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Abstract: This work exposes an innovative clustering method of solar radiation stations, using static
and dynamic parameters, based on multi-criteria analysis for future objectives to make the forecasting
of the solar resource easier. The innovation relies on a characterization of solar irradiation from both
a quantitative point of view and a qualitative one (variability of the intermittent sources). Each of the
76 Spanish stations studied is firstly characterized by static parameters of solar radiation distributions
(mean, standard deviation, skewness, and kurtosis) and then by dynamic ones (Hurst exponent
and forecastability coefficient, which is a new concept to characterize the “difficulty” to predict the
solar radiation intermittence) that are rarely used, or even never used previously, in such a study.
A redundancy analysis shows that, among all the explanatory variables used, three are essential
and sufficient to characterize the solar irradiation behavior of each site; thus, in accordance with the
principle of parsimony, only the mean and the two dynamic parameters are used. Four clustering
methods were applied to identify geographical areas with similar solar irradiation characteristics at a
half-an-hour time step: hierarchical, k-means, k-medoids, and spectral cluster. The achieved clusters
are compared with each other and with an updated Köppen–Geiger climate classification. The
relationship between clusters is analyzed according to the Rand and Jaccard Indexes. For both cases
(five and three classes), the hierarchical clustering algorithm is the closest to the Köppen classification.
An evaluation of the clustering algorithms’ performance shows no interest in implementing k-means
and spectral clustering simultaneously since the results are similar by more than 90% for three and
five classes. The recommendations for operating a solar radiation clustering are to use k-means or
hierarchical clustering based on mean, Hurst exponent, and forecastability parameters.

Keywords: solar irradiation; data mining; time-series clustering; artificial intelligence; statistics methods

1. Introduction

Renewable energy is commonly referred to as clean energy, as it comes from natural
processes or sources that are constantly being renewed. However, it is recognized that
the knowledge of the “availability” and “variability” of these renewable sources [1] is an
important task and a great challenge, considering that the development of solar energy
over the world is increasing and will continue to increase in the future [2–4].

The main problem of this energy source, which could inhibit or reduce its development,
is its intermittence and randomness, which make its management difficult for an energy
system operator [5]. Thus, to reduce and even to delete, at least partially, this inconvenience,
three research axes must be developed in parallel:

• The development of energy storages: They will allow us to store the energy in excess
and to restore it when the load requires it [6];
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• The development of smart concepts of electrical grid: The produced and consumed en-
ergy and power must be managed efficiently with smart algorithms, using information
and communication technologies [7];

• The forecasting of the intermittent renewable energy production: Solar- or wind-
prediction tools must be integrated into energy and power management systems to
anticipate the future actions [8].

The benefit of solar radiation prediction is effectively proven [9]. There are a large
number of publications in the literature that address the problem of solar-irradiance predic-
tion. The techniques applied to prediction depend on the time horizon of the prediction
and the time step of the solar irradiation [10]. Between these methods, time-series-based
methods are based on statistical models applied to ground data measured in the past
and at the instant of the prediction, using regression techniques [11], artificial intelligence
methods [12], or statistical approaches [13]. They are used to forecast solar data from some
minutes to about a 6 h horizon. They often have the disadvantage of being efficient only
for the site on which the model has been trained and to be not generalizable elsewhere.

It should be interesting to verify if a model developed on a given site must be applied
to other ones with “similar” characteristics not only from the received-solar-energy point
of view but also from the point of view of the dynamic behavior of the solar irradiation
one. With this final objective, the purpose of this study was to group the meteorological
stations by “solar radiation affinities”.

Clustering is a technique used in data mining to identify clusters of elements ac-
cording to a measure of similarity between them. In addition, clustering to minimize
the dimensionality of the data while handling a large number of variables is used [14].
On the other hand, the clustering of geographically spaced data has been addressed in
the literature. Still, this one seeks to cluster similar or geographically proximate data in
geographic-information-system (GIS) information layers [15].

The study of the behavior of times series applied to a large territory by using statistic
and artificial intelligence (AI) methods, grouping in “clusters” time series with the same
behavior (i.e., with the same variability), was realized particularly in two papers written
by Warren Liao [16] and Wang et al. [17]. The first one [16] summarized previous works
on clustering time-series data into various application domains and discussed criteria
for evaluating the performance of clustering results and measures for determining the
similarity/dissimilarity between two time series. The second one [17] realized a high-
dimensional time-series clustering work, using algorithms based on distance metrics that
generally fail because they cannot handle missing data. Instead, time series are clustered
based on global features extracted from each series and can be fed into clustering algorithms.
In these works, statistical operations describe the time series: trend, seasonality, periodicity,
serial correlation, kurtosis, chaos, nonlinearity, and self-similarity.

Reviews papers such as References [18,19] present states-of-the-art in the last decade
that introduces some fundamental concepts of time-series analysis, classification, and
clustering methods based on observations, time and frequency, and the similarity between
series and dimensionality reduction.

Focusing now on the clustering in renewable energy sources, Tripathi et al. [20]
described various AI techniques applied to different renewable energies, particularly
photovoltaic ones. They realized a clustering of datasets for analyzing the most suitable
location of solar plants according to the study of similar meteorological conditions.

Hartmann [21] compared various methods to categorize clear, cloudy, and partiality
cloudy sky days, using a one-year solar-irradiance dataset from Budapest (Hungary). Six
methods were compared deterministically and non-deterministically (k-means clustering,
Fuzzy c-Means, and Multiple Fuzzy C-Means) with different temporal resolutions. The
comparison aimed to reveal the strengths and weaknesses of the applied methods. Un-
fortunately, the results obtained with the implemented methods are limited, as they are
susceptible to the input data, and the categorization is often inconsistent among them.
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In Reference [22], the authors aimed to predict the global hourly solar radiation of the
next day and used clustering. The k-means clustering algorithm was proposed to classify
four kinds of days: clear, cloudy, cloudy in the morning, and cloudy in the afternoon. They
were combined with regression algorithms (decision trees, support vector machines, and
artificial neural networks) to estimate the day-ahead clearness index in Malaga, Spain.

Liu et al. [23] proposed a solar irradiance classification of 98 stations with solar irradi-
ance sensors and 562 stations without irradiance data. A k-means and a support-vector-
machine genetic algorithm were used to perform this clustering. Models were developed
by introducing geographical parameters, including latitude and altitude. Hassan et al. [24]
sought to predict hourly global irradiance profiles from daily global irradiance records
from six sites in the North African Sahara. They started from a prior categorization of the
hourly observations by using a k-means clustering algorithm, followed by a nonparametric
approximation of the function, using the multilayer perceptron artificial neural network.

Laguarda et al. [25] studied the relationship between the solar resource and the cli-
matology in Uruguay (condition of the phenomenon called Niño or Niña). The input
information consisted of global-horizontal-irradiance (GHI) estimations from daily satel-
lite images and regionalization of the meteorological stations based on the geographical
position of the station. A Principal Component Analysis (PCA) was used to decrease the
dimensionality of the series. The clustering algorithm, based on the changes in the station
for different years, was a k-means/ward.

Pham et al. [26] applied a k-means clustering to satellite-based daily global horizontal
irradiation for spatial-variability analysis and regionalization in different regions of Vietnam.

Maldona-Salgero et al. [27] proposed a methodology to characterize and cluster the
spatiotemporal daily global horizontal solar-resource variability in the Spanish territory.
They used a hierarchical clustering technique to classify the spatial data, and different time
windows were subsequently evaluated. The parameters used in this study are averaged
(yearly, seasonal, and monthly) values of daily horizontal global irradiances.

An unsupervised clustering-based (UC-based) solar forecasting method was devel-
oped by Feng et al. [28] for short-term (1-h-ahead) global horizontal irradiance forecasting.
The daily GHI time series is clustered by an Optimized Cross-Validated Clustering (OC-
CUR) method.

Malakar et al. [29] proposed a novel short-term (2-h-ahead) solar forecasting approach
that uses a clustering (k-medoid clustering method) on the basis of cloud parameters as a
preprocessing step. To ensure broader variation in cloud movements, neighboring stations
were used that were selected by using a dynamic time warping (DTW)-based similarity
score. The method is very interesting, although complex. The proposed model achieved
19.74% less nRMSE compared to the benchmarks.

The majority of the papers presented above propose methods and modes of validation
crucial for the clustering of solar radiation; however, they are limited, for the most part, to a
single-criterion study most often relating to a geographical criterion and daily and monthly
data (time step not really interesting in practice for solar applications). In order to address
these limitations, we propose to develop a new methodology, particularly by studying
non-geographical parameters and statistical parameters revealing the dynamics of each
hourly or intra-hourly clear-sky index time series. Various techniques of clustering [30] are
applied to group the meteorological stations by “solar radiation affinities”, i.e., to group by
similarity or proximity criteria according to the static and dynamic characteristics of the
time series. Clustering is not an exact science; totally contradictory results can be linked to
the use of poor-quality measures. It is therefore essential, in the field of solar engineering,
in addition to stating this characteristic, to identify, quantify, and correct possible problems.
The various steps of this work are as follows (rarely are all of these steps studied in the
same paper):

• To evaluate the quality of the data provided by the meteorological stations because
the measure of solar irradiation is often accompanied by errors due to pyranometer
calibration, surrounding effects, or data-acquisition-system failure;
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• To determine the best descriptors of static (e.g., descriptive statistics measures) and
dynamic (e.g., Hurst exponent (H), forecastability coefficient (F), etc.) characteristics
of the series and to determine the redundancy of these descriptors;

• To implement clustering algorithms such as k-mean, k-medoids, spectral, and hierar-
chical clustering;

• To compare the clusters obtained by each method with each other and the well-known
Köppen classification, characterizing the areas according to climate, solar irradiation,
precipitation, and temperatures.

The paper continues as follows: Section 2 implements tools that analyze the accuracy
and quality of the measured data; Section 3 evaluates the best criteria to characterize
solar time series; Section 4 presents the Köppen climatic classification and the clustering
methods that are implemented on the solar irradiance time series; Section 5 implements
some clustering algorithms and compares the clustering results; at last, in Sections 6 and 7,
the perspectives of the work are described and conclusions are drawn, respectively.

The major contributions of the paper are as follows:

- The objective of the clustering is to improve the efficiency of the forecasting of the
solar radiation; the objective was found only in one reference [29];

- The utilization of several parameters to characterize each site;
- The utilization of dynamic parameters to characterize each meteorological station:

Hurst exponent already used for other meteorological time series but not for solar
irradiances, and mainly the forecastability coefficient, which is a new concept—the
utilization of several clustering methods and their comparison between them and
with the well-known Köppen classification (upgraded for Spain).

2. Solar Irradiation Time-Series Analysis

To conduct this study, large databases (with an intra-hour time step) collected on
several meteorological stations were needed. The solar irradiances for the present work
were provided by the “Sistema de Información Agroclimática para el Regadío” (SIAR) sys-
tem [31], consisting of 448 meteorological stations (https://eportal.mapa.gob.es//websiar/
Inicio.aspx) (accessed on 2 June 2021). The data are free but are not open-access. These
stations are concentrated in areas suitable for agriculture, with low slopes and measure
temperature, rainfall, horizontal solar radiation, humidity, wind speed, and direction. Each
weather station undergoes maintenance every six months and calibration every year. Note
that rainfall, humidity, and solar irradiance measurements are used to determine weather
stations in the Köppen [32] class.

2.1. Data Measures and Stations

The Spanish Ministry of Agriculture, Fisheries, and Food [31] make available an
Agroclimatic Information System for Irrigation (SIAR) with measured data recorded every
30 min on 542 sites (only 448 are active; https://eportal.mapa.gob.es//websiar/Inicio.
aspx, accessed on 2 June 2021). The position of the meteorological stations used in this
work is shown in Figure 1. Solar irradiance measurements obtained by pyranometers are
verified according to the International Standard ISO 9847 Solar energy Calibration. For the
purposes of this study, global horizontal radiation time series (GHI) from 1 January 2017 to
31 December 2020, with a 30 min time step, were used. It is obvious that a reliable measure
of meteorological data is not always an easy task, and even the maintenance of the station
is well realized; quality control must be applied, mainly on solar radiation data.

https://eportal.mapa.gob.es//websiar/Inicio.aspx
https://eportal.mapa.gob.es//websiar/Inicio.aspx
https://eportal.mapa.gob.es//websiar/Inicio.aspx
https://eportal.mapa.gob.es//websiar/Inicio.aspx
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Figure 1. Positions of the weather stations considered in this study with solar data available from
1 January 2017 to 31 December 2020. In red, stations are not used because the data are not considered
reliable. In yellow, the stations used. The geographical coordinates of the weather stations can be
found in Reference [31].

Before explaining the quality-control method (Section 2.3), the clear-sky solar radiation
model (Section 2.2) is briefly described here.

2.2. Clear Sky Model

The solar irradiation time-series GHI (for global horizontal irradiation or irradiance)
exhibits a seasonality and a periodicity (a yearly cycle and a diurnal one). Most of the
machine learning and AI methods can only be used with stationary time series [33] (the
“weak” assumption is sufficient). To “delete” this periodicity, it is common to compute a ra-
tio called clear-sky index and defined as GHI on the solar irradiance in clear-sky conditions
(denoted GHIcs), kt = GHI/GHIcs. This one results in a normalized quantity theoretically
comprised between 0 and 1. A clear-sky model estimates the solar irradiance that reaches
the ground surface when the sky is clear without clouds. Such models were developed and
differ from each other mainly in the inputs needed by each model [34]; they generally used
meteorological variables (such as ozone layer thickness, precipitable water, aerosol optical
depth, etc.) and solar geometry (solar elevation, declination, etc.) [35]. The most widely
used clear-sky models are the Solis model developed by Mueller et al. [36] and simplified
by Ineichen [37], the European Solar Radiation Atlas (ESRA) model [38], the Reference
Evaluation on Solar Transmittance 2 (REST2) model [39], and the McClear Model [40–42]
(this list is not exhaustive). The New Heliosat-4 method [40] is an operational tool for solar
irradiance monitoring in the framework of the projects “Monitoring Atmospheric Com-
position and Climate (MACC)” [43] and the Copernicus program. This method processes
Meteosat images to create the CAMs radiation service (Copernicus Atmosphere Monitoring
Service) used to calculate the clear-sky solar radiation, to estimate the cloud effect (coupled
with APOLLO/SEV from DLR), and the ground albedo (derived from MODIS).

It allows us to have an efficient model with a fast implementation because it is available
via a web service that gives time series of horizontal global, horizontal diffuse, and normal
beam irradiances for a given point and a given period, from 2004 up to current day
− 2 (minus two days), with a time step from 1 min to 1 day. For this paper, only the data
of clear-sky solar irradiance were uploaded via http://www.soda-pro.com (accessed on
10 March 2021). More information about the McClear Model and the upload platform can

http://www.soda-pro.com
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be found in references [40,41]. Figure 2 shows, as an example, the superposition of the
series generated with this model (clear sky) and SIAR measurements (in real meteorological
conditions) on the same locations (here, stations V29 and C01; see Figure 1).
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Figure 2. Presentation of GHI and GHIcs for 2 meteorological stations (V29 and C01) and 2 periods
of 5 days in 2020 (winter and spring).

It is clear that the clear-sky irradiance estimated by CAMs can be quasi-perfectly
superimposed onto the data measured on the ground level for days with clear skies. Thus,
the quality of the CAM model is shown. It is possible to assess, more globally, the adequacy
between measurement and model over a significant period (annual) for the same stations
(see Figure 3).
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Figure 3. Presentation of GHI and GHIcs for 2 meteorological stations (V29 and C01) in 2020.

Using such a methodology, all the data, for each station, were carefully checked, and
only stations having passed the tests correctly were selected in this study. As an intermedi-
ate outcome, the McClear model provides a good estimate of the clear-sky irradiance, but
as shown in the next section, the results can still be improved.
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2.3. Data Quality Control

A necessary condition to establish objective conclusions in clustering is to work with
valid data. For this reason, the quality control of measured (SIAR) and estimated time series
in clear-sky conditions (CAMs McClear) should be performed. Generally, several problems
occur in solar-data acquisition, such as failures of the acquisition system, synchronization
issues, incorrect measurements at sunset or sunrise (due to high azimuth angles), or other
artifacts. Espinar et al. [44] and El Alani et al. [45] studied this critical topic of quality check
and proposed efficient Quality-Control Procedures (QCPs) for solar data. They showed
that, after checking the plausibility of data, some visual support (graphs and histograms)
helps in the interpretation of this quality check. We drew inspiration from these two papers
to establish our own QCP, which is described in Figure 4.
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We modified the previous methods a little bit in view to, in our opinion, make them
more relevant for the data studied in this study: kt analysis based on geographic clustering.
These processes are essential to extract relevant information for data mining and analysis
tasks of solar-energy time series [46]. The QCP methodology is based on four main steps:

• GHIcs correction related to a possible offset corresponding to an erroneous time stamp:
clock issue or stations’ location approximation (see Section 2.3.1);

• Visual validation of kt series to easily identify significant measurement errors (see
Section 2.3.2).

• Quality evaluation of data provided by SIAR system and discarding of the stations
with more than 30% of over-irradiance data (see Section 2.3.2).
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• Detection of the kt outlier. The data that are much larger than 1.2 are removed (see
Section 2.3.3).

2.3.1. Time-Stamp Correction

The elimination or minimization of uncertainties in the kt time series must be real-
ized [47–49], so the results will be relevant only if the clear sky and the measured solar
irradiances are correctly time-stamped. It is quite common to observe a time lag (rang-
ing from a few minutes to about 20 min) between the two types of series defining the
clear-sky index: GHI and GHIcs. The effect is that it is systematically observed in higher
measurements than the clear sky at sunset or sunrise. There are several explanations that
can be put forward. The first is related to a mislocation (or lack of precision) of the mea-
surement stations (which is unlikely but possible in some cases). Then an error can occur
when entering the geographical characteristics of the stations in the McClear interface or
a problem of clock between the measurement and the estimate by clear sky. A retiming
strategy is proposed to minimize the delay between two time series. For this purpose, the
methodology is as follows:

• Operate a clear-sky shift (∆t) from −60 min to +60 min (by steps of 1 min), based on a
simple linear interpolation (121 time series are obtained).

• Compute for the 121 GHIcs series generated previously the mean square error (MSE)
compared to measurement (GHI).

• Retain ∆t, the offset that allows us to obtain the minimum MSE.
• Propose the new corrected clear-sky series, which corresponds to the linear interpola-

tion of the series shifted by the offset, ∆t (GHICorrected
cs (t) = GHIcs(t + ∆t)).

The offset, ∆t, is thus the parameter to find and then apply to GHIcs in order to find a
better concordance in terms of the MSE between GHI and new GHIcs.

As an example, the impact of this shift is seen in Figure 5. Considering the correction
and 1 year of acquisition (30 min time step), the average value of kt is decreased by almost
1%, from 0.5814 to 0.5761, and the variance by 4.2% (from 0.1136 to 0.1088).
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Now that the series is correctly recalibrated, we have to check if they are all usable.

2.3.2. Validation of the SIAR GHI Time Series

Even if the data series were verified by the SIAR’s quality check, it seems that it is
useful to realize a new checking by using the visual procedure proposed by Reference [45]
and completed by some tests on the kt values. The solar irradiance data that are used here
are the average horizontal global solar irradiance for 30 min on the period 1 January 2017 to
31 December 2020. For each station, the following steps are realized:

Visual validation: Measured data (SIAR) are plotted in a 2D graph (Figure 6); in the
same graph are drawn the theoretical sunrise (red color) and sunset hour (green color). This
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analysis allows for a visual identification of errors over time to visualize missing values,
issues in time reference, and abnormal values. The two meteorological stations taken as
an example passed the test, although an asymmetry is noted between the measurements
above the green dotted line and below the red dotted line. Moreover, the measure begins
before theoretical sunrise. This may indicate a little measurement error or sensor calibration
error. This test allows, by its nature, to point out only the big measurement errors and is
extremely time-consuming but necessary if one wants to use clean data. The other visual
tests performed are not detailed here, but interested readers can refer to Reference [45].
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Figure 6. Visual validation for V29 and C01. X-axis is the day; Y-axis is the time in Universal Time
Coordinated (UTC). The color of the surface, from blue (0 W·m−2) to yellow (1000 W·m−2), is the
value of the data.

In what follows, a filtering of the time series is systematically performed to eliminate
the night hours. GHI and GHIcs irradiance values are removed for the hours of the day
related to a solar angle less than 5 degrees.

Over-irradiance test: This test is based on the exploitation of kt histograms, as seen in
Figure 7. Although easily automated, it is interesting to look at the shape of the histogram.
The experienced user will be able to easily point out measurement errors and stations to
remove from the study. Another way is to quantify the number of occurrences where kt is
greater than 1. We have arbitrarily chosen a limit of 30%. Thus, if for a series, there is more
than 30% of over-irradiance data (which is rare or impossible for 30 min time granularity),
we consider that it is preferable to not use the station.
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2.3.3. Outlier Cleaning Methodology

Sometimes outlier values can pollute some interpretations, especially when a static
treatment requires a normalization of the data. A maximum kt value equal to 2.5 or
1.2 does not induce the same effects. To counter this effect, kt values higher than 1.2 are
removed. Even if some meteorological conditions can be met and induce over-irradiance,
by experience with kt series with a time step of 30 min, these values are unlikely to be
withdrawn to avoid a statistical bias in our treatments.
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2.4. Results of the Data Quality Control

After applying the previously described process to the 94 stations, only 76 stations
passed the tests (Figure 1). Table 1 shows the number of stations, total active, and validated
by year.

Table 1. SIAR stations and quality control.

2020 2019 2018 2017

Total SIAR station 542
Active SIAR Stations 448
Selected * SIAR Stations 94 84 82 78
Discarded ** SIAR stations 10 2 4 2
Subtotal 84 82 78 76

* Solar data available and ** test failure (Section 2.3).

Although there are a lot of losses after completing the many tests presented above,
there are still 76, which is rare in this kind of study. What is even more rare is to have
simulations made with only corrected, validated, and filtered data.

3. Characterization of Solar Irradiance Time Series

Seventy-six GHI time series (one per location) measured between 1 January 2017 and
31 December 2020 were used. These observations were collected every 30 min. Each GHI
series comprises 70,128 elements, for a total of 5,329,728 measurements. In addition, for
each site and each 30 min, the GHIcs and kt (GHI/GHIcs) are computed; that is, more than
15 million data are created. As mentioned in the paper’s Introduction, each site must be
characterized from the available-solar-energy point of view, not only with the mean value
or the cumulative GHI but mainly by the distribution or variation of the solar radiation.
The notions of variability, forecastability, and dynamics of the series must be considered.
The statistical parameters that are the most appropriate for this study are divided into two
classes: the first one concerns static parameters (mean, standard deviation, skewness, and
kurtosis), and the second one concerns the dynamic parameters (Hurst exponent (H) and
forecastability coefficient (F)).

3.1. Static Parameters

A characterization of the data includes position, dispersion, symmetry, and feature
of time-series distributions [50]. As performed in Reference [51], the mean is used to
compare the different measures. It is the choice of simplicity and has thus left aside the
other measures of central tendency (median and mode) and non-central tendency (quartiles,
deciles, and percentiles). As it is important to consider the dispersion of the series, the
standard deviation is used. The two other parameters are well-known in statistics:

• Skewness describes how much the statistical data distribution is asymmetrical from
the normal distribution, where distribution is equally divided on each side [52–55]; it
is defined by the following:

Skewness =
µ3

σ3 (1)

where µ3 is the third central moment and σ is the the standard deviation.

• Kurtosis measures the “tailedness” of the probability distribution of a real-valued
random variable [54–57] and is defined by the following equation:

Tailedness =
µ4

σ4 (2)

where µ4 is the fourth central moment.



Appl. Sci. 2022, 12, 8529 11 of 28

3.2. Dynamic Parameters

A fundamental task in these statistical analyses is to characterize the location and
variability of a dataset [58]. In order to analyze and compare the dynamic behavior of
irradiance time series, the use of the Hurst exponent (H) and forecastability coefficient (F)
is proposed. H is related to fractal geometry at different scales (concept defined by Man-
delbrot [59]). The main idea states that fractals are objects that have a similar appearance
when observed at different scales and have details that cannot be studied by Euclidean
geometry. H was used in previous studies to characterize the variability of meteorological
parameters [60–62]. The values of H for a time series with n components are in the range of
0 and 1 and are computed from the expected value (E[x]):

E
[

R(n)
S(n)

]
=∝ nH as n→ ∞ (3)

where R(n) is the range of the n cumulative deviations and S(n) is the sum of the first n
standard deviations. According to the value of H, any time series can be classified into one
of the three categories:

• If H < 0.5, the series is anti-persistent. The closer the value is to 0, the stronger the
mean-reversion process is. In practice, it means that a high value is followed by a low
value, and vice versa.

• If H = 0.5, the series is totally random.
• If H > 0.5, the series is persistent. The closer the value is to 1, the stronger the trend.

There are several methods to calculate H. We used rescaled range analysis, average
wavelet coefficient, and periodogram regression detailed in References [63,64]. The different
techniques are close in terms of results, with a difference of less than 10%. Therefore, we
did not know which one to use, so we decided to average the results obtained with the
three methods.

The F coefficient describes how a model trajectory diverges from a true system trajec-
tory. It is bounded between 0% and 100% and provides insight into the extent to which
solar radiation time series can be predicted. This parameter can be estimated from a Monte
Carlo method to determine RMSEmax (the maximum error related to a site where the GHI
randomly oscillates between 0 and GHICS) and the RMSE of the smart persistence predictor
(RMSEp) [65]. F can be calculated with Equation (1):

F ≈ 100% ×
(
1− RMSEp / RMSEmax

)
(4)

The results for all the stations are given in Appendix A Table A1. For more details
concerning this metric, interested readers can refer to Reference [66].

3.3. Correlation between Statistical Parameters—Redundancy

This section assesses whether the parameters defined above are not redundant and
whether they all provide new information. If not, the static dependence will lead to a
rejection of one of the two parameters to the detriment of the more complex one to be
calculated. The goal is to be parsimonious and to propose the least complex method. The
Spearman’s Rank Correlation Coefficient [67] is a statistical tool that examines the degree
to which two datasets are correlated, even if the relationship between these two sets is
not linear (unlike the Pearson one). This parameter is defined from the ratio between the
covariance of two rank variables R(X) and R(Y) (cov(R(X), R(Y)) and the product of their
standard deviation (σ(R(X)x σ(R(Y)). If the coefficient is greater than 0.75 (relationship
in the same direction) or lower than −0.75 (relationship in the opposite direction), the
correlation must be considered to be high. The task is then to use only descriptors with
cross-correlations (in the Spearman sense) between −0.75 and 0.75. Figure 8 shows the
Spearman correlation coefficient between the six descriptors of the kt series. A lot of
values are outside the range of “statistical independence”. To have only values between
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−0.75 and 0.75, it is advisable to keep only three variables: mean, Hurst exponent (H), and
forecastability coefficient (F). Figure 9 shows the median and quartiles (of the mean, H, and
F) of the series. We note that F is relatively homogeneous on the dataset, and the two other
parameters are more scattered mainly for the mean.
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4. Köppen Climatic Classification and Clustering Methods

One of the simplest methods of geographic clustering based on the meteorological
characteristics of the sites is the Köppen climatic classification. To facilitate the visualization
of the results of this work, a Geographic Information System was implemented in QGIS
software [68]. The various clusters are presented in the form of a map; several maps are
drawn according to the clustering method applied. Thus, this makes it simpler to compare
the various clusters with each other.

4.1. Köppen Climatic Classification

It consists of a worldwide natural climate classification [32] that identifies five main
climate types, subdivided into a total of thirty classes, with a series of letters that indicate
the behavior of temperatures and precipitations that characterize each climate and thus
the kind of vegetation existing in them. Note that, a priori, the Köppen index (three
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letters in Spain: first is climate type, second is rainfall regime, and third is temperature
variations) has no direct relationship with the solar irradiance characteristic of the site.
Considering that this original classification is relatively old (1981–2010 by the Instituto de
Meteorología de España [69]) and that some climate modifications may have occurred, we
decided to actualize the Köppen classification using the SIAR data and the monthly values
of temperatures and precipitation between 2017 and 2020; a new Köppen classification
was then elaborated as shown in Figure 10. As this Köppen classification is well-known
worldwide, and even if the solar potential is not considered in this classification, it seems
that it can be used in our study just for comparison purposes.
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4.2. Geographical Clustering Methods

Clustering includes all techniques that involve the grouping of data points. Given a
set of data points (characterized by several descriptive parameters), a clustering algorithm
is used to classify each data point (i.e., meteorological stations) into a specific group. In
theory, data points that are in the same group should have similar properties and/or fea-
tures. In contrast, data points in different groups should have highly dissimilar properties
and/or features. Machine learning, and particularly unsupervised learning, can be used
for clustering. It is a common technique for data analysis used in many fields such as
economics, medicine, market analysis, environmental-pattern analysis, crime analysis [19],
business and socioeconomics, engineering, science, medicine, art, and entertainment, [16]
among others. Time-series clustering can be classified into three categories [18,19,70]:
(a) subsequence clustering is clustering on a set of subsequences of a time series that are
extracted by using a sliding window, that is, clustering of segments from a single long
time series [71]; (b) time-point clustering (time series segmentation) is a clustering of time
points based on a combination of their temporal proximity of time points; and (c) whole
time-series clustering is a clustering of a set of individual time series with respect to their
similarity [72] (this paper is dedicated to this type of grouping).

4.2.1. The Available Tools

Applied to our geographical clustering problem, the methodology concerns a given
set of data, D (SIAR data), from which we previously extracted indices about its static and
dynamic behaviors. The problem of the whole clustering of time-series data is formally
well defined in Reference [19] as follows: time-series clustering, given a dataset of n
time-series data, D = {F1, F2, . . . , Fn}, the process of unsupervised partitioning of D into,
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C = {C1, C2, . . . , Cn}, in such a way that homogenous time series are grouped together
based on a certain similarity measure, is called time-series clustering. Then Ci is called a
cluster, where D = ∪k

i=1Ci and Ci ∩ Cj = 0 for i 6= j. A schematic of the main clustering
techniques is shown in Figure 11.
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The hierarchical clustering algorithm is a method in which data are grouped based
on the distance between each one and looking for the data within a cluster to be the most
similar to each other. It can also be seen as a graphical representation where elements
are nested in tree-like hierarchies [73]. Hierarchical clustering strategies can be either
agglomerative (each observation starts in its own cluster) or divisive (all observations start
as a single cluster). We decided to apply only the first one during simulations. Indeed, the
purpose is to group the meteorological stations with the smallest distance between their
dynamic and static characteristics.

The partitive clustering is different and allows to divide a dataset into k clusters
by trying to minimize some specified error functions. In k-means and k-medoids cases,
each data point belongs to a single group. Data points are assigned to a cluster such that
the sum of the squared distance between the data points and the centroid of the cluster
(means for k-means or median for k-medoid) is minimal [74,75]. Spectral clustering is a
technique that reduces complex multidimensional datasets into clusters of similar data
in rarer dimensions [76]. It is based on calculating the eigenvalues of the data-similarity
matrix in order to reduce the dimensionality of the system.

Many details about clustering and the pitfalls to avoid are given in the valuable Hynd-
man papers [17]. In summary, k-means and k-medoids methods are the most commonly
used clustering algorithm [77,78], with the number of clusters, k, specified by the user. Hi-
erarchical clustering generates a nested hierarchy of similar groups of time series according
to a pairwise distance matrix of the series [79]. Both of these clustering approaches, how-
ever, require that the length of each time series be identical due to the Euclidean distance
calculation requirement and are unable to deal effectively with long-time series due to
poor scalability. From a mathematical point of view now, k-means is defined from a set
of observations (x1, x2, . . . , xn). Each observation is a d-dimensional real vector; k-means
clustering aims to partition the n observations into k (≤n) sets S = {S1, S2, . . . , Sk} so as to
minimize the within-cluster variance. Formally, the objective is to find the following (µi is
the mean of points in Si):

argmin
S

k

∑
i=1

∑
x∈Si

‖x− µi‖2 (5)

The hierarchical clustering is operated from sophisticated algorithms. In this technique,
initially each data point is considered as an individual cluster. At each iteration, the similar
clusters merge with other clusters until one cluster or k-clusters are formed. The basic
algorithm is straightforward (agglomerative case):

- Compute the proximity matrix;
- Let each data point be a cluster;
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- Repeat: Merge the two closest clusters and update the proximity matrix;
- Until only a single cluster remains.

As there is no consensus on which method to use, we chose to test all three in the next
one. Table 2 offers a comparison of the main characteristics of the clustering methods used
in this work.

Table 2. Comparison of the main characteristics of the clustering algorithms [80].

Clustering Method Basis of Algorithm Input to Algorithm Requires Specified
Number of Clusters Cluster Shapes Identified

Hierarchical Distance
between objects

Pairwise distances
between observations No

Arbitrarily shaped clusters,
depending on the specified

“Linkage” algorithm

k-Means
k-Medoids

Distance between
objects and
centroids

Actual observations Yes Spheroidal clusters with
equal diagonal covariance

Spectral
Graph representing

connections
between data points

Actual observations
or similarity matrix

Yes, but the algorithm
also provides a way to
estimate the number

of clusters

Arbitrarily shaped clusters

A visible highlight in Table 2 concerns the fact that some clustering methods need
to know the number of clusters to determine. How to choose the appropriate number
of clusters is an open problem in the literature [81]. A pseudo-supervision can be used
to define the ideal number of clusters (certainly the simplest way). For this reason, no
algorithms were used to evaluate the optimal number of clusters. As the developed
clustering was also compared with the Köppen classification (naive clustering method), it
seemed convenient to take an equal number of clusters. Two cases were studied:

• According to the Spanish Köppen classification (BSh, BSk, Cfa, Cfb, and Csb), k = 5;
• According to the second letter (precipitation regime) of the Spanish Köppen classifica-

tion (S, f, and s), k = 3. A strong link exists between GHI and precipitation: when one
increases, the other decreases, and vice versa.

4.2.2. Clustering Methods Comparison

The notion of “objectively correct” does not exist in clustering: “clustering is in the eye
of the beholder” [82]. The most appropriate clustering algorithm for a particular problem
must often be chosen experimentally, unless there is a mathematical reason to prefer one
clustering model over another. An algorithm designed for a specific model type will usually
fail on a dataset containing a radically different model type. For example, k-means cannot
find nonconvex clusters. According to the literature review, three important factors can
be evaluated in clustering: (a) clustering tendency, which helps to evaluate whether the
dataset we are working with has clustering tendency and not just uniformly distributed
points [81,83]; (b) number of clusters k and (c) clustering quality. Concerning the last point,
which is the most important for us, we can note several metrics which can be divided into
internal and external measurements. The first one uses internal information to validate the
clustering; that is, it evaluates how good the clustering structure is without the need for
information from outside the algorithm itself [84,85]. Some of the clustering performance
measures are the Davies–Bouldin Index, Silhouette Coefficient, Calinski–Harabasz Index,
etc. The second one uses external information to validate the clustering and is independent
of the clustering technique [86]. Some of the clustering-performance measures are the
Rand Index, Jaccard Index, Fowlkes–Mallows scores, mutual-information-based scores,
homogeneity, completeness, V-measure, etc. As it seems more relevant to us to use external
measures, we have opted for the Rand Index method and the Jaccard Index:

• The Rand Index (RI) is a measure of the percentage of correct decisions made by the
algorithm: RI = (TP + TN)/(TP + FP + FN + TN), where TP is the number of true
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positives, TN is the number of true negatives, FP is the number of false positives, and
FN is the number of false negatives;

• The Jaccard Index (JI) is a measure that quantifies the degree of similarity between
two sets: JI = |A∩B|/|A∪B|, where A and B are two sets or clusters.

There is no real reason for this choice, except that their construction seemed better
suited to the specificities of our study. The Rand and Jaccard Indices measure the degree
of similarity between two sets. The range goes from 0% to 100%; if the partition is totally
different, it is 0%, and if it is strictly identical, it is 100%. Note that the Jaccard Index ignores
true negatives, while the Rand Index does not [87,88].

5. Results

While it is easy to show the results of clustering methods, it is not straightforward to
validate it or to compare it objectively with another one. We therefore start by showing
maps of Spain with the distribution of clusters according to the 76 stations studied, and
then we compare each method by using appropriate metrics. All the results obtained by
these clustering methods are detailed in Appendix A Table A2.

5.1. Case of 5 Clusters

As seen previously, we had to set a number, k, for this clustering study. We arbitrarily
chose k = 5 because the Köppen classification states (empirically) that there are five different
climates in Spain. The results of clustering are shown in Figures 12–15. As expected, the
results related to k-means and k-medoids are equivalent. Indeed, when there is no or few
outliers, these two methods are almost similar. Concerning the two other methods, there
are small differences, but it is visually difficult to differentiate them. At this level, it is really
difficult to distinguish between these four methods, and specific metrics will have to be
used for more objectivity. Tables 3 and 4 are presented the Rand and Jaccard Indices. The
Rand and Jaccard approaches for the cluster comparison are really similar in the study.
If some differences are visible, the conclusions remain the same. There is no interest in
using k-means, k-medoids, and spectral separately since the clusters resulting from these
models are similar (similarity higher than 95% for Rand and 91% for Jaccard). The choice to
use k-medoids, hierarchical, and Köppen for geographical clustering seems quite justified
given this result and given that k-medoids is in theory more robust than k-means and
spectral. Let us see now if, by decreasing the number of clusters (3), this conclusion remains
the same.
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Table 3. Rand Index (RI) for 5 clusters.

k-Means
(%)

Spectral
(%)

k-Medoids
(%)

Hierarchical
(%)

Köppen
(%)

k-means 100 95 99 35 53
Spectral 95 100 96 32 52

k-medoids 99 96 100 35 53
Hierarchical 35 32 35 100 51

Köppen 53 52 53 51 100

Table 4. Jaccard Index (JI) for 5 clusters.

k-Means
(%)

Spectral
(%)

k-Medoids
(%)

Hierarchical
(%)

Köppen
(%)

k-means 100 91 99 37 49
Spectral 91 100 92 37 47

k-medoids 99 92 100 37 49
Hierarchical 37 37 37 100 64

Köppen 49 47 49 64 100

5.2. Case of 3 Clusters

In this study, the visual rendering of the cluster through the four methods mentioned
above is available in Figures 16–19. The k-medoids method seems to stand out from the
others, but the differences are still quite difficult to distinguish. Tables 5 and 6 present the
Rand and Jaccard Indices.
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Table 5. Rand Index (RI) for 3 clusters.

k-Means
(%)

Spectral
(%)

k-Medoids
(%)

Hierarchical
(%)

Köppen
(%)

k-means 100 95 70 41 51
Spectral 95 100 69 40 52

k-medoids 70 69 100 44 60
Hierarchical 41 40 44 100 53

Köppen 51 52 60 53 100

Table 6. Jaccard Index (JI) for 3 clusters.

k-Means
(%)

Spectral
(%)

k-Medoids
(%)

Hierarchical
(%)

Köppen
(%)

k-means 100 96 67 53 58
Spectral 96 100 63 49 58

k-medoids 67 63 100 54 55
Hierarchical 53 49 54 100 62

Köppen 58 58 55 62 100

When analyzing the results obtained by k-means and spectral clustering algorithms, it
can be said that they present similar results in more than 90% for classes three and five. The
two tables (Rand and Jaccard) are similar; this suggests that the methodology is robust and
the conclusions are stable. Contrary to case k = 5, the conclusions are slightly different here,
and there would be a model to add: k-means or spectral. Because of its totally different
foundation from that of k-medoid, our preference is for spectral. Thus, the methodologies
to use (and to test) when studying predictions that require geographic clustering are, in
this case, k-medoids, hierarchical, spectral, and Köppen.

6. Summary of Some Important Milestones of This Work

The methodology applied in this study problem is divided into two parts, as illustrated
by two graphical schemes:

(a) The methodology used for analysis, correction, and validation of solar irradiance time
series was presented in Figure 4. This part of the methodology was developed in
Section 2.3, and the results obtained were presented in Section 2.4.

(b) The methodology used for characterization, clustering, and decision of the number
of clusters from Köppen–Geiger classification is presented in Figure 20. This part
of the methodology was developed in Section 3 (characterization); in Section 4, we
presented the Köppen climatic classification and clustering methods; and finally, in
Section 5, we presented the maps and results.

It should be noted that, in future work, if high-quality GHI data are available, the
first part of the methodology (i.e., the one presented in Figure 4) may be unnecessary to
implement. As a result, only the implementation of the second part of the methodology
would be necessary in a future work (without the reduction of the number of characteristic
variables from five to three (the three independent variables are sufficient). In conclusion, it
can be evidenced that the second part of the proposed methodology is easy to implement.
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7. Conclusions and Perspectives

The objective of this paper was to cluster several sites located in Spain according to
solar radiation characteristics (quantitative and qualitative), with an objective to improve
the forecasting of the solar irradiations. The novelties of this paper are not in the clustering
methods, because the four methods used are well-known, but in the used parameters to
qualify each meteorological station. Particularly, the use of the Hurst coefficient, and mainly
the forecastability one, is original.

Each cluster groups the stations not according to the solar radiation potential only, as
this has been already achieved for some sites over the World and is useful, as an example,
for agricultural applications, but, and above all, it regroups the stations from the solar-
radiation-variability point of view, i.e., from the qualitative viewpoint. It is essential
to know that this variability in energy studies and this clustering will be useful for the
elaboration of forecasting model based on time series and machine-learning methods.

The quality control of solar irradiation data provided by almost a hundred meteorological
stations used in irrigation works was first realized during the study period 2017–2020. It
allows us to be sure that the numerous data (more than 5 million GHI data) used in this
work are relevant. After this quality control, 76 stations were then selected. In calculating the
clearness index to know the clear-sky solar irradiance, the CAMs McClear model was used
and previously verified; it appeared that its accuracy, when applied to our data, was high.

Firstly, each station was characterized, from a solar-radiation-variability point of view,
by six parameters, including both static and dynamic ones: mean, standard deviation,
skewness, Kurtosis, Hurst exponent, and forecastability coefficient. The dependence
between these six parameters was then studied by using Spearman’s Rank Correlation
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Coefficient, and the results showed a high dependency between some of them; consequently,
based on the parsimony principle and to avoid the redundancy of the information, only
the mean, Hurst exponent, and forecastability coefficient were used to characterize each
meteorological station.

From these descriptors, the stations were grouped by similarity (the shortest distance
between descriptors), using the following algorithms: k-means, k-medoids, and spectral
and hierarchical clustering to identify geographical areas with similar solar irradiation
characteristics at a low time step (half an hour). The clusters were compared with each
other and the well-known Köppen–Geiger climate classification.

The possible relationship between the Köppen classification and the number of clusters
in which these time series can be grouped was analyzed. For both cases (five classes and
three classes), the hierarchical clustering algorithm is the closest to the Köppen classification.
However, it is probably not the most interesting to test, as it is a more complex method
with the same (similar) results as a naive clustering method.

When evaluating the performance of the clustering algorithms, it can be concluded
that there is no interest in simultaneously implementing k-means and spectral clustering
since the results are similar in more than 90% for classes three and five.

The results shown in this study could be used to improve GHI prediction through the
time-series formalism and machine learning in the following cases:

• To select to predictor considering that a method efficient on a meteorological site can
be applied with the same efficiency of all the sites of the same cluster (i.e., with the
same solar radiation variability or evolution);

• To make a forecast on a site where a GHI measurement device has just been installed.
Clustering allows us to perform learning on data measured on one or several sites
with similar characteristics and then to perform transfer learning to be able to make a
forecast on the new site;

• To make GHI predictions on a site where few historical measurements are available.
Clustering allows us to increase the number of training data (and thus the quality of
the training by avoiding overfitting) by integrating data from other sites of the same
cluster;

• To make prediction on a site where no measurement device is available. Clustering
coupled with Kriging could allow for making a forecast from measurements obtained
on nearby sites with similar meteorological characteristics;

• To improve a forecast by integrating during the learning process time-delayed data
from other sites in the same cluster.

In all the previous cases, and based on the results shown previously, the authors
propose to use k-means clustering or hierarchical clustering interchangeably (as many
clusters as Köppen classes) based on mean, Hurst exponent, and forecastability computed
from clear-sky index series (derived by CAMs estimation). However, for those who are
less eager to obtain satisfactory results, the possibility of using the Köppen classification
(recalculated for the time series study period) remains possible. It allows a classification
that can be described as naive.
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Appendix A

Table A1. Time-series characterization indices.

Code Station Lat (◦) Long
(◦)

Altitude
(m)

Köp Class
1981–2010

Köp Class
2017–2020 Mean Standard

Deviation Kurtosis Skewness H F

A20 Agost 38.422 −0.650 941 BSk BSk 0.81 0.44 3.39 −1.15 0.73 71.91
A21 Orihuela 38.180 −0.959 96 BSh BSk 0.82 0.44 3.87 −1.30 0.73 74.25
BA08 Don Benito 38.927 −5.896 268 BSk BSk 0.79 0.43 3.13 −1.07 0.76 75.35
BA09 Vil. los Barros 38.575 −6.348 406 BSk BSk 0.79 0.43 3.18 −1.09 0.76 73.11
BU07 S. Gadea del Cid 42.701 −3.075 525 Cfb BSk 0.67 0.37 1.79 −0.36 0.75 51.96
C02 Boimorto 43.032 −8.141 429 Csb BSk 0.61 0.37 1.68 −0.20 0.76 50.28
CC16 Moraleja 40.066 −6.688 272 Csa BSk 0.75 0.42 2.88 −0.99 0.78 73.74

CC19 Zarza de
Granadilla 40.207 −6.033 354 Csa BSk 0.75 0.42 2.57 −0.85 0.77 72.02

CO09 Palma del Río 37.725 −5.227 57 Csa BSk 0.79 0.43 3.48 −1.19 0.75 76.79
CR10 Manzanares 39.122 −3.354 645 BSk BSk 0.80 0.44 3.15 −1.12 0.76 74.59
CR11 Montiel 38.696 −2.881 887 Csa BSk 0.79 0.44 2.86 −1.01 0.76 72.42
CU09 Mariana 40.152 −2.142 941 Csa BSk 0.73 0.42 2.16 −0.69 0.77 67.25
GC09 Antigua 28.320 −13.942 72 BWh BSk 0.81 0.43 3.13 −1.01 0.66 73.83
HU01 Valfarta 41.531 −0.148 359 BSk BSk 0.79 0.43 3.14 −1.11 0.75 74.65
HU02 Zaidín 41.636 0.289 182 BSk BSk 0.78 0.43 2.89 −1.04 0.77 76.32
HU03 Alcolea de Cinca 41.740 0.073 225 BSk BSk 0.80 0.44 2.86 −1.05 0.77 75.72
HU04 Tamarite de Litera 41.780 0.377 218 BSk BSk 0.75 0.42 2.71 −0.96 0.77 75.41
HU05 Lanaja 41.786 −0.338 361 BSk BSk 0.79 0.43 2.93 −1.01 0.76 74.02
HU08 Sariñena 41.771 −0.177 291 BSk BSk 0.76 0.42 2.90 −1.00 0.76 74.90
HU09 Huesca 42.105 −0.378 432 Cfa BSk 0.74 0.42 2.42 −0.78 0.77 74.17
HU10 Candasnos 41.459 0.094 307 BSk BSk 0.78 0.43 2.90 −1.02 0.76 75.48
HU11 Grañén 41.942 −0.356 323 BSk BSk 0.75 0.41 2.86 −0.96 0.77 74.71
HU12 Huerto 41.947 −0.138 415 BSk BSk 0.82 0.45 3.09 −1.12 0.76 75.65

Z06 Ejea de los
Caballeros 42.097 −1.196 316 BSk Cfa 0.76 0.43 2.81 −0.97 0.77 73.04

HU13 Gurrea de Gállego 41.992 −0.731 364 BSk BSk 0.79 0.44 2.84 −1.01 0.76 73.83
HU15 Alfántega 41.821 0.148 249 BSk BSk 0.77 0.43 2.86 −1.02 0.77 75.33
HU17 Fraga 41.494 0.354 98 BSk BSk 0.75 0.42 2.52 −0.88 0.78 73.75
HU18 Tardienta 41.969 −0.508 366 BSk BSk 0.79 0.44 2.93 −1.05 0.76 74.69

HU19 San Esteban de
Litera 41.882 0.304 316 BSk BSk 0.81 0.45 2.82 −1.04 0.77 76.01

HU22 Santa Cilia 42.576 −0.708 733 Cfb Csa 0.76 0.43 2.47 −0.87 0.77 71.23

IB01 Santa Eulalia del
Río 39.009 1.440 122 Csa BSk 0.78 0.43 3.10 −1.04 0.74 70.25

M02 Arganda del Rey 40.310 −3.498 531 BSk BSk 0.80 0.44 2.91 −1.07 0.76 73.43

M05 San Martín de la
Vega 40.233 −3.560 516 BSk BSk 0.78 0.43 2.83 −1.01 0.77 73.65

M06 Chinchón 40.192 −3.469 534 BSk BSk 0.78 0.43 2.63 −0.94 0.77 72.70
MA10 Antequera 37.034 −4.563 457 Csa BSk 0.79 0.43 3.39 −1.18 0.75 73.46
MU104 Murcia 37.977 −0.984 128 BSh BSh 0.85 0.46 3.84 −1.33 0.73 74.75
MU121 Murcia 37.939 −1.135 54 BSh BSh 0.83 0.45 3.21 −1.13 0.73 73.97
MU14 Moratalla 38.196 −1.813 458 BSk BSk 0.81 0.44 3.32 −1.15 0.73 73.22
NA02 Fitero 42.045 −1.843 436 BSk Csa 0.74 0.42 2.22 −0.69 0.76 68.78
NA03 Cascante 42.034 −1.724 346 BSk BSk 0.75 0.42 2.39 −0.78 0.76 69.68
NA04 Ablitas 41.996 −1.645 338 BSk BSk 0.77 0.43 2.49 −0.88 0.76 70.05
NA05 Aibar/Oibar 42.558 −1.316 420 Cfa Csa 0.75 0.42 2.22 −0.71 0.78 69.71
NA07 Murillo el Fruto 42.384 −1.487 348 Cfa Csa 0.75 0.42 2.57 −0.89 0.77 70.52
NA08 Adiós 42.686 −1.747 443 Cfb Csa 0.74 0.43 1.99 −0.60 0.78 68.79
NA09 Artajona 42.583 −1.791 360 Cfa Cfa 0.73 0.42 2.16 −0.67 0.77 68.89
NA10 Miranda de Arga 42.510 −1.809 345 Cfa Csa 0.73 0.41 2.17 −0.65 0.78 69.05
NA11 Falces 42.422 −1.792 292 Cfa Csa 0.75 0.42 2.30 −0.74 0.77 69.31
NA13 Bargota 42.477 −2.299 382 BSk Cfa 0.71 0.41 2.04 −0.62 0.77 67.41
NA15 Arcos, Los 42.539 −2.185 421 Cfa Cfa 0.72 0.41 2.03 −0.59 0.77 67.10
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Table A1. Cont.

Code Station Lat (◦) Long (◦) Altitude
(m)

Köp
Class
1981–
2010

Köp
Class
2017–
2020

Mean
Standard

Devia-
tion

Kurtosis Skewness H F

NA16 Sesma 42.473 −2.127 456 Cfa Csa 0.73 0.42 2.08 −0.62 0.77 67.75
NA18 Tudela 42.093 −1.577 243 BSk BSk 0.76 0.43 2.50 −0.83 0.77 71.60
P08 Lantadilla 42.345 −4.278 793 Csb Csb 0.75 0.42 2.24 −0.74 0.79 69.95
TE01 Calanda 40.960 −0.210 439 BSk BSk 0.79 0.44 2.91 −1.05 0.75 71.79
TE03 Híjar 41.215 −0.530 306 BSk BSk 0.81 0.45 2.97 −1.07 0.75 73.90

TE04
Monreal
del
Campo

40.780 −1.355 950 BSk BSk 0.74 0.42 2.38 −0.78 0.75 68.26

TE05 Teruel 40.347 −1.166 914 BSk BSk 0.71 0.41 2.07 −0.62 0.75 67.18
TO12 Mora 39.664 −3.773 735 BSk BSk 0.81 0.44 3.15 −1.13 0.76 72.49
V14 Algemesí 39.216 −0.436 19 Csa Csa 0.79 0.44 3.10 −1.06 0.74 73.92
V25 Bolbaite 39.068 −0.690 267 Csa Csa 0.68 0.39 2.46 −0.85 0.74 69.96
V26 Bétera 39.598 −0.468 97 BSk BSk 0.78 0.43 3.48 −1.18 0.74 73.82
V27 Chulilla 39.676 −0.832 378 BSk BSk 0.80 0.44 3.18 −1.13 0.73 73.14
V28 Godelleta 39.421 −0.677 270 Csa Csa 0.77 0.43 3.20 −1.11 0.74 71.87
V29 Bèlgida 38.879 −0.454 281 Csa Csa 0.76 0.42 3.22 −1.09 0.74 73.01

VA08
Medina
de
Rioseco

41.860 −5.071 727 Csb Csb 0.77 0.43 2.44 −0.81 0.78 71.24

Z01
Almonacid
de la
Sierra

41.451 −1.330 384 BSk BSk 0.76 0.43 2.55 −0.90 0.76 70.62

Z14 Borja 41.854 −1.508 378 BSk Csa 0.77 0.43 2.50 −0.87 0.76 70.33
Z16 Caspe 41.303 −0.071 175 BSk BSk 0.75 0.42 2.67 −0.86 0.77 74.69

Z17 Osera de
Ebro 41.544 −0.537 251 BSk BSk 0.80 0.44 3.04 −1.11 0.76 74.63

Z18 Daroca 41.107 −1.425 748 BSk BSk 0.68 0.40 1.77 −0.40 0.74 64.08
Z21 Tauste 41.999 −1.143 353 BSk BSk 0.78 0.43 2.88 −1.01 0.77 72.31
Z22 Boquiñeni 41.842 −1.250 227 BSk BSk 0.76 0.42 2.76 −0.95 0.76 71.32
Z23 Pastriz 41.593 −0.731 182 BSk BSk 0.81 0.45 2.90 −1.03 0.76 74.29
Z24 Calatayud 41.362 −1.615 523 BSk BSk 0.74 0.42 2.39 −0.79 0.77 69.08
Z25 Tauste 41.905 −1.310 237 BSk BSk 0.77 0.42 2.80 −0.95 0.76 72.36
Z26 Zuera 41.888 −0.766 288 BSk BSk 0.78 0.43 2.92 −1.02 0.77 73.66
ZA08 Toro 41.507 −5.366 652 Csb Csa 0.77 0.43 2.52 −0.86 0.78 71.39

Table A2. Clustering by method and number of clusters.

5 Classes 3 Classes

Code Station k-Means Spectral k-Medoids Hierarchical k-Means Spectral k-Medoids Hierarchical

A20 Agost 1 5 1 4 3 2 2 1
A21 Orihuela 4 5 5 3 3 2 2 2
BA08 Don Benito 1 2 1 4 3 2 2 1
BA09 Villafranca de los Barros 1 2 1 4 3 2 2 1
BU07 Santa Gadea del Cid 2 4 3 5 2 3 1 3
C02 Boimorto 2 4 3 2 2 3 1 3
CC16 Moraleja 5 1 2 4 1 1 2 1
CC19 Zarza de Granadilla 3 3 4 4 1 1 3 1
CO09 Palma del Río 1 5 1 4 3 2 2 1
CR10 Manzanares 1 2 1 4 3 2 2 1
CR11 Montiel 5 1 2 4 1 1 2 1
CU09 Mariana 2 4 3 4 2 3 1 1
GC09 Antigua 1 2 1 1 3 2 2 1
HU01 Valfarta 1 2 1 4 3 2 2 1
HU02 Zaidín 5 1 2 4 1 1 2 1
HU03 Alcolea de Cinca 5 1 2 4 1 1 2 1
HU04 Tamarite de Litera 5 1 2 4 1 1 3 1
HU05 Lanaja 5 1 2 4 1 1 2 1
HU08 Sariñena 5 1 2 4 1 1 2 1
HU09 Huesca 3 3 4 4 2 3 3 1
HU10 Candasnos 5 1 2 4 1 1 2 1
HU11 Grañén 5 1 2 4 1 1 2 1
HU12 Huerto 1 2 1 4 3 2 2 1
Z06 Ejea de los Caballeros 5 1 2 4 1 1 3 1
HU13 Gurrea de Gállego 5 1 2 4 1 1 2 1
HU15 Alfántega 5 1 2 4 1 1 2 1
HU17 Fraga 3 3 4 4 1 1 3 1
HU18 Tardienta 5 1 2 4 1 1 2 1
HU19 San Esteban de Litera 5 1 2 4 1 1 2 1
HU22 Santa Cilia 3 3 4 4 1 3 3 1
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Table A2. Cont.

5 Classes 3 Classes

Code Station k-Means Spectral k-Medoids Hierarchical k-Means Spectral k-Medoids Hierarchical

IB01 Santa Eulalia del Río 1 2 1 4 3 2 2 1
M02 Arganda del Rey 5 1 2 4 1 1 2 1
M05 San Martín de la Vega 5 1 2 4 1 1 2 1
M06 Chinchón 3 3 4 4 1 1 3 1
MA10 Antequera 1 5 1 4 3 2 2 1
MU104 Murcia 4 5 5 3 3 2 2 2
MU121 Murcia 1 2 1 4 3 2 2 1
MU14 Moratalla 1 5 1 4 3 2 2 1
NA02 Fitero 2 4 3 4 2 3 1 1
NA03 Cascante 3 3 4 4 2 3 3 1
NA04 Ablitas 3 3 4 4 1 1 3 1
NA05 Aibar/Oibar 2 4 3 4 2 3 1 1
NA07 Murillo el Fruto 3 3 4 4 1 1 3 1
NA08 Adiós 2 4 3 4 2 3 1 1
NA09 Artajona 2 4 3 4 2 3 1 1
NA10 Miranda de Arga 2 4 3 4 2 3 1 1
NA11 Falces 3 4 4 4 2 3 3 1
NA13 Bargota 2 4 3 4 2 3 1 1
NA15 Arcos, Los 2 4 3 4 2 3 1 1
NA16 Sesma 2 4 3 4 2 3 1 1
NA18 Tudela 3 3 4 4 1 3 3 1
P08 Lantadilla 3 4 3 4 2 3 1 1
TE01 Calanda 5 1 2 4 1 1 2 1
TE03 Híjar 5 1 2 4 1 1 2 1
TE04 Monreal del Campo 3 3 4 4 2 3 3 1
TE05 Teruel 2 4 3 4 2 3 1 1
TO12 Mora 1 2 1 4 3 2 2 1
V14 Algemesí 1 2 1 4 3 2 2 1
V25 Bolbaite 3 3 4 4 1 3 3 1
V26 Bétera 1 5 1 4 3 2 2 1
V27 Chulilla 1 2 1 4 3 2 2 1
V28 Godelleta 1 2 1 4 3 2 2 1
V29 Bèlgida 1 2 1 4 3 2 2 1
VA08 Medina de Rioseco 3 3 4 4 2 3 3 1
Z01 Almonacid de la Sierra 3 3 4 4 1 1 3 1
Z14 Borja 3 3 4 4 1 1 3 1
Z16 Caspe 3 3 4 4 1 1 3 1
Z17 Osera de Ebro 1 2 1 4 3 2 2 1
Z18 Daroca 2 4 3 5 2 3 1 3
Z21 Tauste 5 1 2 4 1 1 2 1
Z22 Boquiñeni 5 1 2 4 1 1 3 1
Z23 Pastriz 5 1 2 4 1 1 2 1
Z24 Calatayud 3 3 4 4 2 3 3 1
Z25 Tauste 5 1 2 4 1 1 3 1
Z26 Zuera 5 1 2 4 1 1 2 1
ZA08 Toro 3 3 4 4 1 1 3 1
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