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(S I N

Abstract: Social distancing measures are proposed as the primary strategy to curb the spread of
the COVID-19 pandemic. Therefore, identifying situations where these protocols are violated has
implications for curtailing the spread of the disease and promoting a sustainable lifestyle. This paper
proposes a novel computer vision-based system to analyze CCTV footage to provide a threat level
assessment of COVID-19 spread. The system strives to holistically interpret the information in CCTV
footage spanning multiple frames to recognize instances of various violations of social distancing
protocols, across time and space, as well as identification of group behaviors. This functionality is
achieved primarily by utilizing a temporal graph-based structure to represent the information of
the CCTV footage and a strategy to holistically interpret the graph and quantify the threat level of
the given scene. The individual components are evaluated in a range of scenarios, and the complete
system is tested against human expert opinion. The results reflect the dependence of the threat level
on people, their physical proximity, interactions, protective clothing, and group dynamics, with
a system performance of 76% accuracy.

Keywords: COVID-19; computer vision; surveillance; artificial intelligence

1. Introduction

COVID-19 is a viral infection that causes a wide range of complications, primarily
in the respiratory system [1] along with other systems [2,3]. As per current statistics, even
though the virus has a comparatively small case mortality rate, it has amassed a massive
fatality count due to its high infectiousness. The World Health Organization (WHO)
estimates that the virus has infected around 338 million people and claimed more than
5.72 million lives as of December 2021. Despite the availability of effective vaccines against
virus spread, medical complications, and mortality, complete global vaccination coverage
is still far overdue. Furthermore, emerging variants cast some non-trivial obstacles to
vaccine efficiency [4-7]. Therefore, mitigating the spread of the disease through social
distancing, mask wearing, hand washing, sanitizing, and other practices of hygiene still
remains indispensable by and large [8,9] to restore normalcy whilst ensuring the safety
of health.

People, being a social species, tend to exhibit group behaviors frequently. Therefore,
even the most mindful persons may violate social distancing protocols occasionally [10,11].
Even such occasional violation of social distancing protocols may garner a risk of contract-
ing COVID-19 depending on the proximity or duration of the violation [12,13]. Conversely,
monitoring such violations of social distancing protocols (i.e., proximity, duration as well
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as the intensity of sudden events such as maskless cough or sneezing) provide vital tools
for contact tracing, monitoring, and eventually pandemic control. In essence, observing
social distancing protocol violations is a task with many caveats. Thus, automating this
manual process needs meticulous analysis [14]. The main two avenues of research have
been (a) intrusive solutions where people are actively contributing to the measurement (by
handheld devices, etc.) and (b) non-intrusive solutions with zero burden on the people
(which could be deployed to any situation irrespective of who is being monitored).

The first type (intrusive techniques) requires a signal to be transmitted by the people
being tracked; i.e., methods of this type require an active beacon by each tracked person.
Such a wearable device based on an oscillating magnetic field for proximity sensing to
monitor social distancing to prevent COVID-19 has been presented in [15]. This system was
shown to be more robust than Bluetooth-sensing devices [16], especially in determining
the distance threshold limit. However, it is practically difficult to deploy a solution of this
type in a public space in a real-world situation. Thus, a non-intrusive solution is preferable
for large-scale deployment in public spaces as the people who are being tracked are done
so passively.

Research in non-intrusive techniques to monitor social distancing has led to a large
body of work utilizing computer vision techniques. The major sub-tasks in those ap-
proaches are the detection and tracking of people, and the state of the art for these sub-tasks
is now primarily dominated by convolution neural networks (CNNs). Most recent applica-
tions combine YOLO [17] and deepSORT [18] to form powerful tools which can achieve
object detection and tracking in real time, and it is used to tackle object recognition problems
in different scenarios such as license plate recognition [19], road marking detection [20],
pedestrian detection [21], agricultural production [22], etc.

The work in [23] is an example of a CNN framework built on the aforementioned
detection and localization algorithms to detect people, calculate the Euclidean distance
between them and spot social distancing violations. A similar approach using YOLOv3
is performed in [24,25] for birds-eye view (overhead) camera footage. However, such
overhead viewpoints are not practically deployable in public settings. An SSD-based
model is presented in [26], which also performs person detection and social distancing
violation identification. The performance is compared for each of the deep learning models
Faster RCNN, SSD, and YOLO. Reference [27] utilizes the YOLOv4 model for people
detection in low light instances to enforce social distancing measures. In [28], a spatio-
temporal trajectory-based social distancing measurement and analysis method is proposed.
This problem has been further examined in [29-31].

While various solutions proposed in the literature strive to assess the adherence to
social distancing protocols, they fall short of incorporating factors such as mask wearing,
which is critical to the current COVID-19 pandemic. The presence or absence of a mask
on a person greatly affects the efficacy of the social distancing protocols [32]. Similarly,
interperson interactions such as hugs, kisses, and handshakes are more severe concerns
than mere distancing amongst individuals [33,34] as far as the person-to-person spreading
of COVID-19 is concerned. The detection of mask-wearing [35-39] as well as the detection
of dyadic interactions [40—42] has been explored in computer vision as isolated and distinct
problems. However, to the best of the knowledge of the authors, those factors have not been
incorporated into a unified and holistic solution for detecting violations of social distancing
protocols in the literature Table 1. Ignoring such factors vastly undermines the robustness
of vision-based techniques to tackle the social distancing problem of COVID-19.

In this light, the system proposed in this paper analyzes the spatial and temporal
interactions manifested over multiple frames. A single frame was analyzed to recognize
how people adhere to social distancing measures such as keeping proper distance, mask
wearing, and handshake interactions. The risk of spreading COVID-19 increases when
an individual interacts with multiple people and the nature of the interaction. On the other
hand, if a certain set of people are in a “bubble” and they remain so until the end of
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observation, there is no change in the risk of spreading COVID-19. This temporal analysis
of identifying bio-bubbles is also included in our proposed model.

Table 1. Different social distancing measures and the handling availability in our proposed system.

Social Distancing Measure Specifics Handled in Our System
Physical distancing [43] Singapore (1 m), South Korea (1.4 m) v
Mask wearing [44] Practiced in most of the countries v
Close contacts [45] Handshakes, hugging, etc. v
Hygiene practices [44,46] Washing hands, sanitizing, etc.
Restricted gathering [44,47] Indoor gatherings v

In this paper, the design, implementation, and testing of a complete end-to-end system
comprising of a framework to fit in different computer vision and deep learning-based
techniques, a representation to store the output of the deep learning models, and an
interpretation technique to evaluate the threat level of a given scene are discussed. The key
contributions of this paper are as follows:

* A deep learning-based system to monitor social distancing violations and COVID-19
threat parameters. The system can utilize multiple computer vision modules to extract
different information from the video sequence such as the number of people, their
location, their physical interactions, and whether they wear masks.

* A temporal graph representation to structurally store the information extracted by
the computer vision modules. In this representation, people are represented by nodes
with time-varying properties for their location and behavior. The edges between
people represent the interactions and social groups.

* A methodology to interpret the graph and quantify the threat level in every scene
based on primary and secondary threat parameters such as individual behavior,
proximity, and group dynamics extracted from the graph representation.

2. Proposed Solution

This section explains the graph-based computer vision framework proposed to quan-
tify the risk of COVID-19 transmission in various public scenarios. The input video
feed from closed circuit television (CCTV) footage is first used to extract key information
such as people, handshake interactions, and face masks through computer vision models.
The proposed system then quantifies the risk of transmission of COVID-19 by encoding
the extracted information into a temporal graph and interpreting it using a function for
the threat of transmission developed in this paper. An overview of the proposed system is
depicted in Figure 1.

The system takes a video stream V() as the input, where t denotes the frame number.
The video stream is considered to be captured from a CCTV system camera mounted
at the desired vantage point with a known frame rate. Vj,(t) is a three-dimensional
matrix with the dimensions H x W x 3, where H and W denote the frame’s height and
width, respectively.

The video feed, V;,(t), was passed into a series of functions F;; i € {p,d, g, h,m}. Each
F; processes a video frame and produces different information as

Ji(t) = Fi(Viu (1)) 1)

where J;(t) denotes an output, such as the locations of people, handshake interactions,
or the presence of face masks. While the functions F;s process individual frames, process-
ing a sequence of frames is required to analyze this information across time. Therefore,
a collection of trackers F; was employed to track the above-mentioned detections provided
by F;s over time as

18 (1), TiB) = B (Vin(8), Ji(1), Si(t = 1)) @
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where S;(t) is the state and J;(¢) is the tracking interpretations based on the sequential information.

v(t) >

Scene with predictions

Figure 1. A high-level overview of the proposed system.

The list of functions utilized to obtain spatial information necessary for detecting and
localizing persons, interactions, and face masks follows:

1. People detection (F,) and tracking (F).

2. Distance estimation (F;) and group identification (Fg).

3. Identifying and localizing physical interaction (handshakes) (F,).
4. Mask detection (Fy,).

The information retrieved by the aforementioned functions, which is critical for cal-
culating the social distancing violation measure, was encoded in a graph G = (V,E).
Sections 2.1-2.4 define the functionality of each system component that works together
to populate the graph G, while Section 2.5 offers a full explanation of the data contained
in the graph. Finally, graph G was interpreted in the manner described in Section 2.6
in order to provide actionable insights based on the threat level analysis of the analyzed
video. For ease of understanding, the notations used in this work are listed in a table
in Abbreviations.

2.1. People Detection and Tracking

This section discusses the proposed framework’s people detection and tracking models.
The people in the scene were detected using the F,, detection model and then tracked over
different frames using the F, tracking model. The detection model used for this purpose
provides a bounding box for the person’s position, whilst the tracking model assigns each
person a unique ID and tracks them through time.

The detection model provides a time-varying vector containing information on peo-
ple’s spatial location. It is defined as J,(t) = {bbp1(t),bbya(t), ..., bby(t), ..., bbpu(t)},
where 7 is the number of bounding boxes and bbpk(t) = (u,v,7,h,cp) is a five-tuple that
represents the bounding box representing a person at time f. In bb(t), variables u and
v represent the two-dimensional coordinates of the bounding box’s center, r represents
the bounding box’s aspect ratio, / represents the bounding box’s height, and ¢, repre-
sents the detection’s confidence level, as shown in Figure 2. The tracker assigns an ID
and updates bounding box information based on previous and current data. The output
of the tracker is defined as J,(t) = {bbiy(t),bbipy(t), ..., bbiy(t),. .., bbipa(t)}, where
bbipi(t) = (u,v,1,h,cp,i) is a six-tuple representing updated bounding box information
with assigned ID, i, for kth person.
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Figure 2. The parameters for the bounding boxes.

Given its robustness and real-time prediction capabilities, the YOLO network [48] for
people detection (Fy) and the DeepSORT algorithm [18] for tracking (F,) were used in this
paper. DeepSORT by itself handles minor occlusions for people by the Kalman filtering
mechanism. We implement another level of interpolation to handle the missed detections
on top of this. Given an image, the YOLO network predicts the bounding boxes of many
predefined object classes that are present in a scene. Following that, the output is created by
applying non-max suppression [49] and filtering the bounding boxes belonging to people.
The DeepSORT algorithm then assigns indices, Jp, to these detected bounding boxes using
the Mahalanobis distance and the cosine similarity of the deep appearance descriptors.
The publicly available weights trained using the COCO dataset [50] were used to initialize
the weights of the YOLO model, whereas the weights trained using the MOT dataset [51]
were used to initialize the DeepSORT model.

2.2. Distance Estimation

This section discusses the method for estimating the distance between identified
individuals. The distance between people was estimated in three steps: first, by identifying
the people’s standing locations in the video, then by performing perspective transform and
finally by measuring their Euclidean distance [52].

First, the standing locations of the people s; ;) (denoted by thick black dots in Figure 3)
were determined using the bounding box data as follows,

s = (u,0+0.5h). (3)

The standing locations were then transformed via perspective transform from an over-
head wall mount camera viewpoint to a two-dimensional bird’s eye viewpoint. The re-
quired transformation matrix Mt was obtained as follows,

R' = M7R
R'RT = MyRRT
R'RT(RRT)™! = My(RRT)(RRT)™?
Mr = R'RT(RRT)™!

)
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where the R values are 2 x 4 matrices that contain the coordinates of four reference points
in the video frame (refer blue trapezoid in Figure 3—left) and the corresponding coordinates
of those four points in the two-dimensional plane. This two-dimensional plane is referred
to as the “floor plane” (refer Figure 3—right). The projections were performed as,

floorLocation(ilt) = Mr 5(i,t) ®)

where s; ;) are the input coordinates from (3) and floorLocation ; ;) are the output coordi-
nates on the floor plane. Finally, the distances between each pair of people i and j in frame
t were calculated as

diSt(z‘,j,t) = ||floorLocation(i,t) —floorLocation(jlt)H (6)

Since the detected bounding boxes of people cannot be directly used to estimate
distances between people due to the overhead camera viewing angle, the estimation is
performed after perspective transform. The transform is performed based on the following
assumptions. These assumptions hold for most of the scenes with a CCTV camera.

1. All the people are on the same plane.
2. The camera is not a fisheye-like camera.
3. The camera is placed at an overhead level.

14.8698

Figure 3. Perspective transformation. The (right) frame is a visualization of how a camera-captured
scene (left) is projected to the ‘floor plane” after perspective transformation. The trapezoidal floor is
being transformed into a square.

2.3. Group Identification

The group identification model discussed in this section utilizes the people detection,
tracking and distance estimation models introduced in Sections 2.1 and 2.2. This was
achieved by two algorithms Fy and Fg. F, was run on the information from individual
frames, while F¢ analyzed the results from Fy across time to properly deduce which people
fall into groups based on sustained physical proximity.

Given a frame V;,(t), a matrix My(t) called the distance matrix is created based
on the calculated distances between people. The affinity matrix M,(t) was then calculated
as follows,

M, = exp (—aMy) (7)

where « is an input parameter that is used to introduce the camera and scene pair to a scale.
This parameter acts as a threshold for the closeness of people in the 2D projected plane
prior to clustering. Then, clustering was performed on M, to split the people into clusters.

clusters = spectral_clustering(M,) 8)

According to the group identification model, a person is considered to be a member of
a group if they are close to at least one member of the group. While conventional clustering
algorithms attempt to minimize the distance between individual elements and the cluster
center, this is not how humans behave. As a result, this result was obtained using spectral
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clustering of affinity matrices [53]. Human behavior, on the other hand, cannot be analyzed
in terms of discrete frames. As a result, a temporal analysis of the clusters was performed
to determine the actual groups of people using a time threshold 7. The primary idea is that
a group is detected only if it persists for a specified time period 7.

People P; € P were being clustered from a video frame at time ¢ as follows,

cluster_id(P;, t) <— spectral_clustering(M,(t)) )

cluster_id(P;,t) = cluster_id(P;, t) if 3 tost tp<t<ty+T (10)

where P; and P; were considered to be in the same social group as per Equation (10). Social
distancing violations between the people in the same social group was ignored in the pro-
posed system as justified in Section 1. For cases involving a few people, a simplified
algorithm based on naive thresholding of interpersonal distance violation occurrences was
used instead of spectral clustering. When spectral clustering was used, T was picked so
that a group should be in proximity for 10 s. For the thresholding case, people spending
upwards of 20% of the time in proximity were considered groups.

2.4. Mask Detection

This section describes the model used to detect the presence/absence of masks.
The framework’s mask recognition stage entails identifying and tracking the presence
(or absence) of masks. The model used for this purpose computes the bounding box of
the face as well as the degree of confidence in the presence of a mask. As with prior
object detection models, this model outputs a time-varying vector representing the spatial
localization information for faces as [, () = {bby1(t), bbya(t), ..., bbyi(t), ..., bbun(t)},
where 7 is the number of face bounding boxes at time t and bb,,(t) = (u,v,r,h,cm) is
a five-tuple representation of the bounding box encompassing a detected face at time t.
The variables u, v, r, and h have the same definitions as those in Section 2.1. The confidence
measure Ci; = (Cpasks Cromask) 1S @ two-tuple in which ¢,,,,5¢ € [0, 1] indicates the probability
of the presence of a mask and c¢;,p;.sx € [0, 1] indicates the absence. Similar to Section 2.1,
the tracking model returns a vector of the same size J,(t) containing tracked bounding
boxes for each ¢.

Similar to Section 2.1, the YOLO network was utilized for mask detection and the Deep-
SORT algorithm was utilized for tracking the masks across frames. The YOLO model was
first initialized with the pre-trained COCO weights and then fine-tuned using the images
from the Moxa3k dataset [35] as well as the UT and UOP datasets, which were labeled for
mask detection. The DeepSORT model used the weights trained using the MOT dataset [54]
for initialization. The DeepSORT algorithm handles minor occlusions of masks. How-
ever, another layer of interpolation (such as for people detection) was not implemented
because the algorithm is supposed to detect when people remove masks (i.e., people cannot
disappear while masks can).

2.5. Graph Representation

The information extracted using different models in Sections 2.1-2.4 need to be combined
to provide meaningful insights into the threat level of the given scene. This is accomplished
by encoding the data into a graph structure. This section describes how the graph structure is
modeled using the different outputs from the models for interpretation.

The information retrieved from the video is stored as a time-varying graph G(t) given by

G(t) = (V(t),E(t)) (11)
and

V(t) = {o1(t),v2(t),...,vn(t) } (12)

E(t) = {e11(t), e12(t), ..., €ij(t), ... enn(t)} (13)
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where V(t) is the set of vertices and E(t) is the set of edges at time ¢. Each person P; is
denoted by a vertex v;(t) which contains the features representing the person extracted
from the video as time-varying vertex parameters. The vertex v;(t) is given by

v;(t) = [location;(t), mask;(t), group;(t)] (14)

where location;(t) = (x;(t),y;(t)) is a two-tuple that represents the position of the person
P; at time t obtained through perspective transform to a bird’s-eye view position on a 2D
plane (refer to Section 2.2). mask;(t) = cy, is two-tuple, which shows the confidence level
that a person P; is wearing a mask at time ¢. This information is extracted from bb,,;(t)
depending on the index ID,,;(t) (refer to Section 2.4). group;(t) is a matrix that represents
the probability that two people belong to the same group (refer to Section 2.3). The edge
e;,j(t) is a binary value (0/1) that represents the presence (denoted by 1) or absence (denoted
by 0) of an interaction between person P; and P; at time f detected using [39]. E(t) is stored
as a sparsely filled adjacency matrix with null values for instances where interactions are
not detected. A visual example of a frame and its constructed graph is shown in Figure 4.

19,8368

(a)
(b)
Figure 4. Graph representation figure. (a) Bounding boxes for people and handshake; (b) Corre-
sponding graph representation.

2.6. Threat Quantification

The information extracted from the models described in the proposed system
in Sections 2.1-2.5 needs to be processed from the created temporal graph in order to pro-
vide a quantifiable metric that denotes the risk of transmission for the given scene/frame.
In this section, the derivation of the threat level function which quantifies the threat of
the given frame is described in detail.

Table 2 contains a list of the parameters that contribute to the spread of COVID-19.
The parameters are divided into two categories: primary and secondary parameters, which
will be discussed further in this section using the threat level function. First, we calculate
the threat level contribution of each pair of people in the frame at time ¢ as described in (16).
Then, we find the threat level of the particular frame as per (15).

T(t)= Y, Toput) (15)
(v1,02€V)
Toyo,(H) = Y pi(v1,02) X [ €5 —qj(v1,02) (16)
piel 7;€Q

P = {py, pa} is the set of parameters that directly attributes to the transmission of
COVID-19 from one person to another. This includes the distance between people and
the handshake interactions. As the distance between people (people coming close) and their
interactions (handshakes) play a primary role in the COVID-19 virus transmission, these
values were first considered as the primary parameters P. The probability of two people
shaking hands pj, and the probability of them coming extremely close p; were represented
as scalar values in the range [0, 1], where 1 represents a high probability of occurrence (for
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the distance probability, 1m is used as the threshold distance for being extremely close
in this study).

Q = {qm,q¢} is the set of secondary parameters which are relevant only when two
people are in close proximity, and in such a case, these parameters can increase or decrease
the probability of COVID-19 transmission accordingly. This includes whether people are
wearing masks, since two people not wearing masks is irrelevant if they are far apart,
and whether the persons belong to the same group.

Table 2. Parameters used in threat quantification.

Set Notation Description
P Pa Distance between people
P Handshake interactions between people
People belonging to the same grou
Q g P 8ing group

Gm People wearing masks

First, the mask-wearing probability g, was used to quantify the effect of masks
in transmission. Furthermore, people belonging to the same group (g4) have a similar
effect on transmission, since it is assumed that the disease spread between them does not
increase depending on what is happening in the video frame (it is more likely they were
both infected or not, even before coming into the frame). The values of g; are in the range
[0, 1]. €j > 1is used as a tuneable parameter that dictates the influence of a particular
parameter g; on the overall threat level. A higher ¢; value gives a lower significance to
the corresponding g; in calculating the total threat T(t). Because the influence of various
factors varies depending on variations and different pandemics, the €; option can be
used to change the influence of various parameters, and new parameters can be added to
the threat-level equation based on consultations with appropriate authorities.

By substituting the parameters and setting €, = 2.0, €, = 1.0, the equation was
rewritten as follows,

Toy0,(8) = (P + Pa) (2.0 — gm) (1.0 — q¢) (17)

When analyzing the threat equation in Equation (16), it can be noted that when
the secondary parameter probabilities decrease (i.e., ), the effect of the multiplicative term
(€j — q;) is higher. This implies that the effects of the primary parameters p; to the threat
of the given scene are compounded when the two persons have worsening secondary
parameters (i.e., are not wearing masks or when they are of different groups). It can also
be observed that (17) does not carry any terms with the p;p; product. This could be
intuitively understood because shaking hands requires them to be physically close, and
thus, incorporating this term is redundant. While (17) is tuned for the implemented system,
the generic form (16) can incorporate any number of parameters being extracted from
a video scene.

3. Evaluation

In this section, we discuss the methodology used to evaluate the system. The proposed
solution was executed on a chosen set of datasets as the input, and the results were evalu-
ated using different metrics. The following subsections describe the datasets, the metrics,
and the evaluation execution process in detail.

3.1. Datasets

Existing public datasets such as MOT [51,54,55] and UT-interaction [56] were chosen
to evaluate the performance of the individual components of the system. However, there
are no existing datasets to perform a holistic analysis. Thus, in order to analyze this, a new
dataset was created from the University of Peradeniya premises, which is referred to as
the UOP dataset.
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The multiple object tracking (MOT) datasets are a set of image sequences with an-
notations for people localization and people IDs. Three datasets [51,54,55] were used to
evaluate the capability of an algorithm to uniquely identify and track a person through
a video.

The University of Texas-Interaction (UTI) [56,57] dataset comprises twenty video se-
quences of human interactions in two or four-people settings. The actions in the dataset
include handshake, punch, point, kick, push and hug where each video spans roughly 1 min.

The UOP dataset [39] is a collection of ten video sequences that were collected from
the University of Peradeniya premises by enacting a scene with human interactions such
as handshakes, close contacts, and grouped conversations. These videos were recorded
by a wall-mounted CCTV camera in the university corridor and waiting area. The video
consists of either four or five persons, with each video spanning 1 min. The ground truth
for this dataset was annotated manually for training and evaluation.

3.2. Evaluation Metrics

The outputs were evaluated on the given datasets based on the metrics average preci-
sion (AP) and the mean average precision (mAP). mAP is the key metric used in evaluating
detector performance in prominent object detection tasks such as the PASCAL VOC chal-
lenge [58], COCO detection challenge [50] and the Google Open Images competition [59].

The average precision (AP) is the precision value averaged across different recall
values between 0 and 1 [60]. This was computed as the area under the curve (AUC) of
the precision vs. recall curve, which was plotted as a function of the confidence threshold
of detection with a fixed intersection over union (IoU) for the bounding box threshold [61].

3.3. Model Evaluation
3.3.1. People Detection

The people detection component used here is the YOLO network, which is a well-
established detector. Hence, no modifications were introduced to this segment of the detec-
tor. The YOLOv4 model which was used here is extensively compared in terms of frame
rate and mAP in [40].

3.3.2. Group Identification

The group identification component was evaluated using the existing MOT datasets.
Since the ground truth for the datasets considered in this work do not contain the group
annotated information, an alternative methodology was required for evaluation. For this
purpose, a visual inspection of frames was used to determine if two individuals belonged
to the same group in a given frame.

3.3.3. Mask Detection

The mask detection component requires localized information about masks. Thus,
the UT-interaction dataset was re-annotated. However, this dataset only consists of un-
masked faces, and as such, the annotated UOP dataset was used together with the UT-
interaction dataset to train and evaluate the mask detection component. The 17 videos
from the UT-interaction dataset and the five videos from the UOP dataset were used for
training. The dataset was annotated with the two class information: namely, masked and
unmasked faces in frames, where the faces were visible and the presence of masks can be
interpreted by a human.

The mask detection model was evaluated using both the AP and mAP measures.
First, the model’s ability to localize the faces was determined by measuring the AP of
the localization component of the models disregarding the class labels.

Next, the performance of the model in terms of both the localization and the accu-
racy was determined by the mean average precision (mAP) value. Note that since both
the classes correspond to the same object (i.e., faces), this two-metric evaluation process
helps us identify the specific shortcomings of the model considered. For instance, a high
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AP and a low mAP show poor mask detection (classification), whereas a high accuracy and
low mAP denote poor face localization.

3.3.4. Threat Level Assessment (End-to-End System)

The threat level quantification algorithm was tested on the three datasets mentioned
earlier. Since there is no publicly available ground truth for videos for this parameter,
the results of the algorithm were evaluated by comparison with expert human input.
For this purpose, 462 samples of frame pairs from video sequences were chosen. The system
was then evaluated by observing the increment/decrement of the inferred threat level T (¢)
and comparing the results with the expert human input. The performance of the full system
is evaluated using accuracy, precision, and recall.

The expert responses were obtained by showing a pair of frames and asking if the threat
of COVID-19 spread has increased or decreased from the first frame to the second. Since
a high disparity in identifying the impact of COVID-19 spread can exist amongst human
experts in certain instances, ground truth cannot be established for such pairs of frames.
To identify such instances, a thresholding minimum majority required to establish ground
truth was set as 70%, and all frame pairs with a higher disparity (i.e., less than 70% majority)
for any given choice were removed. In the evaluation conducted, five such frame pairs
were identified and removed. One such frame pair is shown in Figure 5 to conclude this
factor. As it can be observed, it is difficult to assess the change in threat for COVID-19
spread across these two frames.

Figure 5. Example frames that were removed from full system evaluation due to disparity in human
expert responses.

4. Results and Discussion

The proposed system was implemented using the Python programming language
alongside and Tensorflow and OpenCV libraries. The system is deployed on a high-
performance computing server with NVIDIA GPU. The output of each component of
the system as well as the final output of the entire system are discussed below.

4.1. People Detection and Tracking

The results shown in Figure 6 are indicative of the performance of the human detection
and tracking segment of the proposed system. The first row shows a sequence of frames
where people are detected properly and tracked with unique IDs. However, the model fails
to perform satisfactorily in specific scenarios. The bottom row gives examples of the cases
in which the model can fail. From left, (1) a person is not being identified because of occlusion,
(2) the identified bounding box is smaller than the person due to occlusion, and (3) a person
is going undetected due to the lack of contrast with the background. The model has an
mAP = 65%.

As observed in Figure 6, a given frame from the output consists of multiple markings.
The blue quadrilateral on the ground is the reference used for perspective transformation.
The people detected are identified by uniquely colored rectangular bounding boxes. The lo-
cation of each person in the 2D plane is marked using a black dot on the bottom edge of
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the respective bounding box. The threat level for the given frame is numerically displayed.
Further details of the relevant markings will be discussed in the subsequent sections.

Figure 6. Results of people detection. (Top row)—cases where the people detection model is
successful. (Bottom row)—instances where people detection is erroneous. Undetected people are
marked by the purple oval. The green bounding box (marked by the purple arrow) does not span
the full person.

4.2. Distance Estimation

A scene consisting of four people from the UTI dataset is considered in Figure 7
to show how the distance between people contributes to the threat level. The distance
between people is given by the distance activity matrix shown beside each frame in Figure 7.
Each element (square) in the activity matrix denotes the proximity between the person
IDs corresponding to the row and column indices. The color changes to a warmer shade
(yellow) when the people are closer, and it becomes a colder shade (blue) when they are
farther away.

Distance
" ) 2 3 4

14.6682

Distance
1 2 3 4

15.6383

Figure 7. Distance estimation results.

Considering the frames in Figure 7, the person ID 2 and 3 can be observed to be
closer in the second frame than in the first frame. This causes a higher contribution to
the threat level between them in the second frame and a lower contribution to the threat
level in the first frame. This is seen in the distance activity matrix by the blue shade turning
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to cyan, indicating closer proximity between those persons. The reader’s attention is drawn
to the threat level shown in each frame. As it can be observed, when the distance activity
matrix lightens up, the threat level has also risen.

The errors in people detection (Figure 6) can propagate to the distance estimation. While
people going fully undetected is usually handled by interpolation, predicted bounding boxes
becoming cropped due to the occlusion of feet leads to a faulty prediction for where the per-
son’s feet are. Therefore, the calculation of distance between people becomes erroneous.

4.3. Group Identification

The results for a few frames for the group identification model are shown in Figure 8.
An example from the UTI dataset and Oxford towncenter datasets is shown here. The frames
with the persons detected are shown on the left and the group activity matrices showing
the group characteristics are shown on the right. If two people are of the same group,
the group activity matrix element corresponding to the row and column of the IDs of these
two persons is shown in yellow, and otherwise, it is shown in blue. The people of the same
group are also joined by a white line in the original frame to show this.

4.4. Mask Detection

Figure 9 shows the performance of the system in detecting the presence/absence
of masks. One example from the UTI, UOP, and Moxa3K datasets is shown. Overall
the system performs well while dealing with high-resolution images (Moxa3K). However,
as the resolution drops (UTI/UOP), the efficacy reduces drastically. This can be observed
in Table 3, which lists the numerical evaluation metrics (AP and mAP) for localization on
different datasets. Another prominent failure case is when the proposed system is unable
to detect the presence or the absence of masks when people face away from cameras.

Group

1234567890123436 1890222

123456

Figure 8. Group identification. (Left): video frames where groups of people are denoted by white
lines connecting individuals. (Right): group activity matrices showing people belonging to the same
group by yellow and else blue.

(@ (b) (c)
Figure 9. Mask detection detection examples. (a) UTI dataset; (b) UOP dataset; (c) Moxa3K dataset.
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Table 3. Performance metrics of the mask detection.

Dataset AP/mAP /%
UT-interaction (Unmasked) 29.30
UOP (Masked) 41.47
Moxa3K 81.04

4.5. Threat Level Assessment (End-to-End System)

To evaluate the proposed system performance, the threat level metric provided for
each frame of a given scene is evaluated across multiple frames. The successful output of
this value is evaluated by the full system for both datasets UTI (Figures 10-12) and Oxford
(Figure 13). It should be noted that it is not the absolute values of the threat level that are
significant but the increments or decrements between the frames.

Considering Figures 10-12, it can be observed that the threat level increases from top
to bottom frames as 14.7, 16.9 and 20.0. From the first frame to the second frame (Figure 10
to Figure 11), we can see the distance activity matrix brightening in the right top and left
bottom edges. This is due to the close proximity of persons ID 1 and 4. This leads to
an increase in the threat level of the frame by 16.9 — 14.7 = 2.2. Similarly, when looking at
the first and third frames (Figures 10-12), this time, the interaction activity matrix brightens
up in the third frame due to the handshake interaction in this frame. This also leads
to an increase in threat level, which is by 20.0 — 14.7 = 5.3. It is also clearly observed
in the threat activity matrix for the third frame in Figure 12, where the center squares
brighten up to show a significant threat between persons 2 and 3. This increment (of 5.3)
in the threat level is higher than the previous comparison (of 2.2) in Figure 10, and Figure 11
since the handshake interaction poses a higher threat than proximity alone. The same can
be observed by comparing the second and third frames.

A simpler situation is analyzed in Figure 13. Here, there are only two people belonging
to the same group, and they are present in the video throughout the time. However, there
are no physical interactions such as shaking hands. Therefore, the only parameter that
dictates the threat level is the number of people and their interpersonal distances in each
frame. When analyzing Figure 13, the people in the first frame are moving away from each
other until the second frame. This is why the threat level goes down from 95.0 to 46.0 from
the first frame to the second. In the third frame, new people come into the frame, and they
move closer to each other. Therefore, an increase in the threat level of 105.3 is observed.
However, this dataset does not contain a rich set of scenes to evaluate all components of
the proposed system.

Distance Interaction
1

14.7183

14.7

Figure 10. Full system result of UTI interaction dataset at #;.
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Distance Interaction
2 3 4 12 3

16.8787

16.9

Figure 11. Full system result of UTI interaction dataset at t;.

Distance Interaction
2 3 4 12 3

20.0047

Figure 13. Full system result of oxford dataset.
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4.6. Full System Evaluation

The performance of the full system in comparison to human expert responses is provided
in Table 4 in terms of accuracy, precision, and recall. The complete system is evaluated on both
the UTI and UOP datasets. However, it should be noted that the UTI dataset does not contain
anyone wearing masks, and hence, the mask detection component does not contribute to
the threat calculation here. It can be noted that the system performance is not biased toward
either dataset and is able to generalize with considerable accuracy of nearly 76%.

Table 4. Full system performance.

Test Accuracy Precision Recall
UTI dataset 75% 75% 75%
UOP dataset 76% 85% 79%
Overall 76% 81% 77%

A few of the notable failure cases of the system are shown in Figures 14-17, where
the threat level predicted was contrary to human expert opinion. Out of the four cases
shown here, three of them failed to evaluate the proper threat value due to a failure
in one of the components in the system pipeline. In Figure 14, the person indicated
by the purple arrow was not detected by the person detection model due to occlusion.
Similarly, in Figure 15, the two individuals hugging are detected as a single person. Since
it is the proximity of the three individuals in Figure 14 and the hugging individuals
in Figure 15 that pose a high threat to COVID-19 spread, the system fails to reflect this,
deviating from the expert opinion. In Figure 16, the high proximity of the individuals
in the first frame results in a high threat value for the first frame. However, the handshake
interaction model fails to detect the interaction in the second frame, hence leading to a lower
threat level output by the system and hence failing to identify the increase in threat for
COVID-19 spread. In the case of Figure 17, since the system design was not accounted for
incidents such as a pushing action as in the second frame, the system provides a higher
threat value for the first frame contrary to human expert opinion.

However, there were a few rare cases where in retrospect, the system output was more
plausible or instances where the failure of the system was unexplained. Considering Figure 18,
the ground truth from human expert opinion was that the threat level decreases, which is
explained by the handshake interaction in the first frame, which is a serious violation of social
distancing protocols. However, the system output for threat value increases significantly
in the second frame as a new person is identified in the far left. Since an increase in the number
of people and the closer proximity of this new person in a given space should also be accounted
for, this leads to the increased threat value predicted by the system. Meanwhile, Figure 19
is an instance where the system output states the threat of COVID-19 spread has increased,
whereas human expert opinion is on the contrary. This deviation by the system is an edge
case where the deviation is unexplained.

Figure 14. Failure case 1 threat level interpretations. System output for threat—Decreases, Human
expert opinion on threat—Increases.
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Figure 15. Failure case 2 threat level interpretations. System output for threat—Increases, Human

expert opinion on threat—Decreases.

Figure 16. Failure case 3 threat level interpretations. System threat evaluation output—Decreases,
Human expert opinion output—Increases.

Figure 17. Failure case 4 threat level interpretations. System threat evaluation output—Decreases,

Human expert opinion output—Increases.

Figure 18. Edge case 1 threat level interpretations. System threat evaluation output—Increases,
Human expert opinion output—Decreases.
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Figure 19. Edge case 2 threat level interpretations. System threat evaluation output—Increases,
Human expert opinion output—Decreases.

5. Conclusions

An end-to-end solution utilizing CCTV footage to provide a practical and versatile
mechanism for monitoring crowds to identify possible instances of spreading COVID-
19 is proposed in this paper. The proposed system detects people, their locations, their
individual actions (wearing masks), and their dyadic interactions (handshakes) using deep
learning-based video interpretation. This information is stored in temporal graphs to
enable further insights such as identifying social groups. Finally, these temporal graphs
undergo a more holistic interpretation using rule-based algorithms. This analysis uncovers
the individual’s contributions to the spread of COVID-19 (not wearing masks) and pairwise
contributions (handshakes, staying close to others) on a per frame basis. These results are
brought together to calculate the total threat levels in frames. Finally, these outputs are
examined against expert human opinion. Consistent accuracies over 75% across all datasets
could be considered a strong indication of the robust performance of the proposed system.

Furthermore, this unified framework allows for the future incorporation of possible
other future measures for curtailing the spread of COVID-19 or any other epidemics
impacting the health and safety of society. Therefore, this proposed framework may be
strengthened by incorporating additional COVID-19 specific features, and it could be
adapted and adopted for similar other scenarios as well that may benefit from video or
CCTV-based non-intrusive observations.

The proposed system evaluation is limited by the availability of datasets. While it was
tested on existing datasets and a newly collected dataset, testing this on a wider range of
diverse scenes is required. Moreover, threat level estimation is performed at the frame
level. As aresult, the contribution of the time of interactions such as approaching close to
each other and shaking hands is not taken into account in our system. Future work could
improve the system by processing the time series of the threat level (individual contributors
such as interactions as well as the total score) by techniques such as moving averages
and filtering.

Due to the widespread use of CCTV cameras, the proposed system is applicable to
a wide variety of real-world scenarios. The decreasing performance-to-cost ratio of com-
puting hardware has enabled even small organizations to acquire the system. The release
of the codebase as free and open source software (FOSS) can accelerate both third-party de-
ployment and solution improvement. However, concerns about privacy, bias, and fairness
in conducting analytics on people’s CCTV footage should be addressed on an individual
basis in accordance with the rules and regulations of individual organizations and countries.
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Abbreviations

Notations and description.

Notation Definition

Vin(8) Input video feed

Fy, Fy People detection and tracking

Fy Distance estimation

Fg, Fy Group identification and tracking

F, Identifying and localizing physical interaction (handshakes)
Fu, Em Mask detection and tracking

Ji(¢) Output of model F;

Si(t) State information

bb,i(t), bbip(t)  Bounding box encompassing person k at time ¢ and bounding box encompassing
person k at time t which is being tracked with their unique index

bby (), bbip(t) Bounding box encompassing handshake interaction k at time ¢ and bounding
box encompassing handshake interaction k at time t which is being tracked with
their unique index.

bb,i (1), bbiy(t)  Bounding box encompassing the face of person k at time t and bounding box
encompassing face of person k at time t which is being tracked with their
unique index

u,v The 2D coordinates of the center of the bounding box

h,r The height and aspect ratio of the bounding box

R, R The coordinates of the reference points in the video frame and two-dimensional
floor plane, respectively

Mr Transformation matrix for the perspective transform from CCTV perspective to

S(i,t)
floorLocation ;

floor plane
Standing location of person i at time ¢ in the CCTV perspective
Standing location of person i at time t in the floor plane

dist ;i 1) Distance between a pair of people i and j at time ¢

P; Person i in the frame

G(t) Graph at time ¢

V(#) Vertices of graph G at time ¢ given by {v1 (¢),v2(¢), ..., vs ()}, each vertex corre-
sponding to person P; with the vertex parameters embedded

E(t) Edges of graph G at time ¢ given by {ey1(t),e12(),...,€;(t), ..., enn(t)}, where

¢;,j is the edge between person(vertex) i and j
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T(t) Threat level of frame at time ¢
P={ps pn} Primary parameters—set of parameters that have a direct attribute to COVID-19
transmission

Q={9g,9m} Secondary parameters—set of parameters that are relevant to COVID-19 trans-
mission when two individuals are in close proximity
€j Tuneable parameter dictating influence of parameter q; on overall threat level.
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