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Abstract: Recent years have witnessed tremendous advances in clouding gaming. To alleviate the
bandwidth pressure due to transmissions of high-quality cloud gaming videos, this paper optimized
existing video codecs with deep learning networks to reduce the bitrate consumption of cloud gaming
videos. Specifically, a camera motion-guided network, i.e., CMGNet, was proposed for the reference
frame enhancement, leveraging the camera motion information of cloud gaming videos and the
reconstructed frames in the reference frame list. The obtained high-quality reference frame was then
added to the reference frame list to improve the compression efficiency. The decoder side performs
the same operation to generate the reconstructed frames using the updated reference frame list. In
the CMGNet, camera motions were used as guidance to estimate the frame motion and weight masks
to achieve more accurate frame alignment and fusion, respectively. As a result, the quality of the
reference frame was significantly enhanced and thus being more suitable as a prediction candidate
for the target frame. Experimental results demonstrate the effectiveness of the proposed algorithm,
which achieves 4.91% BD-rate reduction on average. Moreover, a cloud gaming video dataset with
camera motion data was made available to promote research on game video compression.

Keywords: video coding optimization; inter prediction; cloud gaming videos; frame enhancement;
deep learning

1. Introduction

As an important information transmission medium, videos are widely used in enter-
tainment, security monitoring, online meetings, virtual reality, and other fields. Although
the rapid development of video services meets the requirements of users, the huge data
volume of raw videos can hardly be directly transmitted and stored. Especially in re-
cent years, the progress of cloud computing technology has promoted the revitalization
of the cloud gaming industry [1], and the transmission of various high-definition cloud
gaming videos required by cloud gaming systems has greatly increased the demand for
bandwidth. Compared to natural videos, game videos contain complicated animations
and visual effects, thus requiring larger bandwidth when transmitted [2]. For instance,
the most popular commercial cloud gaming system, i.e., OnLive, needs at least 2 Mbps
bandwidth [3]. A large amount of transmitted data and high bandwidth occupation have
put great limitations on the development of cloud gaming. To this end, how to effectively
compress cloud gaming videos is crucial.

Video compression technology has developed vigorously since the 1980s, and can
remove the redundancy of videos while maintaining quality. As one of the core modules in
video coding, inter-prediction uses the reconstructed blocks in reference frames to predict
the coding blocks in the current frame. Compared to directly encoding and transmitting
the raw frames, processing the predicted residuals can significantly reduce the transmit-
ted data volume. In particular, when the reference frame is of high quality and highly
related to the current frame, it can further improve the accuracy of motion estimation and
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motion compensation, therefore greatly reducing the bits for coding residuals. Therefore,
reference frames play an important role in inter-frame prediction. In traditional video
codecs, the reconstructed previous frame with the highest relation to the current frame and
reconstructed frames with the highest quality in each previous Group of Pictures (GOP)
are generally selected as reference frames under the Low-Delay-P (LDP) configuration.
Moreover, with the improvement of computing power, deep learning neural networks have
been gradually applied to video compression. Either enhancing the quality of reference
frames or generating additional reference frames through deep learning networks [4–6]
has shown excellent performance far beyond traditional algorithms. To put it differently,
optimizing the frames in the reference frame list through a deep learning network can
improve the coding efficiency to a certain extent.

However, most of the networks mentioned above are applicable to natural videos
captured by cameras, while we aim at improving the coding efficiency of game videos
in cloud gaming. Meanwhile, the commonly used video coding standard H.265/HEVC
mainly works for simple translation movements [7] while cloud gaming videos, especially
the first angle games, contain more complicated rotation movements. We can see from
Figure 1 that H.265/HEVC has different compression performances under various camera
motions in the same scene. Videos with camera rotation often require higher transmission
bits. Considering that the core of cloud gaming is to render 3D video games on the
cloud server and send game scenes as 2D videos to game players through broadband
networks, the video encoder runs together with the 3D game engine so that we can obtain
the camera motions in graphics rendering contexts directly. The movement between frames
can be further described in detail and intuitively using the frame-by-frame camera motion
information. This prior information can help obtain more accurate pixel motion vectors
in various complex movements, therefore reducing the encoding residuals. In this case,
we propose to leverage the camera motion information unique to cloud gaming videos to
guide the optimization of reference frames with deep learning techniques. By introducing
additional high-matching and high-quality reference frames, the temporal redundancy is
greatly reduced, resulting in a significant reduction in bits for coding residuals, so that the
compression efficiency of cloud gaming videos with a large number of rotation movements
can also be improved.

Figure 1. Relationship between camera motions and transmission bits in H.265/HEVC.
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In this paper, we present how we take advantage of the camera motions to optimize
video encoding for cloud gaming videos. Overall, using the camera motion information
and the known reconstructed frames in the reference frame list, we generate a high-quality
enhanced reference frame with high relation to the current frame through a deep learning
network. Then the enhanced frame is added to the reference frame list to participate in
the coding process. The operation at the decoder side is consistent with the encoder side,
which recovers the updated reference frame list using the transmitted camera motion
information and decodes the frames based on it (That is to say, the proposed scheme is not
compatible with the H.265 standard). Specifically, to generate the enhanced reference frame,
we propose a camera motion-guided network referred to as the CMGNet, which consists
of three parts: the camera motion-guided prediction module, the alignment and fusion
module, and the reconstruction module. We first estimate more accurate pixel-level motion
information and fusion masks through the camera motion-guided prediction module,
then align input frames to the target frame and merge them to acquire the fused feature.
Finally, the reconstruction module is used to generate the corresponding high-quality
reference frame.

The main contributions of this paper can be summarized as follows:

• We propose a coding optimization algorithm for cloud gaming videos applying deep
learning techniques to optimize traditional video codecs, which generates an enhanced
reference frame with high relation to the frame to be encoded and adds it to the
reference frame list for better compression;

• Our proposed CMGNet for generating enhanced reference frames uses camera mo-
tions as guidance to estimate more accurate pixel-level motions for frame alignment,
significantly enhancing the quality of the reference frame;

• We have established a game video dataset containing sufficient rendering frames and
camera motions to promote research on game video compression;

• Experimental results demonstrated the effectiveness of the proposed coding optimiza-
tion algorithm for cloud gaming videos.

The rest of the paper is organized as follows. Related work is summarized in Section 2.
The proposed coding optimization algorithm for cloud gaming videos together with the
proposed CMGNet for the generation of enhanced reference frame is detailed in Section 3.
Experimental results are shown in Section 4 to verify the expected improvements. Finally, a
brief summary of this paper is given in Section 5.

2. Related Work
2.1. Video Compression

In recent years, various video applications have emerged with the development of
network and storage technologies. The diversification and high-definition trend of video
applications have put forward higher requirements for video compression. The formulation
of international video coding standards has promoted the video compression process. In
particular, H.265/HEVC [7] standardized by ITU-T Video Coding Expert Group (VCEG)
and ISO/IEC Moving Picture Expert Group (MPEG) is widely used due to its 50% bitrate
reduction over its predecessor H.264/AVC [8] while maintaining the same level of video
quality. Some researchers proposed algorithms to achieve computational complexity scala-
bility for HEVC encoders [9–12] and others optimized the loop filters [12–14], as well as
the intra-frame/inter-frame prediction process [15,16]. Some works use the features of
the infrared videos [17], satellite videos [18] and surveillance videos [19,20] to generate
additional reference frames for H.265/HEVC for further bitrate savings. Many works also
applied deep learning techniques to video compression, including using deep learning
networks to improve the accuracy of sub-pixel motion estimation and motion compen-
sation [21–24], enhance the bi-prediction performance [25], and improve the quality of
reference frames [4–6], etc. Considering the continuous growth of video services and
the development of new industries such as cloud gaming, the demand for bandwidth is
increasing exponentially and the exploration of video compression is still urgent.
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2.2. Video Quality Enhancement

The purpose of video quality enhancement is to reduce the distortion of compressed
videos, and the methods based on deep learning have achieved remarkable results. The
early ARCNN [26] and IFCNN [27] were inspired by the NN-based image super-resolution
algorithm and improved based on the SRCNN [28] structure. VRCNN [29] introduces CNN
in the loop filter of HEVC intra-coding and obtains improved coding performance. With
the continuous development of deep learning, more complicated structures are applied to
enhancement networks. For instance, RHCNN [30] introduces residual highway units to
improve the quality of reconstructed frames. ACRN [31] uses asymmetric convolution and
dense structure to better extract features. RRCNN [32] adopts the recursive residual module
to achieve parameter sharing, obtaining excellent performance with fewer parameters, etc.
Some other works apply coding information to the network, such as the partitioning map
of the Coding Unit (CU) and Transform Unit (TU) [33,34], coding residual [35], and Quanti-
zation Parameter (QP) [36] to help the network converge quickly and further improve the
quality of reconstructed frames.

However, the networks mentioned above only consider the frame to be enhanced,
ignoring the temporal correlation between frames in the video sequence. To further take
advantage of the inter-frame relationship, methods for multi-frame quality enhancement
have emerged. QENet [37], LMVE [38], and MGANet [39] use the optical flow estimated
by the optical flow network [40,41] to align input frames to the current frame and feed
them into the network for fusion and enhancement. MFQE [42] finds two peak quality
frames to enhance the adjacent frame. MFQE 2.0 [43] further extends MFQE and signif-
icantly improves it. Moreover, STDF [44] and RFDA [45] learn a novel Spatio-Temporal
Deformable Convolution (STDC) to aggregate temporal information while performing
frame fusion. There are also works combining optical flow with deformable convolution for
better alignment [46,47]. Either using a single frame or multiple frames for video quality
enhancement has shown excellent performance.

3. The Proposed Coding Optimization Algorithm and Network Architecture
3.1. Algorithm Overview

We propose a coding optimization algorithm for cloud gaming videos with reference
frame enhancement through a deep learning network. Figure 2 shows an overview of the
proposed optimization compression pipeline. The blue boxes represent the conventional
codec (i.e., H.265), which is applied to compress the cloud gaming videos. The cyan blocks
indicate the proposed CMGNet, which is responsible for generating the enhanced reference
frame. There are at most four reconstructed frames in the reference frame list under the
LDP configuration. We use the four reference frames and the camera motions to generate an
enhanced reference frame through the CMGNet and then add it to the reference frame list
to participate in the inter-prediction process of the current frame. It is noted that there are
less than four reference frames in the reference frame list of the first three predictive frames,
so we copy the last reference frame with the smallest Picture Order Count (POC) in the list
to make up the four reference frames. The camera motion information is signaled along
with the conventional codec’s bitstream. On the decoder side, the operation is consistent
with the encoder side, and it is not necessary to transmit additional labels to mark the
generated reference frames.
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Figure 2. Overview of the proposed optimization compression pipeline.

3.2. Network Architecture

We assume that the reference frames in the reference frame list are denoted as IR1 ,
IR2 , IR3 , and IR4 , which are arranged in order of the POC (from the smallest to the largest).
Considering that the reconstructed frame of the previous frame and those with the highest
quality in each previous GOP are generally selected as reference frames under the LDP
configuration, IR4 has the highest temporal correlation and similarity with the frame to
be encoded while IR1 , IR2 , and IR3 have a higher objective quality. We take the high-
quality reference frames IR1 , IR2 , and IR3 to enhance the quality of IR4 , using the temporal
correlation between them to generate a new reference frame denoted as IE

R4
, with both

high-quality and high-temporal correlation. Thus, the proposed model can be expressed as:

IE
R4

= fθ

({
IRi

}4
1,
{

VRi R4

}4
1

)
(1)

where VRi R4 , i ∈ {1, 2, 3, 4} represents the camera motion indicating the transformation
from the position of IRi to IR4 . IE

R4
is the enhanced target frame (i.e., the output of the

CMGNet). IRi and VRi R4 are the inputs of the proposed CMGNet and θ represents the set
of the learnable model parameters. The structure of the proposed CMGNet is shown in
Figure 3, which consists of a camera motion-guided prediction module, an alignment and
fusion module, and a reconstruction module.

As shown in Figure 3, IRi , IR4 , and VRi R4 are first fed into the camera motion-guided
prediction (i.e., CMGP in Figure 2) block to predict the pixel offset pRi for the alignment of
the input frame to the target frame, and the weight mask mRi for the frame fusion. Then,
four pairs of offsets and masks, i.e.,

(
pRi , mRi

)
, together with IRi , for each i ∈ {1, 2, 3, 4},

are fed into the alignment and fusion module to obtain the fused feature. We use the
deformable convolution (DCNv2) [48] to perform frame alignment and fusion, which has
been proved effective. Finally, the fused feature is input to the reconstruction module
to fully explore the information contained in the feature map, therefore improving the
quality of the reference frame. In our implementation, we select a simple yet effective
eight-layer convolution with residual learning [49] as the reconstruction module due to
its versatility and efficiency (eight layers for the luma component and four layers for the
chroma component). Thus, the model can be re-formulated as:

IE
R4

= fRect

(
fDCN

(
fCMGP

({
IRi , VRi R4

}4
1, IR4

)
,
{

IRi

}4
1

)
, IR4

)
(2)
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where fCMGP(·), fDCN(·), and fRect(·) represent the CMGP module, the alignment and
fusion module, and the reconstruction module, respectively. The outputs of fCMGP(·) are
offset pRi and mask mRi required by DCNv2. We will describe the CMGP in detail below.

Figure 3. The proposed camera motion-guided network CMGNet.

3.2.1. Camera Motion-Guided Prediction (CMGP)

It is well-known that effectively using the temporal correlation between frames for
frame alignment and fusion is a key issue. The non-consecutive inputs with varying degrees
of motion offset further increase the difficulty for frame alignment and fusion. Deformable
convolution has shown advanced performance in frame alignment and fusion, so we use
it in our network. In deformable convolution operations, obtaining accurate alignment
offsets and fusion masks is crucial. Inspired by the excellent performance of flow-guided
deformable alignment [47], we adopt the flow-based method to predict the basic offset in
our paper. Meanwhile, benefiting from the rendering and coding mechanism of the cloud
gaming system, the camera motions that accurately record displacements between frames
can be directly obtained. To some extent, the camera motion between the input frame
and the target frame reflects the corresponding offset between them, and input frames
with different camera motions relative to the target frame could bring different degrees of
reference and correlation. Therefore, we use this information to guide the offset and mask
prediction process. Figure 4 gives the illustration of the proposed CMGP. One CMGP block
is selected as an example in the following discussion for simplification, and the operation
is identical for all blocks.

Given a pair of reconstructed reference frames IRi and IR4 , we first use a pre-trained
flow prediction network to calculate the optical flow FRi→R4 . The well-known pyramid
structure SPyNet [50] obtains final optical flow by generating flows at different scales
and gradually refining them. Its smaller model parameters with advantages in terms of
accuracy and speed attract us to adopt it. Then the warped frame IW

Ri→R4
is obtained by

warping IRi to IR4 through the optical flow FRi→R4 . The above process can be expressed by
the following formulas:

FRi→R4 = SPyNet
(

IRi , IR4

)
IW

Ri→R4
= warp

(
IRi , FRi→R4

) (3)
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Figure 4. Illustration of the CMGP block.

We regard the optical flow as the basic offset. Then we use the warped frame IW
Ri→R4

and the target frame IR4 to predict the residual offset ∆pRi and fusion mask mRi . As shown
in Figure 4, we use an encoder-decoder architecture to predict them, where convolution
and deconvolution layers with a stride of 2 are used for downsampling and upsampling,
respectively. In the convolution layers with a stride of 1, we use zero padding to keep the
resolution of features unchanged. There is also a camera motion-guided transformation layer
inspired by [51] before the last downsampling layer. The camera motion information VRi R4

participates in the prediction process by guiding the production of the affine transformation
parameters for the downsampling feature in this layer. Such projection then guides the
feature adjustment based on the accurate prior information, leading to more precise residual
offset and mask prediction. Since we focus on the rotation movement of cloud gaming videos
in this paper, the camera motion VRi R4 can be represented by a quaternion in the shape of
4× 1× 1. Then in the camera motion-guided transformation layer, we use a fully connected
layer and a repeat operation to make VRi R4 the same dimension as that of the input feature fin.
The transformation parameters γRi→R4 and βRi→R4 are produced by a mapping function:(

γRi→R4 , βRi→R4

)
= Ψ

([
fin, VRi R4

])
(4)

where the camera motion and input feature are concatenated together for guidance. After
that, the translation is carried out by scaling and shifting the input feature:

fout = γRi→R4 � fin + βRi→R4 (5)

where fout represents the output feature after the camera motion-guided transformation
layer, whose dimension is the same as γRi→R4 and βRi→R4 , and� is referred to element-wise
multiplication. Afterward, the residual offset and fusion mask can be obtained through
several convolution layers. The final offset can thus be represented as:

pRi = FRi→R4 + ∆pRi (6)

Considering that the general video sampling format of H.265/HEVC is YUV4:2:0,
and the luma component contains more detail and high-frequency information while the
chroma component is relatively flat, we process the luma and chroma separately in the
paper and set the network structure of the chroma component as a simplified version of
that of the luma component. Therefore, in a CMGP block, the luma component performs
downsampling and upsampling three times while the chroma component performs two
times. The optical flow of the chroma component is also simply set as a twice performed
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downsampling version of luma. It should be noted that we set FR4→R4 to zero and do not
perform the spatial warping operation when i = 4. That is to say, we use two IR4 frames
to predict the residual offset ∆pR4 and fusion mask mR4 , and the final offset is directly
represented by ∆pR4 in this case.

3.2.2. Loss Function

We adopt the commonly used Mean Absolute Error (MAE) to supervise the proposed
network. The MAE can be represented as:

MAE
(

IR4 , IE
R4

)
=

∥∥∥IR4 − IE
R4

∥∥∥
1

W × H + W
2 ×

H
2 + W

2 ×
H
2

=

∥∥∥YR4 −YE
R4

∥∥∥
1
+

∥∥∥UR4 −UE
R4

∥∥∥
1
+

∥∥∥VR4 −VE
R4

∥∥∥
1

3
2 WH

=
4
6

MAE
(

YR4 , YE
R4

)
+

1
6

MAE
(

UR4 , UE
R4

)
+

1
6

MAE
(

VR4 , VE
R4

)
(7)

Furthermore, the loss function can be described accordingly as:

loss = 4MAE
(

YR4 , YE
R4

)
+ MAE

(
UR4 , UE

R4

)
+ MAE

(
VR4 , VE

R4

)
(8)

where YE
R4

, UE
R4

, and VE
R4

are the components of the enhanced frame, YR4 , UR4 , and VR4 are
those of the ground truth. Weighting in the ratio of 4:1:1 can better reflect the importance of
each component.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets

Most current datasets for deep learning only contain camera–captured natural images
while we aim at cloud gaming videos with corresponding camera motions. Herein, we
use the Air Light VR (ALVR) [52], a piece of software to stream SteamVR games to the
standalone VR headsets of users, to establish a cloud gaming video dataset containing the
rendering images and rotating camera motions. The camera motions are represented by
quaternions. We select five representative popular games [53–57] containing various scenes
as the game sequence library, and the raw videos are selected across diverse types of content.
Ten videos with 1000 frames are employed for training, and another three with 500 frames
called Secret Shop, Robot Repair, and VRChat, are used for testing. The videos are cropped
to a uniform size of 1024 × 1024. Figure 5 shows several frames of the test set as examples.

(a) (b) (c)

Figure 5. Examples of the test set. (a) Secret Shop. (b) Robot Repair. (c) VRChat.
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4.1.2. Implementation Details

All videos are encoded by HM 16.22 under the LDP configuration at four different
quantization parameters (QP) (i.e., 22, 27, 32, 37) on an Intel ( R ) Core ( TM ) i7-9700K CPU
@ 3.60 GHz processor. We train four models from scratch for the four QPs independently.
The Adam optimizer [58] with β1 = 0.9, β2 = 0.999, and ε = 10−8 is adopted for the
training of the proposed CMGNet. We set the batch size to 32 and randomly crop the input
frame into patches in 128 × 128. The learning rate is set to 10−4 thorough out the training
process. We train the luma component and chroma component separately. In the CMGP
block, there are three downsampling and upsampling layers with 32 channels followed by
ReLU activation for the luma component, while there are two for the chroma component.
The number of output channels is equal to 64. We select an eight-layer convolution with
residual learning in the reconstruction module for the luma component and that with four
layers for the chroma component. All layers have 48 convolution filters followed by ReLU
activation. The generated frame is added at the first position of the original reference frame
list, and original reference frames are moved backward in sequence. For the evaluation
of the performance, we adopt the Bjontegaard Deltas [59] for the rate (i.e., BD-rate,) and
the Bjontegaard Deltas for the quality measure (i.e., BD-PSNR) in the YCbCr space to
evaluate the proposed coding optimization algorithm, and use the Peak Signal-to-Noise
Ratio (PSNR) in the YCbCr space and Structural Similarity Index (SSIM) in the RGB space
to evaluate the proposed CMGNet.

4.2. Experimental Results
4.2.1. Compression Performance of the Coding Optimization Algorithm

We first evaluate the rate-distortion performance of our proposed algorithm to validate
its efficiency. We take the commonly used H.265 as the anchor and compare our proposed
algorithm with it in terms of BD-rate and BD-PSNR under the LDP configuration. Negative
BD-rate values and positive BD-PSNR values indicate better performance. It should be
noted that the proposed algorithm needs transmit the camera motion information to the
decoder side, whereas the additional overhead is mostly below 0.02%. Hence, we ignore
the bits for camera motion when calculating the two metrics. Table 1 lists the rate savings
and quality gains of three test videos, where it can be observed that 4.0%, 8.51%, 2.20%
bitrate savings and 0.12, 0.25, 0.07 quality gains for different test sequences can be achieved,
respectively. On average, our proposed algorithm can achieve a 0.15 dB improvement
relative to H.265 at the same bitrate or saves 4.91% of the bitrate to achieve the same PSNR.
We also provide the RD curves in Figure 6 for better illustration. The blue lines in Figure 6
represent the performance of the traditional codec H.265 and the red ones indicate that of
the proposed algorithm. It is obvious that the red line is above the blue line in each subplot,
which demonstrates the superior RD performance of the proposed algorithm on different
sequences. Moreover, our algorithm can achieve better RD performance at both low and
high bit rates, proving the superiority of the proposed coding optimization algorithm.

Table 1. BD-Rate and BD-PSNR on test videos relative to H.265.

Sequences BD-Rate BD-PSNR

Secret Shop −4.03% 0.1210
Robot Repair −8.51% 0.2540

VRChat −2.20% 0.0761
Avreage −4.91% 0.1503
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(a) (b) (c)

Figure 6. Rate-distortion curves of three test videos. (a) Secret Shop. (b) Robot Repair. (c) VRChat.

We also give the encoding and decoding time of the proposed algorithm in Table 2
to compare the complexity. All experiments are tested on an Intel (R) Core (TM) i7-
9700K CPU @ 3.60 GHz processor and an NVIDIA GeForce RTX 2060 GPU. The forward
operation of the proposed CMGNet is conducted with GPU acceleration, and the remaining
operations are performed by the CPU. In Table 2, we can observe that compared with
H.265/HEVC, our algorithm takes 137% of the encoding time, 9856% of the decoding
time, and 157% of the total time. The proposed scheme has little increase in encoding
complexity while greatly influencing the decoding time. The reasons are the long network
inference time and the additional time-consuming CPU-GPU memory transfer operation.
Choosing a high-performance GPU device can speed up inference time to a certain extent.
Considering the complexity is positively related to parameters and floating-point operations
per second (FLOPS) of the model, we can simplify the model to speed up the network
forward operation in the future. High computational complexity is one of the disadvantages
of CNN-based methods, and it is also an important factor affecting the implementation of
the decoder. Further optimization to speed up the operation of the network is crucial and
is currently under our investigation.

Table 2. Encoding and decoding complexity.

Sequences ∆TEnc ∆TDec ∆TTotal

Secret Shop 142% 11,023% 164%
Robot Repair 140% 11,796% 163%

VRChat 130% 6747% 144%
Avreage 137% 9856% 157%

4.2.2. Quality Enhancement of the Proposed CMGNet

In this section, we evaluate the quality enhancement performance of our proposed
CMGNet in terms of PSNR and SSIM, which represent the degree of distortion and structure
similarity between the enhanced frames and the original ones, respectively. Since our goal
is to generate a high-matching and high-quality reference frame to update the reference
frame list, the generated reference frame is supposed to be closer to the original one than
that directly generated by H.265. Therefore, we compare the quality of the generated
enhanced frame with that of the unenhanced frame compressed by H.265. Table 3 presents
the results averaged over 500 frames for each test sequence at four different QPs. As shown
in this table, our proposed CMGNet outperforms H.265 consistently in terms of PSNR
and SSIM. Specifically, with QP equal to 22, the proposed network can achieve a PSNR
gain of about 0.5 dB on average over the three test sequences. Even at QP 37, we can still
obtain about a 0.3 dB performance gain. The same superiority is achieved in terms of SSIM.
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Meanwhile, our algorithm exhibits different degrees of performance gains under different
test sequences, showing a good generalization enhancement effect.

Table 3. Quantitative performance on PSNR and SSIM at four QPs.

Sequences Methods QP = 22 QP = 27 QP = 32 QP = 37

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

Secret Shop H.265 43.754 0.9417 40.845 0.9071 38.419 0.8642 36.183 0.8121
CMGNet 44.214 0.9477 41.320 0.9169 38.815 0.8743 36.479 0.8275

Robot Repair H.265 43.850 0.9572 41.105 0.9347 38.677 0.9051 36.405 0.8648
CMGNet 44.372 0.9613 41.606 0.9409 39.145 0.9139 36.806 0.8750

VRChat H.265 40.494 0.9453 36.169 0.8931 32.763 0.8217 30.267 0.7382
CMGNet 40.856 0.9493 36.518 0.9013 33.055 0.8318 30.508 0.7534

Average H.265 42.699 0.9481 39.373 0.9116 36.620 0.8637 34.285 0.8050
CMGNet 43.147 0.9528 39.815 0.9197 37.005 0.8733 34.598 0.8186

Bold indicates the best performance.

We also provide qualitative evaluations in Figure 7 to demonstrate the visual perfor-
mance of our model. Taking QP equal to 37 as an example, three patches from different
sequences are enlarged and presented below. We recommend further zooming in on the
figure for a more intuitive observation. Compared to the raw frame, the unenhanced
frame compressed by H.265 inevitably loses a lot of details at such a high QP. For instance,
the appearance outline of the sound in the second picture becomes extremely blurred,
especially around the oval-shaped loudspeaker. The enhanced frame generated by the
proposed CMGNet looks smoother with fewer artifacts due to the recovery of details. It
is the same in other pictures. Although the quality of the enhanced frame is not as good
as the original frame, it has been demonstrated in the previous section that the enhanced
frame is sufficient to optimize the traditional codec.

Figure 7. Qualitative comparisons of the proposed CMGNet.

To further analyze the impact of the camera motion in our network, we present the
quality enhancement difference between the full model and that without camera motion
in Figure 8, taking the QP equal to 37 as an example. It can be clearly seen from Figure 8
that the camera motion information plays a positive role in the quality enhancement, as the
full model shows better performance than the model without motion information on both
PSNR and SSIM metrics in the three test videos.



Appl. Sci. 2022, 12, 8504 12 of 15

(a) (b)

Figure 8. Quality enhancement difference under QP = 37. (a) ∆PSNR. (b) ∆SSIM.

4.2.3. Comparison to State-of-the-Arts

In this section, we compare the proposed CMGNet with state-of-the-art video quality
enhancement networks, i.e., MFQE2.0 [43], STDF [44], and TDAN [60]. It is noted that TDAN
was originally designed for super-resolution tasks. Since it is a typical network using the
deformable convolution for frame alignment, we remove the Pixel-Shuffle layer to extend it
suitable for quality enhancement for comparison with the proposed CMGNet. Moreover,
all of the compared methods take the preceding frame, i.e., Xt−1, and the succeeding frame,
i.e., Xt+1 , to help enhance the quality of the target frame, i.e., Xt, while our proposed model
takes four preceding frames in the reference frame list as inputs. In addition, the compared
models are all trained on camera-captured nature videos while we aim at cloud gaming
videos. For a fair comparison, we modified parts of their architectures and trained them from
scratch using the same game videos dataset as ours. The overall quantitative performance
measured by PSNR and SSIM is shown in Table 4. We also show the parameters (sum of the
luma network and the chroma network) of each model in the first row.

Table 4. Comparison to State-of-the-arts.

QP Sequences

MFQE 2.0 STDF TDAN CMGNet (Proposed)
(408.03 K) (540.51 K) (2.74 M) (1.96 M)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

22

Secret Shop 44.210 0.9487 44.193 0.9476 44.199 0.9471 44.214 0.9477
Robot Repair 44.258 0.9599 44.352 0.9613 44.332 0.9612 44.372 0.9613

VRChat 40.829 0.9513 40.864 0.9500 40.793 0.9492 40.856 0.9493
Average 43.099 0.9533 43.136 0.9530 43.108 0.9525 43.147 0.9528

27

Secret Shop 41.269 0.9170 41.245 0.9156 41.210 0.9124 41.320 0.9169
Robot Repair 41.527 0.9383 41.540 0.9403 41.373 0.9380 41.606 0.9409

VRChat 36.476 0.9026 36.496 0.9010 36.375 0.8981 36.518 0.9013
Average 39.757 0.9193 39.760 0.9190 39.653 0.9162 39.815 0.9197

32

Secret Shop 38.809 0.8751 38.761 0.8747 38.740 0.8626 38.815 0.8743
Robot Repair 39.118 0.9094 39.185 0.9141 39.173 0.9133 39.145 0.9139

VRChat 33.030 0.8334 33.044 0.8326 32.990 0.8300 33.055 0.8318
Average 36.986 0.8726 36.997 0.8738 36.967 0.8687 37.005 0.8733

37

Secret Shop 36.479 0.8130 36.410 0.8244 36.235 0.7825 36.479 0.8275
Robot Repair 36.670 0.8615 36.767 0.8723 36.767 0.8730 36.806 0.8750

VRChat 30.502 0.7450 30.507 0.7528 30.505 0.7532 30.508 0.7534
Average 34.550 0.8065 34.561 0.8165 34.502 0.8029 34.598 0.8186

Average 38.598 0.8879 38.614 0.8906 38.558 0.8851 38.641 0.8911

Bold indicates the best performance.
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It can be seen in Table 4 that the proposed model performs the best compared to the
other three models in general, where PSNR has an increase of 0.02 dB∼0.08 dB and SSIM
has an increase of 0.005∼0.06 on average. Taking an average of PSNR under each QP,
our model achieves the highest performance. Although in terms of SSIM, our model is
sub-optimal at QP 22 and 32, the decrease is negligible (i.e., only about 0.0005) compared
to the best performance. In a word, the proposed CMGNet achieves satisfactory quality
enhancement compared to these four state-of-the-art models. On the other hand, in terms
of the number of model parameters, the TDAN has the most parameters, but it achieves
the worst performance. Although the proposed model has more parameters than those
of the MFQE and STDF, the proposed model achieves better performance. To put it
differently, the proposed model achieves advanced tradeoffs between coding performance
and computational complexity.

5. Conclusions

In this paper, we propose a coding optimization algorithm for cloud gaming videos.
Specifically, an enhanced reference frame is generated through the proposed camera motion-
guided network (i.e., CMGNet) and added to the reference frame list for the participant
in the coding process, thus improving the coding performance. Moreover, the proposed
CMGNet takes the known reconstructed reference frames in the reference frame list together
with the camera information as inputs and generates a reference frame with high-quality
and high-relation to the current frame through the camera motion-guided prediction mod-
ule, the alignment and fusion module, and the reconstruction module in turn. Extensive
experimental results demonstrated the superior performance of the proposed algorithm.
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