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Abstract: A digital twin city maps a virtual three-dimensional (3D) city model to the geographic
information system, constructs a virtual world, and integrates real sensor data to achieve the purpose
of virtual–real fusion. Focusing on the accuracy problem of vision sensor registration in the virtual
digital twin city scene, this study proposes a 2D-3D registration method under inverse depth and
structural semantic constraints. First, perspective and inverse depth images of the virtual scene were
obtained by using perspective view and inverse-depth nascent technology, and then the structural
semantic features were extracted by the two-line minimal solution set method. A simultaneous
matching and pose estimation method under inverse depth and structural semantic constraints was
proposed to achieve the 2D-3D registration of real images and virtual scenes. The experimental
results show that the proposed method can effectively optimize the initial vision sensor pose and
achieve high-precision registration in the digital twin scene, and the Z-coordinate error is reduced by
45%. An application experiment of monocular image multi-object spatial positioning was designed,
which proved the practicability of this method, and the influence of model data error on registration
accuracy was analyzed.

Keywords: digital twin city; 2D-3D registration; virtual–real fusion; inverse depth; structural semantics

1. Introduction

A digital twin city rebuilds a corresponding virtual city in cyberspace by digitizing
all elements of a physical city, forming a pattern of coexistence and blending of a physical
city and digital city in the information dimension [1]. Digital twin cities are widely used
in urban management, planning, and navigation. In recent years, with the maturity of tilt
photography and unmanned aerial vehicle (UAV) technology, the local orthophoto, tilt,
or LIDAR point cloud data of the city can be accurately obtained, and the urban entity
can be comprehensively measured from the land and sky so as to obtain a virtual 3D city
model that is very similar to the real world [2]. The digital twin city maps the model to the
geographic information system (GIS) system, builds a virtual world, and then integrates
real sensor data, achieving the goal of virtual–real fusion. Among numerous sensor types,
the vision sensor is one of the most common sensor devices in the digital twin city, such
as surveillance cameras, mobile portable devices, and vehicles. Vision sensor integration
occurs with the high-accuracy registration of a 2D image taken by a camera and the digital
twin virtual 3D scene, which is one of the key technologies of the digital twin city.

The purpose of 2D-3D vision sensor registration is to estimate or optimize the 6-DOF
pose of the vision sensor in a virtual digital twin scene and obtain the spatial position of any
object in the image. Hence, 2D-3D registration is one of the key technologies for applications
such as augmented reality (AR) [3] and Video GIS [4]. It has attracted extensive attention
in recent years. Generally, 2D-3D registration methods are divided into hardware-based
and vision-based registration methods [5]. The registration method based on hardware
generally obtains the position and orientation of the equipment in space through GPS
positioning, acceleration, and geomagnetic sensors, identifying the positioning of ground
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objects. It is significantly affected by the sensor accuracy and outdoor environment, and
the accuracy has difficulty meeting the requirements of 2D-3D registration in the outdoor
environment. Vision-based registration technology uses the image obtained by the vision
sensor to optimize the camera’s 6-DOF pose and then achieves the fusion of the image and
virtual scene. Because of seasonal and weather changes, in digital twin applications, sensor
image and virtual scene appearances often vary significantly, which makes matching the
virtual and real images difficult. Additionally, because a city scene image often contains a
sky background and has a large depth range, its feature points are unevenly distributed
in the vertical direction, resulting in inaccurate positioning. In addition, urban outdoor
scenes have typical Manhattan-world [6] characteristics, containing rich structural semantic
features. For more accurate and robust camera pose estimation, semantic features can be
used as constraints. However, only a few works have applied structural features to the
outdoor environment.

This study focused on the accuracy problem of vision sensor registration in the virtual
digital twin city scene. Regarding the characteristics of the city scene with structural
semantic information, we propose a 2D-3D registration method for the real image and
virtual scene under inverse depth and structural semantic constraints. First, perspective
view and inverse-depth nascent technology (PDNT) is used to obtain the perspective and
inverse depth images of digital twin scenes, and the plumb line, which contains structural
semantic information, is extracted from the vision sensor image. Based on the general
vision-based framework, we also propose a simultaneous feature matching and pose
estimation method utilizing inverse depth coordinate and structural semantic constraints
(MP-IDSSC) to optimize the position and orientation of the vision sensor, which effectively
solves the pose error caused by the uneven distribution of feature points. Finally, we use the
ray intersection method to obtain the location of any object in the real image and achieve
the registration of the vision sensor.

The main contributions of this study are as follows:

• We developed a 2D-3D registration method with constraints of structural semantics
and inverse depth coordinates, which effectively solves the problem of the large
error caused by the uneven distribution of feature points in the vertical direction and
achieves high-accuracy registration of monocular images in the digital twin scene.

• The proposed method seamlessly integrates with existing digital twin platforms. This
method utilizes PDNT technology, which can be directly implemented using the basic
functions of digital twin applications.

The remainder of this paper is arranged as follows: Section 2 outlines 2D-3D registra-
tion methods. Section 3 introduces the proposed method and framework, and Section 4
describes the experiments that we conducted. Finally, Section 5 summarizes the study and
discusses potential future research directions.

2. Related Works

The 2D-3D registration process is different from traditional image registration because
it consists of two parts: camera pose estimation and object positioning. The related work is
introduced from these two aspects.

2.1. Pose Estimation

Pose estimation is used to estimate the camera’s own position and orientation by reg-
istering the image acquired by the camera device with the virtual model data. Application
scenarios can be divided into indoor and outdoor scenarios. Ma et al. [7] presented an
indoor 2D-3D registration method based on scene recognition, which detects and recog-
nizes the target scene in a video frame image to track targets and estimate the camera
pose. Li et al. [8] developed a novel camera localization workflow based on a highly
accurate 3D prior map optimized by the RGB-D SLAM method. Outdoor pose estimation is
more difficult than indoor pose estimation. The indoor environment is small, so binocular
cameras and RGB-D can be used because the distance is relatively close. However, the
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outdoor area is larger, and the image appearance is highly affected by the environment.
Wu et al. [9] presented a 3D registration method for mobile augmented reality of a building
environment based on SURFREAK and KLT. Yue et al. [10] presented an image matching
method for distorted buildings with automatic viewpoint correction and fusion. Huang
et al. [11] proposed an outdoor AR system registration mechanism based on 3D GIS. Most
of the existing methods make use of natural outdoor features, but they do not adequately
mine the structural features of cities. Additionally, in practice, we find that because street
view images often contain a sky background and have a large depth range, they have an
uneven distribution of features in the vertical direction, resulting in errors in camera pose
estimation in the vertical direction, which affects the camera pose accuracy.

From the view of technology, the traditional framework of the pose estimation system
has three steps: feature extraction, feature matching, and pose calculation. The focus
of research is feature extraction and matching. Presently, difficulties are encountered in
practical application. First, the appearance of images often differs significantly with a
change in season and weather. The key to solving this problem is having a local feature
extraction method with high discrimination, such as SIFT [12]. To address the aforemen-
tioned shortcomings of traditional feature extraction methods, scholars have applied the
convolution neural network (CNN) to image feature extraction, gradually evolved from
using handcrafted and deep convolutional features, and successively proposed several
methods, including SuperPoint [13] and D2-Net [14]. Deep convolutional features use
high-level semantic information for feature point extraction, have strong generalizability,
and ultimately show great potential in solving image matching in changing scenes. Second,
repeated texture leads to difficulty in matching. There are many repeated texture features,
especially in building targets, which place feature point matching requirements on the
algorithm. The random sample consensus (RANSAC) algorithm is a widely used matching
method, and, while its basic idea is simple and effective, there are two prerequisites for
using it [15]: (1) The proportion of interior points must be at a high level because, if less
than 50%, the RANSAC method requires a large number of iterations [16] and may fail or
become very time-consuming [17]. (2) An assumed model must be given and then satisfied
by the interior points [18]. In [19], the spatial constraints of the Delaunay triangulation
were used to improve the robustness of feature point matching, but the method was time-
consuming. Bian et al. [20] proposed a feature point extraction algorithm that could run in
real time; however, its accuracy failed to meet localization requirements. Achieving good
performance in challenging environments is difficult when using the existing mainstream
feature point matching methods.

2.2. Object Positioning

Regarding the outdoor object positioning problem, the multi-view location method is
mainstream and has been applied to a variety of scenes, such as with UAVs and handheld
devices. With the popularization of UAV applications, using UAVs to achieve target
localization has attracted some attention [21,22]. These types of methods usually require
the vision sensor to move along a desired track and take multiple photographs or videos
of the target; thereafter, it uses a multi-view method to achieve target localization. Zhang
et al. [23] studied the yaw angular errors and relative height estimation problems of two
flight scenarios (flyover and wandering) and identified 3D target geolocation. Using vehicle
platforms to achieve short-range target localization in an outdoor environment [24–27]
is a popular topic. Additionally, Tekaya et al. [28] introduced an algorithm to estimate
the distance from a target in super stereo images using mobile devices, but it was only
used for relative target localization. These methods essentially use other means to obtain
high-precision camera poses and multi-view methods for target localization, requiring
the camera to move in a fixed pattern. Moreover, in urban areas with many buildings,
multi-view localization methods are used for target positioning but are limited in practical
application because of the occlusion of buildings.
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3. Materials and Methods

The framework for the 2D-3D registration of virtual and real images in the digital
twin city is shown in Figure 1. The first step was to employ PDNT according to the initial
positions and orientations to obtain the virtual perspective and inverse depth images of
the digital twin scene. Then, the CNN feature point extraction method was adopted to
improve the discrimination and consistency of feature extraction. The 3D point coordinate
information in the inverse depth map was used to establish the 2D-2D-3D triplet corre-
spondence, and semantic features, such as the plumb line, were extracted from the real
image by the 2-line minimal solution set (MSS) method. Under the constraints of inverse
depth coordinates and structural semantics, the MP-IDSSC method was proposed. This
method improves the matching accuracy and corrects the pose of the vision sensor. Finally,
the ray intersection method was used to achieve 3D registration between a real image and
a virtual scene.
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3.1. PDNT: Perspective View and Inverse-Depth Image Nascent Technology

The position and orientation information obtained from portable devices was used as
the initial values. The perspective images and inverse depth images of the virtual digital
twin scene in the current view were obtained based on the spatial relationship between the
scene and camera pose. The virtual perspective image was used to match the real image,
and the inverse depth image provided 3D coordinates for each image point. The formula
used to calculate these coordinates is:x

y
z

 = [Matm][Matc]
[
Matproj

]u0
v0
w0

 (1)

where

u0
v0
w0

 is the coordinate vector for the normalized image point, and

x
y
z

 is the position

vector of the calculated target. [Matm] is the model transformation matrix, and [Matc] is the
transformation matrix from the world coordinate system to the camera coordinate system.[
Matproj

]
is the projection transformation matrix.

The significance of generating a virtual perspective image is to establish a triplet
(2D-2D-3D) correspondence between the real, perspective, and inverse depth images. In
addition, under the constraint of the initial pose, perspective images have a high spatial
similarity to the real image, which reduces the difficulty in image matching caused by
geometric differences. An inverse depth image stores the inverse depth coordinates of the
current scene and can easily convert each feature point into world coordinates. Because
the simulated orientation was accurate, the real-world coordinates of each pixel could



Appl. Sci. 2022, 12, 8543 5 of 22

be calculated, and the sensor position and orientation could be corrected using the pose
estimation method.

3.2. Structural Semantic Feature Extraction

Urban scenes often have typical Manhattan-world characteristics. The Manhattan
world is the abbreviation for a structured scene that conforms to the Manhattan hypothesis.
It has strong structural regularity; thus, it contains rich structural semantic features. The
plumb line is a typical structural semantic feature contained in city scene images. As a type
of global information, it reflects the spatial relationship between the camera coordinate
system and the world coordinate system. An accurate and robust estimation of the camera
pose is likely with the use of the semantic feature of the plumb line. This study first
used the EDLines [29] algorithm to extract line features and then used the 2-line MSS [30]
method constrained by prior information to extract plumb lines and, finally, the spatial
characteristics of plumb lines as constraints in 2D-3D registration.

3.2.1. EDLines Line Feature Detection

Presently, the EDLines algorithm is one of the most popular line detection algorithms.
Compared with the traditional line feature extraction methods, such as Hough [31] and
LSD [32], EDLines can detect the line features in an image with high accuracy. The principle
of the algorithm is to use the edge drawing algorithm to generate a clean and continuous
edge pixel chain and then generate a straight-line segment based on the edge pixels. This
algorithm is efficient and fast. In comparison, the detection speed of EDLines is 10 times
higher than that of LSD.

3.2.2. Two-Line MSS Plumb LINE Extraction with Prior Constraint

The direction of gravitational acceleration is obtained with the help of inertial mea-
surement elements or when the initial values of the position and attitude are known. The
gravitational acceleration gc in the camera coordinate system is obtained by using inertial
measurement elements. Among the three orthogonal vanishing points in the Manhattan
world, only the vertical vanishing point is parallel to the direction of gravitational accel-
eration. The vertical vanishing point provides an a priori constraint for the extraction of
the plumb line. Using this prior constraint, we can first conduct a preliminary screening
before comparing the evaluation value of the candidate hypothesis with the current optimal
result. Because the angle between the vertical vanishing vector and vector of gravity is
close to zero, the vector cross product is calculated, and the fault-tolerant threshold τ1 is set
as follows: ∣∣∣∣min

{
arccos

(
li × gc

‖gc‖

)}∣∣∣∣ < τ1, i = 1, 2, 3 (2)

The candidate set of the plumb line can be screened out from the extracted line
segments, and the vertical vanishing point can be calculated by using the 2-line MSS
method. Assuming that the proportion of segments belonging to the vertical vanishing
point in the candidate set of segments is 0.5, the probability of randomly selecting two
segments belonging to the vertical vanishing point is p = µ0.52. µ is the regulating factor.
At a confidence coefficient of 0.9999, the number of iterations required to obtain at least one
inner 2-line MSS is:

itc = log(1− 0.9999)/log(1− p) (3)

Any itc line segment pairs are selected, and the plane coordinates of the intersection
image of the line segments are calculated and then converted to the equivalent spherical
coordinates: {

φ = acos
(

Z/
√

X2 + Y2 + Z2
)

λ = atan2(X, Y) + π
(4)
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where (x, y) are the image plane coordinates of the endpoint of the line segment. f is the

principal length of the camera.

X
Y
Z

 are spherical coordinates:


X = x− x0
Y = y− y0

Z = f
(5)

With candidate points, the optimal estimation of the position of the vertical vanishing
point is calculated by using the threshold value τ2, and the set of vertical line segments is
extracted.

argmax
n

∑
i=1

VP ∗ li < τ2 (6)

3.3. MP-IDSSC: Matching and Pose Estimation under Inverse Depth and Structural
Semantic Constraints

The traditional vision system framework has three steps: feature extraction, feature
matching, and pose estimation. Each step depends on the result of the previous step.
In challenging conditions, there may not be enough matching point pairs for the pose
estimation step. To solve this problem, we propose a simultaneous feature matching and
pose estimation method under the constraints of inverse depth coordinates and structural
semantics. Because all pixels in perspective images correspond to 3D coordinates in the
map data, the correspondence between 3D point coordinates and 2D pixel coordinates in
the target image can be established. The pose estimation algorithm can now be used directly
to calculate the real image’s pose, and the 3D point coordinate image plane projection error
and plumb line error can be used to constrain feature point matching. Thus, the feature
point matching and pose estimation algorithm are completed in one step, and the pose
estimation no longer depends on the result of the feature matching, which improves the
robustness of the algorithm.

3.3.1. Cross-Validation of Dynamic Adaptive Threshold

To improve the efficiency and accuracy of the algorithm, this study adopted the cross-
validation method of a dynamic adaptive threshold based on the selected initial value. The
fast library for approximate nearest neighbors (FLANN) algorithm was used to seek the
matching point pairs for screening, which generally included a first matching point with the
closest Euclidean distance and a second matching point with the second closest Euclidean
distance. It is generally believed that, for a certain matching point pair to be screened, the
smaller the distance dis of the closest matching point compared with the distance dis

′
of

the second closest matching point, the better the matching quality. Traditional algorithms
generally use a fixed scale factor t as the threshold. In particular, when dis < t·dis

′
is

satisfied, the matching point pair is used as a candidate. However, because of the radiation
difference, the distribution range of the Euclidean distance difference between point fea-
tures is unpredictable, and it is generally necessary to manually adjust the threshold t to
select a better matching point pair. To solve this problem, we designed a cross-validation
method for a dynamic adaptive threshold. First, the FLANN cross-nearest neighbor search
was used to calculate the average distance difference between the closest and second closest
matching point in the cross search.

disavg =

(
∑N

i=1

(
dis
′ − dis

))
N

(7)

When the distance difference between the closest and second closest points is less
than disavg, the matching point pair in the cross search is used as the initial candidate.
Using the average distance difference as a comparison criterion can adapt to the distance
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between feature points, retain high-quality matching points, and improve the stability of
the RANSAC algorithm.

3.3.2. Fast P5P Method

The pose of the image was used to constrain image matching and incorporate the pose
estimation algorithm into RANSAC. Therefore, it was necessary to improve the computing
speed as much as possible while still ensuring estimation algorithm accuracy. However,
the number of points involved in the computation must not be excessive. Therefore, this
study adopted the P5P fast pose estimation method to solve the problem.

The mathematical relationship for the standard central projection is expressed as follows:

su = KPX (8)

where K is the intrinsic camera parameter matrix, and the intrinsic camera parameters can
be obtained by calibration; s is an unknown scale parameter; u =

[
u v 1

]
; and P = [R|t]

is a 3 × 4 matrix that contains rotation and translation information, expressed as follows:

P = [R|t] =

r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

 (9)

Using ui
∧ui = 0 and eliminating the scale variable s, we obtain:

 0 −1 v
1 0 −u
−v u 0

 r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3




X
Y
Z
1

 = 0 (10)

Expanding the third row yields:

− v(r1X + r2Y + r3Z + t1) + u(r4X + r5Y + r6Z + t2) = 0 (11)

where ri and ti are unknown variables to be determined. Each feature point provides a linear
constraint equation; five points construct a 5 × 8 coefficient matrix. Let
w = [r1, r2, r3, t1, r4, r5, r6, t2,]T . Through the above system of linear equations, we can
obtain a solution consisting of three non-zero basis vectors:

w = λ1n1 + λ2n2 + λ3n3 (12)

Let λ3 = 1; based on the constraint that R is an orthogonal matrix, we can quickly
obtain four groups of candidate solutions [33]. For each solution group, we can further
solve [r7, r8, r9, t3]

T . From {
r1r7 + r2r8 + r3r9 = 0
r4r7 + r5r8 + r6r9 = 0

(13)

r7 and r8 can be linearly represented by r9, indicating that only r9 and t3 are real unknowns.
Using the first or second row of (10),

(r1X + r2Y + r3Z + t1)− u(r7X + r8Y + r9Z + t3) = 0 (14)

We can construct a system of linear equations with a coefficient matrix of size 5 × 2
and finally obtain the optimal solution by minimizing the projection error.α1u1 u1

...
...

αiui ui

[r9
t3

]
=

β1
...

βi

 (15)
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where αi =
r2r6−r3r5
r1r5−r2r4

Xi +
r2r6−r3r5
r1r5−r2r4

Yi + Zi, and βi = r1Xi + r2Yi + r3Zi + t1.
Random point selection is a key part in this process. We adopted a uniform random

sampling method for the image plane. First, the image plane was evenly divided into
2 × 2 grids, and each rectangle covered exactly one-quarter of the image. Thereafter, a
region of equal size was placed at the center of the image, and the image plane was divided
into regions named from A to E, as shown in Figure 2. During sampling, five points were
randomly selected from these five regions.
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3.3.3. Error Function Combined with Structural Semantic Constraint

Because the plumb line contains special semantic information, it can be used as a
constraint in 3D registration. For integrating point and plumb line features, the error
function model of the image pose solution is:

δ =
n

∑
i=1

argminδpi + δl (16)

where δpi and δl are the point characteristic error and plumb line constraint error, respec-
tively. The point characteristic error, δpi, consists of two parts: camera pose error and
projection error. First, the camera pose error was calculated, and the projection error was
only calculated when the error was less than the threshold. The optimal solution often has
the largest number of interior points, and the core method for determining interior points
was to calculate the projection error. For each feature point, when the calculated projection
error was less than the threshold, it was recorded as an interior point. When the number
of interior points was the largest, the pose parameter was optimal, and the corresponding
point pair was the matching result. The calculation formula for the projection error is:

σp =
n

∑
i=1

argmin
m

∑
k=1
‖uik − KPXi‖2

2 < ε (17)

where σp is the projection error, uik is the image point, and Xi represents the corresponding
3D point coordinates.

For the calculation of δl , the vertical line segment is mapped to the virtual perspective
image by the feature mapping results, and then the vertical line segment in the image is
mapped to the 3D model space according to the spatial relationship between the virtual and
real images, as shown in Figure 3, to obtain the 3D vertical line segment. The error of the
vertical line segment in 3D model space is used as a constraint, and its error is calculated by:

σl =
m

∑
i=1

atan2
(√

dX2
i + dY2

i , dZi

)
(18)

where dXi, dYi, dZi are the coordinate difference between the two endpoints of the i-th 3D
space segment in the direction of the three coordinate axes.
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Figure 3. Mapping the vertical line segment to 3D model space. l is the vertical line segment extracted
from the real image. l′ is the corresponding segment in the virtual perspective image, which is
mapped to L′. Linv is the true plumb line of l; due to the existence of error, L′ will not be a plumb line.

In the process of mapping the line segment on the image to the 3D model space,
the mapping may fail, for example, by mapping the edge line of a building to the sky
background without depth coordinates. To avoid this problem, this study adopted the
random drift algorithm. After mapping the image line segment to the inverse depth space,
it determines whether the inverse depth value of the two endpoints of the line segment is
valid and whether the difference between the two is less than the threshold. If it is greater
than the threshold, it indicates that there is a mapping failure, and the line segment must
be randomly shifted by k pixels until a valid mapped line segment is obtained. Since there
is often a plane near the edge line, the random offset does not affect the calculation of the
final error.

4. Results and Discussion

In order to verify this method, a 2D-3D registration experiment was designed, and
the performance of this method in multi-target localization of a monocular image was
analyzed with target localization as an application case. To evaluate the influence of the
accuracy of the digital twin city model on registration, this study also designed a simulation
experiment.

4.1. Experiment of 2D-3D Registration
4.1.1. Experimental Environment

We used images captured using a smartphone in the 2D-3D registration experiment.
A Huawei Meta 30 smartphone was used because it has built-in general-purpose GPS and
geomagnetic sensors, which were necessary for this experiment. Two photos were used
as real images for the experiment, named P1 (Figure 4a) and P2 (Figure 4c), which were
taken in September 2021. The estimated and actual poses are presented in Table 1, and the
coordinates are described by the ECEF coordinate system. The estimated pose was obtained
using the CamPOS application. CamPOS is an image acquisition program developed in
this study. While shooting photos, it can acquire GPS and geomagnetic sensor information
without redundant optimization processing. The virtual digital twin scenes (Figure 4b,d)
are oblique photography 3D models generated from UAV aerial images. The images were
captured in December 2020. Because of the difference in seasons and time, the texture of
the virtual scene 3D model was different from the appearance of the test image, which
increased the difficulty of image matching.



Appl. Sci. 2022, 12, 8543 10 of 22

Appl. Sci. 2022, 12, 8543 10 of 21 
 

taken in September 2021. The estimated and actual poses are presented in Table 1, and the 
coordinates are described by the ECEF coordinate system. The estimated pose was ob-
tained using the CamPOS application. CamPOS is an image acquisition program devel-
oped in this study. While shooting photos, it can acquire GPS and geomagnetic sensor 
information without redundant optimization processing. The virtual digital twin scenes 
(Figure 4b,d) are oblique photography 3D models generated from UAV aerial images. The 
images were captured in December 2020. Because of the difference in seasons and time, 
the texture of the virtual scene 3D model was different from the appearance of the test 
image, which increased the difficulty of image matching. 

  

(a) (b) 

  

(c) (d) 

Figure 4. Real images and virtual scenes. (a,c) Real images taken with a vision sensor; (b,d) digital 
twin virtual scene. 

Table 1. Poses of the Real Images. 

Image 

CamPOS Actual Error 

Position (m) 
(X/Y/Z) 

Orientation (°) 
(Y/P/R) 

Position 
(m) 

(X/Y/Z) 

Orienta-
tion (°) 
(Y/P/R) 

Posi-
tion(m) 
(X/Y/Z) 

Orienta-
tion (°) 
(Y/P/R) 

P1 
−2093390.42 284.9 −2093394.17 269.67 3.75 15.23 
4806197.15 −13.5 4806194.13 −5.78 3.02 −7.72 
3621100.70 360.0 3621107.46 353.68 −6.76 6.32 

P2 
−2093850.41 217.2 −2093851.67 222.46 1.26 −5.26 
4806374.77 3.1 4806372.58 10.63 2.18 −7.53 
3620496.15 359.0 3620501.33 1.39 −5.18 −2.39 

  

Figure 4. Real images and virtual scenes. (a,c) Real images taken with a vision sensor; (b,d) digital
twin virtual scene.

Table 1. Poses of the Real Images.

Image
CamPOS Actual Error

Position (m)
(X/Y/Z)

Orientation (◦)
(Y/P/R)

Position (m)
(X/Y/Z)

Orientation (◦)
(Y/P/R)

Position(m)
(X/Y/Z)

Orientation (◦)
(Y/P/R)

P1
−2093390.42 284.9 −2093394.17 269.67 3.75 15.23
4806197.15 −13.5 4806194.13 −5.78 3.02 −7.72
3621100.70 360.0 3621107.46 353.68 −6.76 6.32

P2
−2093850.41 217.2 −2093851.67 222.46 1.26 −5.26
4806374.77 3.1 4806372.58 10.63 2.18 −7.53
3620496.15 359.0 3620501.33 1.39 −5.18 −2.39

4.1.2. PDNT Experiment

According to the proposed method, the Cesium digital earth platform was used as the
3D GIS system in the application of the digital twin city, and the virtual perspective and
inverse depth maps of the digital twin city model were generated according to the estimated
pose, as shown in Figure 5. The perspective image was matched with the real image, and
3D coordinates for the feature points were obtained from the inverse depth image.
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4.1.3. Structural Semantic Feature Extraction Experiment

EDLines was used to extract the line feature of the image. According to the direction of
gravitational acceleration, the candidate plumb line set was obtained: set µ = 0.5, itc = 105.
The vanishing point was calculated by the two-line MSS method, and the plumb line was
extracted. The experimental results are shown in Figure 6.

4.1.4. MP-IDSSC Experiment

To achieve accurate camera positioning and orientation, one must establish as many
correct matching relationships as possible. To verify the effectiveness of the proposed
method, we set up several experimental groups (Table 2). Each experimental group used a
different combination of feature extraction and pose estimation methods. This study used
the D2-Net, SuperPoint, and SIFT feature extraction methods for comparative experiments.
SIFT is an artificially designed feature description and extraction method that is widely used.
D2-Net can extract similar scale-invariant features from different images and has strong
adaptability and robustness, and SuperPoint is a feature point detection and descriptor
extraction method based on self-supervised training. To improve the feature extraction
time performance and ensure the same conditions in the experiment, the number of feature
points extracted was set to 1000. Then, to validate the performance of our IDSSC-MP
algorithm, we selected three advanced algorithms for comparison in terms of feature point
matching: SuperGlue [34], GMS, and RANSAC. Their source codes can be downloaded
from the internet, and the default parameters were used in the settings.
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Table 2. Experimental Groups.

Trial Feature Extraction Pose Estimation Method

Trial 1 SuperPoint IDSSC-MP
Trial 2 D2-NET IDSSC-MP
Trial 3 SuperPoint IDC
Trial 4 SuperPoint SuperGlue
Trial 5 SuperPoint GMS
Trial 6 SIFT Ransac

1. Evaluation Metrics
The experimental results are presented in Table 3. In this experiment, six quantitative

evaluation metrics were adopted: number of correct matches (NCM), root mean square
error (RMSE), camera position (CP), camera position error (CPE), camera orientation (CO),
and camera orientation error (COE). The NCM and RMSE are the two main metrics used
to evaluate registration performance. The NCM represents the number of matching point
pairs used for the pose calculation; the higher the number, the better the registration
performance. RMSE is a metric for evaluating the accuracy of the matching point position;
the smaller the RMSE, the higher the matching accuracy. CP denotes the camera coordinates
calculated from experiments in the ECEF coordinate system, and CPE is the error value
of CP compared with the actual camera coordinates. CO denotes the camera orientation
calculated from experiments in the yaw/pitch/roll system, and the unit is degree. COE is
the orientation error value of the CO compared with the actual camera orientation. The
unit is mrad, and 1 mrad is about 0.057 degrees. This means an error of about 1 meter
beyond 1000 m.
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Table 3. Experimental Results of MP-IDSSC.

Trials Image NCM RMSE CP
X/Y/Z(m) CPE(m) CO

Y/P/R(◦) COE (mrad)

Trial 1

P1 332 0.60

−2093392.02 2.15 270.81 19.89

4806196.97 2.83 −7.39 28.18

3621103.69 3.77 354.87 20.76

P2 373 0.59

−2093851.7 0.44 221.33 19.63

4806372.58 0.89 9.48 20.07

3620501.74 1.18 0.70 12.13

Trial 2

P1 223 1.83

−2093390.58 3.59 271.37 29.67

4806196.99 2.85 −7.78 34.99

3621102.49 4.97 355.83 37.61

P2 273 1.66

−2093851.79 0.56 221.29 20.42

4806372.7 1.01 9.16 25.56

3620501.78 1.60 0.73 11.51

Trial 3

P1 173 0.86

−2093392.05 2.18 271.31 28.53

4806197.18 3.05 −10.02 74.00

3621100.77 6.69 356.40 47.56

P2 219 0.67

−2093851.84 0.61 221.28 20.68

4806372.32 0.63 8.60 35.34

3620501.88 2.23 0.81 10.03

Trial 4

P1 182 0.82

−2093392.95 1.22 271.33 28.97

4806197.72 3.58 −10.03 74.17

3621100.53 6.93 356.38 47.21

P2 146 0.96

−2093851.6 0.40 221.33 19.72

4806372.82 1.13 8.455 37.96

3620500.33 1.79 0.685 12.30

Trial 5

P1 30 1.89

−2093391.17 3.00 271.55 32.81

4806196.71 2.57 −9.75 69.37

3621098.40 9.06 356.13 42.84

P2 33 1.33

−2093851.7 0.43 221.25 21.11

4806373.89 2.20 8.34 39.88

3620498.87 3.24 0.7 12.04

Trial 6

P1 13 1.05

−2093246.81 147.36 183.38 1506.04

4806182.10 12.03 −34.71 504.92

3621131.57 24.11 76.59 1447.05

P2 7 1.69

−2093842.5 8.77 218.86 23.38

4806368.51 3.17 17.66 162.83

3620501.05 1.07 7.16 124.96

2. Results Analysis

The results show that the camera pose estimated by using the traditional point feature
matching method (SuperGlue and GMS) has a larger vertical error because the Z-coordinate
error is larger than the X, Y coordinate error, and the pitch angle error is larger than the yaw
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and rolling angle error. This is because real images contain sky, trees, and barren ground,
resulting in an uneven vertical distribution of feature points in the image. It can also be
seen in Figures 7 and 8 that in the image matching results, there are more feature points
in the middle of the image, while there are fewer feature points in the upper and lower
parts. This leads to insufficient constraints in the vertical direction, resulting in a large
vertical error. In Trials 1-2, because this method uses the structural semantic information
in the image and the direction of the plumb line to constrain, the error in the vertical
direction is significantly reduced. Comparing Trials 4-5, our IDSSC-MP method obtains
better results when the same feature point extraction algorithm is used. In Trials 4-5, the
average error of the Z-coordinate is 5.26 m, but 2.88 m in Trials 1-2, which is 45% less than
that in Trials 4-5. In Trials 1-2, the accuracy of the NCM and RMS is also higher, and the
calculated camera position and attitude errors are smaller, which shows the effectiveness of
the MP-IDSSC method.
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In order to further illustrate the effectiveness of structural semantic constraints, we
designed Trial 3. In Trial 3, there is only the constraint of inverse depth coordinates, and
there is no constraint of structural semantics. The results show that the vertical error is also
high, but compared with Trials 4-5, the experimental results still have advantages. This is
because the SuperGlue and GMS methods only restrict the spatial position relationship of
feature points in the image plane using a relative graph structure and may not be able to
find an accurate matching relationship. For the most accurate correspondence to reduce
false matching caused by similar multiple feature points, Trial 3 used the inverse depth
coordinates of feature points and the 3D–2D projection relationship as constraints.

Comparing Trials 1 and 4, the SuperPoint method is better than the D2-Net method
when the MP-IDSSC is used as the feature matching method. Although D2-Net performs
better than SuperPoint in the cross-modality image environment, the positioning accuracy
of the D2-Net feature point is lower. After eliminating the feature points with large
projection errors using IDSSC constraints, the remaining feature points participating in the
camera pose estimation are fewer, and the RMS accuracy of the feature points is still low. In
Trial 6, the results of matching and pose estimation are obviously wrong, which indicates
that the traditional artificial feature extraction and RANSAC matching methods are not
effective for images with large differences in appearance.
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Considering the above experimental results, this method can optimize the initial vision
sensor pose effectively, utilizes the constraints of inverse depth and structure semantic
information to estimate the camera pose more accurately, and reduces the Z-coordinate
error caused by the uneven distribution of feature points in the vertical direction. In
addition, the proposed method is more accurate, has stronger adaptability than existing
algorithms, and performs effectively in challenging conditions.

4.1.5. Time Efficiency Analysis Experiment

Figure 9 shows the time efficiency of the proposed method. The runtime of the algo-
rithm is largely affected by the computer configuration. In this experiment, the computer
was configured with a Windows 10 64-bit operating system on an Intel Core i9-9980XE 3.0
GHz CPU, with 64 GB of RAM and an NVIDIA GeForce RTX™ 3090 graphics card.
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Figure 9a shows the time performance of the feature matching and pose estimation
methods under the constraint of inverse depth coordinates. The results show that the
proposed method has advantages in Trial 1 in terms of time performance compared with
the results of Trial 4. In Trial 5, the GMS method was used, which reduces the matching
step time, but its feature point location accuracy is low. Figure 8b compares the time
performance of different feature extraction methods and shows that the SuperPoint method
took the shortest time.

4.2. Application Experiment of Multi-Object Positioning for Monocular Image

Object positioning is commonly used in digital twin applications. This study designed
a multi-object spatial positioning application experiment based on a monocular image to
verify the effectiveness of this method in object positioning. Once the pose of the camera
is computed, the object target can be located. This experiment was conducted using the
digital twin city model data. The error between the result of object geolocation and that
obtained from the model data was analyzed. Three different points in each image were
selected as target points in the image; the position of each point in the image is shown in
Figure 10. The coordinates of the points were calculated based on Trials 1, 4, and 5 and the
coordinates of the target points corresponding to the model data as true values.
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Table 4 lists the basic information for each target point, and Table 5 lists the different
experimental results obtained. In the target point information, target distance (TD) refers
to the distance between the target point and the camera in meters, and radial distance
(RD) refers to the radial distance of the target point on the image from the principal point
in pixels. Base coordinates (BC) refer to the coordinates of the target point in the base
geographic data, which are used to evaluate the errors of the coordinates of the target point
calculated in different trials. The evaluation index includes the position error (PE), absolute
position error (APE), and relative position error (RPE). The PE refers to the error of the
target point in the ECEF system. The APE is the L2 distance of the PE. The RPE is the
relative error calculated using RPE = APE/TD.

Table 4. Basic Information for Each Target Point.

T1 T2 T3 T4 T5 T6

TD(m) 225.08 172.25 119 103 82 64
RD (728,435) (111,655) (423,755) (696,534) (138,433) (751,863)

BC
−2093175.39 −2093268.12 −2093291.67 −2093828.59 −2093861.08 −2093831.16
4806240.40 4806242.66 4806203.83 4806463.96 4806437.85 4806415.05
3621093.20 3621000.58 3621049.34 3620461.02 3620453.39 3620457.80

Table 5. Experimental Results of Multi-Object Positioning.

Target Index Trial 1 Trial 4 Trial 5

T1
PE(m) −0.31/−0.36/0.13 −0.27/0.64/−0.41 0.18/−0.38/0.5

APE(m) 0.50 0.80 0.65
RPE 0.25% 0.39% 0.32%

T2
PE(m) −0.25/−0.32/0.31 −0.98/0.88/−1.68 −2.88/0.21/−2.06

APE(m) 0.68 2.13 3.54
RPE 0.4% 1.2% 2.0%

T3
PE(m) −1.52/0.19/−0.66 −0.72/0.72/1.97 −1.31/−1.64/1.56

APE(m) 1.66 2.21 2.61
RPE 1.5% 1.90% 2.37%

PE(m) 0.1/0.07/0.1 0.07/0.12/0.01 0.01/0.12/−0.05
T4 APE(m) 0.16 0.15 0.13

RPE 0.15% 0.14% 0.12%
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Table 5. Cont.

Target Index Trial 1 Trial 4 Trial 5

PE(m) 0.27/0.12/0.11 0.21/0.14/0.05 −0.32/0.22/0.02
T5 APE(m) 0.32 0.25 0.40

RPE 0.4% 0.49% 0.35%

PE(m) −0.05/1.54/−1.71 −0.1/2.32/−2.39 1.01/2.27/−2.86
T6 APE(m) 2.30 3.33 3.79

RPE 3.5% 5.2% 5.9%

Experiments show that this method can alleviate the uneven distribution of target
position errors. In Trials 4 and 5, targets T1, T4, and T5 are located near the image center
with an average relative error of 0.3%, while T3 and T6 are located near the edge of the
image with an average relative error of 3.84%. This is because the camera pose error is
larger in the vertical direction, resulting in a target position error in the image, which
also presents the problem of uneven distribution in the vertical direction. Because of
the error in the calculated camera position, the calculated principal optical axis direction
differs significantly from the true principal optical axis pitch angle, which results in a
small position error near the image principal point and a large position error at the image
edge in the vertical direction. In Trial 1, the target position error at the edge of the image
is reduced because of the constraints of inverse depth and structure semantics, which
alleviates the problem.

It also can be seen from the experiment that the absolute error of object registration
accuracy of this method is 0.66 m, while the average error of the camera’s own pose is
3.36 m. This is because, although the camera pose error is larger, after position correction,
the two main optical axes can intersect near the image center target point, so the target
positioning accuracy is higher than the camera’s pose. This indicates that this method does
not need to rely on the camera’s own high-precision pose when locating the object, and our
method can achieve high-precision registration.

4.3. Simulation Experiments and Analysis

Due to differences in modeling methods and data sources, the accuracy of 3D models
used in digital twin applications is often different, and different devices and environments
have an impact on 2D-3D registration. To further analyze the impact of 2D-3D registration
accuracy, simulation experiments were carried out in this study. The error factors affecting
the registration algorithm are divided into systematic and random errors. The systematic
error can be compensated for in the algorithm by measuring the camera calibration in
the laboratory; therefore, the random error from various sensor measurements was the
main factor causing the localization error. Table 6 lists the commonly used error terms and
their distributions.

Table 6. Parameters affecting target localization accuracy.

Data Error Model Unit

Camera Position Error Normal Distribution ϕA/(◦)
Camera Orientation Error Normal Distribution ψ/(◦)
Pixel Measurement Error Normal Distribution u/(pixel)
Feature Matching Error Normal Distribution /
Image Distortion Error /

Virtual Scene RMS Error Normal Distribution m
Feature Count / /
Field of View / /

The impact of the parameters in Table 5 on registration accuracy requires in-depth
analysis. The literature [35–37] has analyzed and performed experiments on parameters
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such as image distortion and camera pose. Hence, we adopted the Monte Carlo [38] method
to analyze the impact of virtual scene errors on camera positioning and object positioning
accuracy. The Monte Carlo method, also known as the stochastic simulation method, uses
computers to generate qualified random data that can replace data that are difficult to
obtain in experiments. Figure 11a shows the relationship between virtual scene data errors
and calculated camera position root mean square (RMS) errors when the camera distance
D is from 100 m to 500 m. Taking the center point of the image as the object position,
Figure 11b describes the relationship between the RMS object position error and the virtual
scene data error.
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The results show that the camera position error increases with the increase in virtual
scene errors, but at different distances D, the RMS camera position errors remain approx-
imately the same. When analyzing the object position error, the virtual scene data error
increases when the RMS target position error increases. Additionally, when D increases,
the incremental proportion of the RMS object position error is smaller than the incremental
proportion of the distance D.

These experimental results show that: (1) The camera position can be used as a
constraint condition for image matching. If only the virtual scene data error needed to
be considered, when the virtual scene data error was 10 m and the object distance was
500 m, the calculated RMS camera position error was only 5 m. (2) The result of object
localization was better than the calculated result for the camera position. When D = 100 m,
the calculated RMS object position error was only half of the camera position error. This
is because when the camera direction was aimed at the target, a more accurate target
localization result could be obtained.

Figure 12 illustrates the impact of the field of view and feature count on the calculation
accuracy of the camera pose and target position. The results show that when the field of
view increases, the camera position error and target position error gradually decrease and
that the field of view has a greater impact on the accuracy of the camera position. The feature
count also has an impact on the target localization results. We used random sampling
to uniformly select different numbers of feature points from an image for comparative
experiments. The figure shows that when the feature count decreases, the RMS error of
target localization increases continuously. Notably, when the feature count is less than 50,
the RMS error of localization greatly increases.
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5. Conclusions

This paper proposes a virtual–real 2D-3D registration method under the constraints of
inverse depth and structural semantics. First, the perspective and inverse depth images
of the virtual scene are obtained by using PDNT technology, and the structural semantic
features are extracted by the two-line MSS plumb line extraction method. Then, we
estimate the camera pose under the constraints of inverse depth information and structural
semantics and accurately achieve the registration of the real image and the virtual scene.
The experimental results show that the proposed method can achieve high-precision vision
sensor registration in a digital twin scene and solves the large vertical error problem
effectively. The application experiment of monocular image multi-object spatial positioning
proves the practicability of this method.

This study obtained the 2D-3D registration of static images. Future studies will include
ways to use digital twin scenes to achieve dynamic target tracking and real-time localization
based on monocular images. Because the manual selection of measurement targets has a
negative impact on user experience, achieving target capture in an outdoor environment is
an important issue that will likely be included in future research.
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