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Abstract: In this paper, we present a set of algorithms to enable the development of inexpensive
hyperspectral sensors capable of estimating tissue oxygenation for wound monitoring. Estimation
is conducted using the extended modified Lambert–Beer law, which has previously been proven
robust to differences in melanin concentration. We introduce a novel wavelength selection algorithm
that enables the estimation to be performed with high accuracy using only a small number (5–10)
of wavelengths. Validation performed with Monte Carlo simulation data resulted in prediction
errors <1%, with no significant differences among various skin types, for as few as five wavelengths
under conditions representing both high precision instrumentation and more cost-effective sensors
designed with inexpensive LEDs and/or filters. Validation with in vivo data collected from an
occlusion study with 13 Asian volunteers showed statistically significant separation between the
estimates for the at-rest and arterial occlusion states. Additional stability testing proved the proposed
algorithms to be robust to small changes in the selected wavelengths as may occur in a real LED due to
manufacturing tolerances and temperature fluctuations. This work concluded that the development
of an inexpensive hyperspectral device for wound monitoring in all skin types is feasible using just a
small number of wavelengths.

Keywords: tissue oxygenation; wound monitoring; hyperspectral imaging; wavelength selection;
extended modified Lambert–Beer law; spectroscopy

1. Introduction

The global prevalence of diabetes among adults was estimated to be 9.5% (537 million
people) in 2021 and is expected to rise to 10.2% (578 million people) by 2030 and up to 10.9%
(700 million people) by 2045 [1,2]. Of the people diagnosed with diabetes, around 15–25%
will develop foot ulcers during their lifetime [3]. These foot ulcers are produced from
neuropathy, which leads to the formation of a callus that, as a result of frequent trauma,
causes subcutaneous hemorrhage and eventual erosion to an ulcer [4]. In the United States,
cost estimates for the management of diabetic foot ulcers are USD 9–13 billion [2,5]. In
Nigeria and India, the cost of managing diabetic foot ulcers approaches 4% of the health
budget for these countries [6].

Underrepresented communities are particularly at risk. Diabetic diagnosis and its
subsequent complications are more prevalent in these underserved populations. African
American adults are 60% more likely than non-Hispanic white adults to have been di-
agnosed with diabetes by a physician and twice as likely as non-Hispanic whites to die
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from diabetes [7]. According to the Centers for Disease Control and Prevention (CDC), the
prevalence of diagnosed diabetes is highest among Native Americans and Alaskan Natives
than among any other US racial group [8]. Compounding this, these communities also
experience the healthcare difficulties of rural and low-access settings. More than 46 million
Americans (15% of the US population) live in rural areas, and this cohort experiences a
17% higher rate of type 2 diabetes than urban residents while simultaneously suffering
workforce shortages of primary and specialty care providers [9,10].

The state of wound progression or healing is in large part influenced by the transport
of oxygen to the affected area [11]. Tissue oxygenation (SO2), the percentage of oxygenated
hemoglobin in the blood, is thus a key indicator of tissue health and a vital metric for
monitoring diabetic foot wounds. Hyperspectral imaging (HSI) offers a non-contact, non-
invasive method for estimating SO2 in tissue near the affected area, making it an ideal
tool for diabetic foot-wound monitoring [12]. Algorithms based on the Lambert–Beer
law [13], Kubelka–Munk theory [14], and approximations to the radiative transfer equation
(RTE) [15] have been developed to estimate SO2 from hyperspectral information, and many
of these algorithms have found their way into clinical devices such as the OxyVu system
(Hypermed, MA, USA), the Kent Camera (Kent Imaging, Calgary, AB, Canada), and the
TIVITA system (Diaspective, Am Salzhaff, Germany) [16]. However, some researchers have
noted disparities in SO2 estimation accuracies for different skin types, with higher errors
seen for patients with higher melanin concentration (i.e., darker skin) [17–19]. This presents
a significant problem for monitoring wound progression in the most-affected populations.

To improve the quality of diabetic foot-wound monitoring for those most in need,
including those in rural areas, new cost-effective HSI devices are needed. Such devices
must be inexpensive, portable, and robust to differences in melanin concentration. Despite
their great promise, current HSI technologies fail to meet most (if not all) of these criteria.

We seek to address these shortfalls by developing new algorithms and methods that
will enable the creation of less complex and more accurate wound-monitoring devices. In
contrast to typical HSI devices, which collect narrowband information at high resolution
(~1 nm), we envision simple devices that collect information at just a small number of
wavelengths (~10–15) using inexpensive light-emitting diodes (LEDs) or filters. Not only
will the reduction of the number of sampled wavelengths reduce the complexity and cost
of these devices, but it will also provide additional benefits such as reduced data collection
time, power consumption, and digital storage constraints.

Wavelength selection for hyperspectral technologies is a well-studied problem. Ayala
et al. [20] provide a thorough review of the state-of-the-art in wavelength selection algo-
rithms for biomedical imaging applications and offer their own selection algorithm based
on a domain adaptation technique. Marois et al. [21] propose a wavelength selection for
general chromophore concentration estimation based on a novel nonlinear least squares
algorithm, which performs selection by maximizing the singular values of a scattering-
modulated absorption matrix. While these techniques have shown high accuracy in tissue
oxygenation estimation in general, none of these have focused in particular on the ability
to achieve this accuracy across all skin types.

This paper shows proof of concept for a new set of algorithms for selecting narrow
wavelengths and estimating SO2 in a cost-effective wound-monitoring device. A new
wavelength selection method based on heuristic simulated annealing optimization is
introduced. At the core of this optimization is the Extended Modified Lambert–Beer
law (EMLB), an SO2 estimation method introduced by Huong et al. [22], which has been
proven effective in diabetic wound monitoring [23] and robust to differences in melanin
concentration. We reintroduce the EMLB in this work and provide additional details on its
implementation. The EMLB is applied with different numbers of selected wavelengths and
SO2 estimation accuracy is evaluated with validation datasets consisting of visible-band
Monte Carlo simulation spectra representing light to dark skin types, and in vivo spectra
collected during an occlusion study from 13 Asian volunteers. To simulate the properties
of a collection device designed with inexpensive LEDs and/or filters, these evaluations are
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repeated with the same data convolved with a 15 nm full-width half maximum (FWHM)
Gaussian filter. Furthermore, a stability test is performed to determine the variation
in prediction accuracy that might be experienced should the peak wavelengths of the
LEDs/filters not match the selected wavelengths, either due to manufacturing tolerances,
temperature fluctuations, or other phenomena.

2. Materials and Methods
2.1. Extended Modified Lambert–Beer Law

The Extended Modified Lambert–Beer law (EMLB) was introduced by Huong et al.
in [20] to address the deficiencies in the ability of regression models, such as the standard
Lambert–Beer law and the Modified Lambert–Beer law, introduced by Twersky [24], to
accurately estimate vital parameters including tissue oxygenation (SO2) and percent blood
carboxyhemoglobin (COHb). The EMLB has previously been expressed (e.g., [22,25,26]) as:

A(λ) = G0 + µa(λ)d0 + G1λ + λe−µa(λ)d1 (1)

In this equation, the second term represents the standard Lambert–Beer law, where
µa(λ) is the wavelength-dependent absorption coefficient of blood and d0 is the optical
path length through the skin. The remaining terms then model artifacts in the absorption
spectrum caused by extraneous phenomena. The first term, G0, provides a constant
offset value for the absorbance fit. The combination of these first two terms forms the
Modified Lambert–Beer law. The third term is used to model both the scattering effects and
absorbance due to melanin in the epidermis, assuming both remain approximately linear
over the spectral region of interest. Finally, the last term is used to model the nonlinear
effects that arise from complex light scattering and absorption in the dermis.

To better describe how the EMLB is solved to estimate SO2 for a given absorbance
spectrum, we rewrite the EMLB as:

A(λ) = β0G0 + β1µa(λ)d0 + β2G1λ + β3λe−µa(λ)d1 (2)

Note that the form of the EMLB is modified slightly from its expression in Equation (1)
through the inclusion of the β3 parameter, which adds an extra degree of freedom. The
solution is then conducted in an iterative two-step manner. In the first step, the MATLAB
function fminsearch is invoked to generate candidate values for the parameters G0, SO2,
d0, G1, and d1. These values are then passed to the function that fminsearch has been
tasked to minimize. Within this function, the values for the five parameters are set as
constants and a linear regression is performed to estimate the values for the regression
coefficients β0, β1, β2, and β3. Finally, these regression coefficient values are inserted
into Equation (2), and the Euclidian distance between the original spectrum and the EMLB
reconstruction is computed and returned to fminsearch. This two-step process continues
until either the number of fminsearch iterations exceeds 10,000 or the return value changes
by no more than 1× 10−20. Bounds for the SO2 estimates were set at 0.0 and 1.0 to prevent
physically unrealistic estimates.

2.2. Monte Carlo Simulation
2.2.1. Tools and Datasets

The Monte Carlo simulation is a common method for modeling light-skin interactions.
Simulated photons are absorbed and/or scattered probabilistically depending on coeffi-
cients determined from the skin model provided by the user. Each simulation run typically
accounts for a single wavelength, and the results of multiple runs can be combined to
generate a full reflectance spectrum.

One of the most popular Monte Carlo simulation tools is the Monte Carlo for multi-
layered tissues (MCML) tool developed by Wang and Jacques [27]. MCML has been used
extensively in published studies relating to the optical measurement of skin parameters.
Tsumura et al. [28] provide a good description of how the MCML simulation works.
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Unfortunately, MCML processing is relatively slow given the large number of computations
that occur for each simulation. Addressing this key weakness, CUDAMCML was developed
by Alerstam et al. [29] to take advantage of the computational acceleration enabled by
parallel processing on a graphics processing unit (GPU).

Two separate simulation datasets were developed for this project. The first was used
exclusively by the simulated annealing algorithm for wavelength selection (see Section 2.4).
It consisted of 36 simulated spectra from 450–800 nm at 1 nm resolution with parameters as
given in Table 1. The parameter values were selected to represent typical values for human
skin and melanin concentrations in light-skinned adults, moderately pigmented adults,
and darkly pigmented adults [30]. These parameters are discussed further in Section 2.3.

Table 1. Parameters for simulated dataset used in wavelength selection.

Parameter Value

SO2 0.40–1.0 (steps of 0.05)
Epidermis Thickness (µm) 60.0

Dermis Thickness (cm) 2.0
fmel 0.015, 0.15, 0.40

fblood 0.05

The second simulation dataset was used for the validation of the wavelength selection
and SO2 estimation algorithms and consisted of 1000 spectra, again from 450 to 800 nm at
1 nm resolution. These spectra were generated using the same parameters as those given
in Table 1, except the values for SO2 and fmel were selected at random from a uniform
distribution bounded by the maximum and minimum values in Table 1.

2.2.2. Simulation of Data Collection from an Inexpensive HSI Device

The data simulation approach of CUDAMCML effectively assumes a perfect sensor
capable of collecting spectral information at precisely known wavelengths with an infinitely
narrow bandwidth. This assumption is a poor one for real devices and is particularly poor
for a device that relies on inexpensive LEDs and/or filters with relatively wide bandwidths
for spectral data collection. Table 2 gives peak tolerance and spectral widths, for example,
narrowband LEDs in the 520–600 nm range. Thus, to model a more realistic device,
the analysis was repeated with a copy of the simulation dataset where the spectra were
convolved with a 15 nm FWHM Gaussian filter using the Python function gaussian_filter1d
from the scipy library [31]. Importantly, the absorption coefficients for oxygenated and
deoxygenated blood were also convolved with the same filter to produce revised coefficients
in a manner similar to the integrated absorption technique [32].

Table 2. Example visible band LEDs in the 520–600 nm range of interest. Spectral widths are provided
as FWHM.

LED Peak Wavelength Peak Tolerance FWHM

Lumiled LUXEON Z (green) [33] 520–540 nm ±0.5 nm 30 nm
Thorlabs LED 560L [34] 562 nm (not given) 11 nm
Thorlabs LED 590L [34] 590 nm ±10 nm 15 nm

Ocean Insight Visible LED [35] 533 nm ±5 nm 18 nm
Osram LP-T655-Q1R2-25 [36] 562 nm ±4 nm 19 nm

Figure 1a shows the smoothing effect of the Gaussian convolution on an example
spectrum. The convolution tends to flatten and broaden the two peaks that result from
oxyhemoglobin absorption. This effect is not modeled in the EMLB, so to compensate,
we convolve the extinction coefficients for oxy- and deoxyhemoglobin with the same
15 nm Gaussian filter. Figure 1b,c show these coefficients before and after the convolution.
Analyses were conducted on the data both before and after convolution to evaluate the
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differences in performance that might be expected between a costly medical- or industrial-
grade instrument and the sort of less expensive device that could benefit patients in poor
and rural areas. We refer to analyses with the original data (i.e., before convolution) as the
“ideal” case and with the convolved data as the “convolved” case.
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oxyhemoglobin curve, most significantly in the higher wavelength lobe, bringing it closer to the
deoxyhemoglobin curve.

2.3. Skin Model

Both Monte Carlo datasets were created using a two-layer skin model similar to the
one proposed by [15], with an epidermis thickness of 60 µm [30] and a dermis thickness of
2 mm. This model matches the one proposed by Binzoni et al. and is consistent with the
approximate maximum penetration depth of visible light in skin [37]. The upper layer is
assumed to contain only melanin with volume fraction fmel and the lower layer to contain
only blood with volume fraction fblood. Other skin contents (e.g., water and fat) are ignored,
since their absorption coefficients are orders of magnitude lower than those of melanin and
hemoglobin in the 520–600 nm range of interest [38].

The absorption coefficients for 100% melanin in the epidermis layer are given by
Meglinski and Matcher [39] as:

µa, epi(λ) = 5× 1010λ−3.33 (cm−1) (3)
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where the wavelength, λ, is in nanometers. These values are multiplied by fmel to arrive at
the actual absorption of light in the epidermis. The value of fmel can range from 1.3% to
6.3% for light-skinned adults, 11% to 16% for moderately pigmented adults, and 18% to 43%
for darkly pigmented adults [30]. Absorption in the dermis is modeled as a combination of
absorption by deoxyhemoglobin (Hb) and oxyhemoglobin (HbO2):

µa, dermis(λ) = εHbO2(λ)CHbO2 + εHb(λ)CHb (4)

where εHbO2 and εHb are the absorption coefficients for Hb and HbO2, respectively, given
by Prahl [40], and CHbO2 and CHb are the concentrations of these two substances in the
blood. This equation can be expressed in a more convenient form that clearly illustrates the
role of SO2 in the absorbance:

µa, dermis(λ) = ((εHbO2(λ)− εHb(λ))SO2 + εHb)T (5)

where T is the total concentration of hemoglobin in the blood and SO2 = CHbO2/T.
Scattering coefficients, the same used for both the epidermis and the dermis, are

provided by Stavaren et al. [41] based on experimentation with intralipid 10%. These
values were found to closely match the scattering behavior of biological tissues found by
Bashkatov et al. [42]. Figure 2 shows the absorption and scattering coefficients plotted
as functions of wavelength over the visible range. Anisotropy factors, also provided by
Staveren et al. [41], are computed as:

g(λ) = 1.1− 0.58× 10−3λ (cm−1) (6)
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Given the small variation in the wavelength over the range of interest, the index of
refraction was set to a constant 1.4 for both layers [22,43].
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2.4. Simulated Annealing Wavelength Selection

Instead of sensing the full-resolution visible absorbance spectrum at 450–800 nm,
the proposed method uses just a small number of narrow wavelength bands (referred
to simply as “wavelengths” in this paper) that are specifically chosen from the vicinity
of the hemoglobin peaks (520–600 nm) to yield accurate SO2 estimates using the EMLB.
Wavelength selection is accomplished via simulated annealing, a heuristic optimization
method modeled after the metallurgical annealing process in which the metal undergoes
controlled cooling to remove defects and toughen it. The simulated annealing algorithm
consists of a discrete-time inhomogeneous Markov chain with current state s(i) and a
cooling schedule defined by a starting temperature, Tmax, a final temperature, Tmin < Tmax,
and a total number of steps, n [44]. The goal of the algorithm is to determine the minimum
of a user-defined energy function, E(i).

At each iteration i ∈ 1, · · · , n, a new trial state is determined by randomly selecting a
“neighbor” of the previous state and calculating its energy. If the resulting energy is lower
than the energy from the previous iteration, the trial state becomes the new state of the
system. If the resulting energy exceeds the energy of the previous iteration, the algorithm
adopts the trial state, with the probability given by:

P(E(i), E(i− 1)) = e−
[E(i)−E(i−1)]

T(i) (7)

where T(i) is the temperature at iteration i. Note that this equation allows the algorithm
to occasionally accept states that result in an increase in energy. This can benefit the
optimization by preventing it from becoming stuck in local minima. The probability of
accepting such states is high at the beginning of the process when the temperature is high,
but gradually decreases with decreasing temperature. The output of the algorithm is the
state with the lowest energy encountered throughout the annealing schedule. Figure 3
provides a summary of this algorithm.
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For this wavelength selection problem, the state is defined as an array of binary
elements indicating the presence or absence of each wavelength in the full-resolution
spectrum. A limit, k, is set on the number of wavelengths selected, such that:

N−m−1

∑
j=m+1

I(j) = k (8)

Under this restriction, the state for each iteration is updated by generating a “neighbor”
of the current system state. This is done by randomly deselecting one wavelength index
from the current state and selecting a new one. The energy of the trial state is then calculated
as the average absolute prediction error over the Monte Carlo dataset.

The MATLAB function simannealbnd served as the basis for the implementation of the
proposed simulated annealing algorithm. The initial temperature was set to Tmax = 5000
and the maximum number of iterations was set to n = 1000. The number of steps was
chosen to balance the desire for rapid processing with the need for algorithm convergence.
The temperature function was modified to allow for a slower cooling rate than the default,
and is given by:

T = T0iter ·0.985(iter−o f f set) (9)

where iter is the current number of iterations. With these settings, the probability of
acceptance for a 1% increase in the RMSE remained above 66% for the first half of the
total iterations, allowing for a less restricted random walk through the solution space.
In the latter half of the iterations, the acceptance probability was allowed to drop well
below 1%, enabling a more targeted search near the optimal point. After 750 iterations, T0
was increased to 5 and an offset was applied to the number of iterations in the exponent
of Equation (3) to reset the cooling rate from that point. The acceptance function was
modified to implement the exponential function in Equation (1). After every 100 iterations,
the state was returned to the state with the lowest error found thus far to ensure that the
algorithm does a thorough search in the area of the state space, which is presumably near
the global minimum. The algorithm ended its search upon reaching the maximum number
of iterations, or upon reaching 300 consecutive iterations with no change in the average
prediction error greater than 1× 10−10, whichever came first.

Wavelength selections were conducted for numbers of wavelengths k = 3, 5, 7, 11, 15,
20, 40, and 60 (the total number of wavelengths to select from in the 520–600 nm range
was 81). To prevent the unnecessary selection of adjacent wavelengths for low values of
k, a validity check was added to the simulated annealing algorithm, whereby a candidate
selection was declared invalid if the separation between any pair of wavelengths was less
than 2 nm and k < 20.

2.5. Validation Datasets

A two-part validation of the proposed wavelength selection and SO2 estimation
algorithm set was performed. The first part evaluated the algorithms’ performance against a
Monte Carlo validation dataset that was generated with CUDAMCML using the skin model
described in Section 2.3. This simulation dataset, described in Section 2.2, enabled a direct
evaluation of SO2 prediction accuracy, since the true SO2 value was known. Validation
was performed both on the full 1 nm resolution simulation data to represent the ideal case
described in Section 2.2, and on a version of the same data convolved with a 15 nm FWHM
Gaussian filter to represent the convolved case.

The second part of the validation process was performed on the in vivo dataset de-
scribed in [25], which consists of reflectance data collected from 13 Asian volunteers (aged
24.3 ± 2 years). A 9 W white light-emitting diode (LED) (Lumileds, Philips, Schiphol, The
Netherlands) illuminated the right index finger of each volunteer from an 80 mm distance
at an angle of 20◦ from normal. An optical fiber connected to a spectrometer (Ocean Optics
USB4000) was placed 8 mm from the fingertip at 15◦ from normal and collected reflectance
data at a spectral resolution of 0.2 nm in the wavelength range of 200–850 nm. These data
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were then converted from reflectance to absorbance, the 520–600 nm wavelength range was
extracted, and the resolution was adjusted to 1 nm via cubic interpolation.

2.6. Stability Testing

Additionally, we conducted a series of stability tests where the selected wavelengths
were adjusted randomly by ±1 nm to simulate uncertainty in the peak wavelengths. Specif-
ically, for each iteration, a random subset of the k-selected wavelengths was chosen and
each peak wavelength in the subset was moved at random by either +1 nm or −1 nm. The
goal of this stability testing was to evaluate the sensitivity of our proposed SO2 estimation
method to uncertainties in the spectral parameters of our hypothesized inexpensive device.

3. Results and Discussion
3.1. Wavelength Selection

The wavelength selections for various numbers of selected wavelengths, k, for both the
ideal case and the convolved case, are shown in Figure 4. Notice that while the selections
for the ideal case include both lobes of the oxygenated hemoglobin extinction coefficient
curve, the selections for the convolved case tend to favor the left lobe only. This can be
explained by observing the effect that the convolution has on the spectra, as shown in
Figure 5. Selected wavelengths for k = 5, 6, and 7 are given in Table 3.
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oxygenated (red) and deoxygenated (blue) hemoglobin.

Figure 5 shows examples of simulated spectra for low (<0.10), medium (0.10–0.30),
and high (>0.30) SO2 values for both the ideal and the convolved cases. The spectra in
Figure 5a represent skin with low melanin fractions (<0.10) and those in Figure 5b represent
skin with high melanin fractions (>0.30). For both melanin fractions, there is a noticeable
separation between the curves near the higher wavelength lobe for the ideal case. However,
this separation is greatly diminished for the convolved case. Thus, the ability to distinguish
between different SO2 values using wavelengths in this region is similarly diminished.
Interestingly, wavelength selection does favor wavelengths near the lower wavelength lobe
even though there is little separation between the curves in any of the plots of Figure 5.
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The selection of wavelengths in this region is likely needed more for slope estimation
(third term in Equations (1) and (2)) than for SO2 estimation (second and fourth terms).
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Figure 5. Simulated absorption spectra for the ideal (left) and convolved (right) cases for (a) low
melanin (<0.10) and (b) high melanin (>0.30) concentrations. Each plot shows example spectra for low
(<0.60, blue), medium (0.60–0.80, green), and high (>0.80, red) SO2 values. Note that the separations
between the curves near the higher wavelength lobe is greatly diminished for the convolved case
relative to the ideal case.

Table 3. Example wavelength selections.

k Ideal (nm) Convolved (nm)

5 524, 542, 553, 585, 588 522, 534, 546, 552, 560
7 521, 533, 543, 550, 556, 569, 596 520, 535, 543, 547, 554, 563, 596

11 521, 537, 539, 544, 551, 556, 570,
575, 581, 583, 592

524, 527, 533, 535, 540, 546, 551,
556, 559, 565, 588

3.2. Validation Results
3.2.1. Monte Carlo Dataset

The mean prediction errors over the entire Monte Carlo validation dataset for the
different numbers of selected wavelengths, k, are plotted in Figure 6, with the error bars
representing one standard deviation. For both the ideal and the convolved cases, very low
errors (<1%) are evident for all but the k = 3 case. Figure 7 shows these results separated by
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melanin fraction to represent light-skinned, moderately pigmented, and darkly pigmented
adults. For all plots in both figures, we note the slight increase in prediction errors for
the k = 81 case where all possible wavelengths are selected, suggesting that the inclusion
of some wavelengths actually hurts the prediction accuracy due to as-yet unmodeled
phenomena. This finding is consistent with other studies (e.g., [20]), which achieved
higher estimation accuracy with fewer wavelengths than were available. The small, highly
overlapping error bars for k > 3 indicate that there are no significant differences in the
prediction errors for the different skin types, thus validating the proposed algorithm’s
ability to not only accurately predict SO2, but to do so for all skin pigmentations.
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Figure 7. Prediction errors for the Monte Carlo validation dataset separated by melanin fraction
representing light-skinned (<0.10), moderately pigmented (0.10–0.30), and darkly pigmented (>0.30)
adults. Mean values and one-standard-deviation error bars are given for (a) the ideal case and (b) the
convolved case.



Appl. Sci. 2022, 12, 8490 13 of 17

3.2.2. In Vivo Dataset

Since the true SO2 values for the in vivo dataset are unknown, the performance of the
proposed algorithm was validated by its ability to yield differences in the SO2 predictions
for the at-rest and the occlusion states that are statistically significant. Figure 8 shows
the resulting mean-predicted SO2 values and one-standard-deviation error bars for these
two states over all numbers of selected wavelengths. For all but the k = 3 experiment
in the ideal case, the separation between the mean values for the at-rest and occlusion
states is statistically significant, as determined via a two-tailed independent sample t-test
(MATLAB’s ttest2 function) with a confidence level of 95%. However, there is noticeable
fluctuation in the mean values for k < 20.
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Table 4 lists the time-averaged and student-averaged SO2 estimates for the at-rest and
occlusion states, for both the ideal and the convolved cases, and compares these values
with values from the recent literature. The SO2 estimates from this study are thus consistent
with those of other studies for both the at-rest and occlusion conditions. However, we do
note that there is considerable discrepancy between the ideal and convolved cases, with
the convolved case yielding consistently lower at-rest SO2 values and higher occluded SO2
values. This discrepancy between the two cases is inconsistent with the findings with the
Monte Carlo dataset discussed in the previous section. Without additional physiological
data such as the true SO2 values and epidermal thicknesses, it is not possible to determine
the exact cause of this discrepancy.

Table 4. Time-averaged and student-averaged mean and standard deviation of SO2 estimates
for the at-rest and occlusion conditions in this study (top) compared with values from recent
literature (bottom).

Ideal Convolved

k At Rest Occlusion At Rest Occlusion

3 92.59 ± 1.94% 92.53 ± 1.96% 87.28 ± 2.17% 84.20 ± 2.82%
5 81.06 ± 5.60% 8.71 ± 4.63% 68.27 ± 2.86% 13.64 ± 3.93%
7 69.03 ± 4.57% 13.37 ± 5.64% 65.86 ± 3.37% 3.64 ± 2.49%
11 91.14 ± 3.34% 19.24 ± 5.36% 73.51 ± 3.15% 7.67 ± 3.66%
15 72.35 ± 5.34% 7.16 ± 3.90% 75.84 ± 2.16% 27.45 ± 3.01%
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Table 4. Cont.

Ideal Convolved

k At Rest Occlusion At Rest Occlusion

20 83.41 ± 3.69% 20.90 ± 4.20% 74.99 ± 2.16% 26.69 ± 3.01%
40 88.59 ± 3.03% 16.73 ± 4.57% 74.80 ± 2.08% 27.59 ± 2.99%
60 87.98 ± 2.99% 16.17 ± 4.40% 77.37 ± 2.22% 26.36 ± 3.17%
81 90.45 ± 2.83% 15.60 ± 4.44% 79.35 ± 2.30% 26.09 ± 3.29%

Investigator Estimated SO2

At Rest

Caspary et al. [45] 92 ± 2.6%
Zhang et al. [46] 93 ± 1%

Kobayashi et al. [47] 68 ± 6%
Thorn et al. [48] 63 ± 11%
Huong et al. [25] 91.2 ± 5.4%

Kyle et al. [49] 73.9 ± 5.8%
Bezemer et al. [50] 87 ± 3%

Arterial Occlusion

Kobayashi et al. [47] 48%
Vogel et al. [51] 35%

Ferrari et al. [52] 20%
Huong et al. [25] 12.3 ± 8.9%

Kyle et al. [49] 47.3 ± 7.6%
Bezemer et al. [50] 3 ± 5%

3.3. Stability Test Results

Figure 9 shows the absolute differences in the prediction error resulting from the test
to determine the stability of the proposed algorithm with respect to small changes in the
selected peak wavelengths. The k > 3 experiments for the ideal case are shown to be very
stable to fluctuations in peak wavelengths, with most of the error differences much less than
1%. Similar results can be seen for the convolved case, although there is noticeably more
variation for the k = 7 and k = 11 cases, with differences in error reaching ~3%. Furthermore,
the mean error differences shift away from zero for the k = 40 and k = 60 cases, reflecting
the increases in the prediction error from the Monte Carlo validation study results shown
in Figure 6. Given the reduction in complexity and expense offered by the hypothetical
device enabled by the proposed algorithm, this potential for modest additional error may
be an attractive trade off.
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4. Conclusions

This study was designed to evaluate the potential for developing an inexpensive
device for accurately estimating SO2, regardless of skin type, via narrowband spectroscopy
with a small number of wavelengths. The proposed simulated annealing-based wavelength
selection and EMLB-based SO2 estimation algorithm was found to yield SO2 estimates
with low error (<1%), using as few as five wavelengths (524, 542, 553, 585, and 588 nm), in
both simulated and in vivo validation datasets. Furthermore, these results were consistent
across skin types of low, medium, and high melanin fractions. Additional testing proved
that the proposed algorithm is robust to slight fluctuations in the peaks of the selected
wavelengths, as might be experienced in a device constructed with cost-effective LEDs.
Similarly, the algorithm proved to be robust to data convolution with a 15 nm FWHM
Gaussian filter, another test conducted to model a more realistic device. However, the
in vivo testing showed discrepancies between the estimated SO2 values for the ideal and
convolved cases of ~10% on average. Future work will include in vivo testing with a
larger group of subjects representing a more diverse set of skin types. Further algorithm
development will account for varying peak wavelength uncertainties and LED bandwidths
for the selected wavelengths and will include the expansion of the wavelength range of
interest to include near-infrared.
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