the middle area of the first and third pictures in Figure 7f). Through the above
sufficient experiments, it is proven that the proposed method had high efficiency and could
effectively remove fog without distortion in the sky area. Furthermore, the picture as a
whole colorless partial phenomenon had good visual effects.
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5. Conclusions

For the traditional image defogging algorithm model based on a convolutional neural
network to capture incomplete global feature information and incomplete defogging, this
paper proposed a parallel end-to-end defogging network model with a deep coding and
decoding structure. The encoder of the model consists of two branches: a CNN and a vision
transformer in parallel, which continuously downsamples the image features and extracts
local and global features of the haze images captured at different scales, respectively. The
decoder part of the model consists of the vision transformer, which restores the image to its
original size by upsampling. To better fuse the local and global features obtained through
the encoder and decoder, the feature extraction was finally enhanced using FPN. The
comparison results on the uniform, non-uniform haze datasets and real datasets showed
that the algorithm in this paper had a better defogging effect and could recover fog-free
images better under different haze environments. Future work will continue to optimize
the algorithm structure in order to achieve better defogging results.
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