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Featured Application: The system described in this paper can be implemented at scale in order
to allow computing facilities to better estimate their resource usage, thus saving them precious
resources and contributing to more responsible energy consumption.

Abstract: In this paper, we present the benefit of using deep learning time-series analysis techniques
in order to reduce computing resource usage, with the final goal of having greener and more
sustainable data centers. Modern enterprises and agile ways-of-working have led to a complete
revolution of the way that software engineers develop and deploy software, with the proliferation
of container-based technology, such as Kubernetes and Docker. Modern systems tend to use up a
large amount of resources, even when idle, and intelligent scaling is one of the methods that could
be used to prevent waste. We have developed a system for predicting and influencing computer
resource usage based on historical data of real production software systems at CERN, allowing us to
scale down the number of machines or containers running a certain service during periods that have
been identified as idle. The system leverages recurring neural network models in order to accurately
predict the future usage of a software system given its past activity. Using the data obtained from
conducting several experiments with the forecasted data, we present the potential reductions on the
carbon footprint of these computing services, from the perspective of CPU usage. The results show
significant improvements to the computing power usage of the service (60% to 80%) as opposed to
just keeping machines running or using simple heuristics that do not look too far into the past.

Keywords: deep learning; RNN; LSTM; time-series; scaling; prediction; carbon footprint;
production software

1. Introduction

This paper focuses on one aspect of the deep learning revolution that the field is going
through, namely the application of deep learning algorithms to time-series analysis and
forecasting. This field was spawned by the work mainly completed in the field of finance,
where accurate predictions of stock prices can yield a large sum of money to traders [1].
However, recent advances in deep learning technologies have led to a significant increase
in the accuracy and performance of these algorithms, which is why this paper investigates
them and implements several in the context of efficiently managing and scaling a computing
system with heavy usage.

The main novelty which this paper brings is a comparative study which evaluates the
performance of various time-series model architectures. There are several previous attempts
at predicting resource usage using deep learning techniques, however they focus on a single
method, such as Recurrent Neural Networks (RNNs) in the case of Dugann et al. [2] or
using very specific architectures, such as restricted Boltzmann machines [3].
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The motivation of this paper is to compare several cutting-edge deep learning solutions
for resource usage forecasting, in order to identify the most suitable one for the problem
presented. The results are discussed and the potential improvements in terms of real load
CPU usage are highlighted towards the end. The end-goal is the implementation of an
predictor which can be used to adapt the number of resources a computing service needs
in near-real time, adjusting itself to periods of high or low load. A secondary constraint of
the implemented solution is to not under-allocate resources for an extended period of time,
as it could cause service degradation.

The concrete contributions provided by the paper are provided below.

• The paper describes the process of gathering live metrics from distributed applications
running on a Kubernetes [4] cluster, inspiring itself from a real production system
deployed at the European Laboratory for Nuclear Physics (CERN). Kubernetes runs
containers based on snapshots (called images). The most famous container orchestra-
tion platform that Kubernetes can run on is [5].

• A few different modern techniques of analyzing and forecasting time-series data are
presented and compared with more traditional approaches.

• The performance of the different forecasting algorithms is presented, showcasing
which ones are more applicable to the specific use-case presented in this paper, CPU
usage forecasting.

• An experiment is conducted based on the algorithm found to be the best performer.
The results from the experiment allow us to understand and quantify the potential
energy-saving benefits of using this implementation. We compare the ideal scenario
with the predictions provided on the validation data, with encouraging results.

2. Materials and Methods

This paper describes different modern computational intelligence techniques, mainly
based on deep learning algorithms, which allow the efficient prediction of computer resource
usage over time in the context of a highly-critical and used environment. The work focuses
on the experimental setup that uses live production data, covering topics from data collection
to the evaluation of implementing the various time-series classification algorithms.

The first part of the experimental setup consists in recording production Prometheus
metrics from a running API service being called by the CERN Single Sign On service and
other clients. Afterwards, several different popular forecasting algorithms that leverage
deep are explored, with implementations don using the Keras deep learning framework [6].
The more in-depth analysis was performed using the Pandas [7] data analysis library and
the Python programming language. Plots were provided using matplotlib, the leading
solution for figures in Python.

2.1. Automatic Resource Cluster Scaling

The practice of automatically scaling clusters up and down based on various metrics
is widely discussed in academic literature and actual implementations. Kubernetes is
an open-source container management system developed initially as an internal project
for Google [8,9]. It allows scaling services and applications to higher and higher loads,
catering both to individual teams using it and for entire organizations that deploy highly-
distributed systems.

Recently, many researchers have focused on the topic of automatic scaling, as it can
be attractive to have an elastic system which handles peak traffic gracefully. Balla et al.
identify one of the biggest disadvantages of modern Kubernetes auto-scalers, the fact that
they are based on static measurements and do not adapt to their current system usage [10].
There is the built-in vertical pod autoscaler, as well as the 3rd party [11] scaler and the
one provided by OpenFaas, which Balla et al. outperform via a simple linear regression
algorithm, showing the potential of improving these algorithms.

Rattihalli et al. designed another system for resource-based automatic scaling of
Kubernetes applications coined RUBAS [12]. They report a modest improvement in CPU
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usage of around 10%. The largest downside of the system described is the lack of a truly
dynamic aspect in the prediction process, as scaling decisions are performed every minute
and are based on a static formula that takes into account only a limited window from
the past.

Toka et al. make the point that scaling provided in Kubernetes is often reactive rather
than proactive [13], highlighting the need for a more dynamic approach to scaling. They
propose a solution based on machine learning algorithms, integrating an LSTM solution
as well. However, the data are not collected from a real production cluster, but rather
through the usage of an experimental setup. Although it seems like a good solution,
the data collected appears to be relatively smooth and does not feature the noise one would
generally find in real service usage.

2.2. Time-Series Analysis

The field of time-series analysis is deeply rooted in mathematical models and knowl-
edge developed more than 50 years ago. Every process that benefits from the analysis of
the data it produces over time can benefit from the wide array of techniques available in
time-series analysis.

Among the first and most popular algorithms for time-series forecasting is the auto-
regressive integrated moving average (ARIMA), an old linear model developed around the
beginning of the 20th century. However, this technique really benefited when researchers
started experimenting with the combination of ARIMA and computational intelligence
algorithms, such as artificial neural networks and support vector machines [1,14].

2.3. Deep Learning Models for Time-Series Analysis

Machine learning algorithms have had a wide array of applications over the past three
decades, dramatically improving human ability to perform tasks that were considered hard
or impossible to model using programming language code. The deep learning algorithms
have led to solutions for tasks previously thought to be impossible to be solved by a
computer:

• Vision and image identification through the pioneering work of Yann LeCun in auto-
matic zip code identification off postal packages [15];

• Speech recognition through the usage of convolutional neural networks [16];
• Complex learning tasks through q-learning and reinforcement learning, coming closer

to top human-level performance in tasks such as playing video games [17].

More recently, deep artificial neural networks have been widely successful in time-
series analysis applied to financial data, such as the price of gold being accurately predicted
by using convolutional neural networks (CNN), together with long short term memory
networks (LSTM) [18]. CNNs have gained much popularity in the field of image processing,
especially when it comes to recognition or classification tasks, such as face recognition [19],
but recently have been proven to work on sequences of data fairly well (time-series and
natural language).

When it comes to climate and carbon-footprint related work, there are several different
papers that leverage deep learning for a variety of important tasks. Haq et al. [20] propose
a system based on LSTMs that is capable of modeling groundwater storage change, an im-
portant topic in more arid areas of the world. Haq [21] also covers the importance and
feasibility of providing powerful methods to forecast air pollution using a combination
between deep neural networks and classical algorithms, such as XGBoost, random forest,
or SVMs.

In terms of sequence processing, one key insight was the development of the back-
propagation through time algorithm, allowing the inception and usage of recurrent neural
networks (RNNs) [22]. These algorithms work best on a sequence of data, making them im-
portant to consider for the task that this paper sets out on solving. Recently, improvements
have been made to the algorithm in order to improve its memory efficiency [23].
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Recurrent neural networks have been used for a wide range of tasks in the deep
learning community, some even developing algorithms that can predict CPU usage using
them [2]. However, the predictions focus on a single type of architecture and do not perform
a comparison with all the other algorithms that may be useful for the task. Rao et al. [24]
more recently attempted to efficiently predict CPU usage based on time-series data and
discovered that LSTM networks provide better results than the classic ARIMA approach.
The same result in a different field has been found by Siami et al., in their paper presenting
financial forecasting using time-series models [25]. From the same field of LSTMs used
for price forecasting, Sagheer and Kotb [26] present a paper successfully tweaking the
architecture in order to accurately predict oil prices on the market.

The authors are not aware of other papers that perform a thorough comparative study
between the different types of neural network architectures which could be used to perform
this forecasting task.

Lastly, concepts such as “attention” that spawn from natural language processing
and recurrent neural networks can be efficiently used in order to forecast and analyze
time-series data as shown by Qin et al. in 2017 [27].

2.4. The Environmental Impact of Computing

When resource usage and the carbon footprint of services are discussed, optimistic
opinions mention that the cost of highly computational workloads, such as machine learn-
ing, will end up peaking and then diminishing over time [28]. However, it is important to
realise the finite nature of computing resources in a typical data center, regardless of how
large they are. It should not be only the economic incentive that drives innovation in the
heart of computing resource scaling, in order to achieve more with a smaller footprint.

Fridgen et al. [29], like many other researchers of the past few years, concentrate
on the massive amount of energy consumed by two intensive and widespread comput-
ing processes: machine learning and cryptocurrency mining on systems, such as Bitcoin
(the most widely traded and mined cryptocurrency, the precursor to the current age of
blockchain-based applications [30]). Based on the findings of Fridgen et al., there is some
hope though that the existence of these high-cost systems would drive further investment
into renewable energy sources. In terms of papers leveraging deep learning solutions (such
as LSTMs), another notable example is that of Farsi et al. [31], which describe a novel
LSTM-based used in order to forecast power grid loads in the short term.

There are many other bodies of work that treat different aspects of human carbon im-
pact, such as the incentive to split deliveries, in order to achieve less carbon emissions [32].

3. System Setup and Deep Learning Algorithms
3.1. Overview

The service architecture consists of several components that are part of a critical
software system deployed in production, with tens of thousands of daily users. The main
points of interest are the Kubernetes pods running the API, as their number should ideally
vary over time, in order to ensure optimal resource allocation and not have idle pods lying
unused. This is especially important in data centers, where optimal resource allocation
ensures less power usage. Previous research, such as GreenCloud [33], focuses on heuristics
meant to lower power consumption.

The data collected shows certain recurring usage patterns, where the load of the
service is abnormally high, signalling the need to scale up the number of pods running the
API. Figure 1 showcases the apparent hourly seasonality of the CPU usage data collected.

We notice in Figure 1 that there are several spikes occurring at roughly the same time
every hour (twice), which could boost the accuracy of the algorithm. In fact, the spike
in usage comes from automated processes that are synchronising data, e.g., about one’s
membership to the many thousands of authorization groups that a person can belong to
at CERN.
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Figure 1. Sample from the collected CPU usage.

Going further into the analysis, we take into consideration the classic metrics that
allow us to analyze time-series data and understand its underlying properties:

• Trend—if the data are increasing or decreasing in the long term.
• Seasonality—if certain periodic changes occur in the data and can be spotted by

removing the other pieces of data.
• Residuals—the noise in the data which can be represented in this case by ad-hoc users

of the API which cause some load on the systems, or other anomalies.

We analyse a 24 h piece of data (09:00 18 January 2022 to 09:00 19 January 2022) from
the source dataset, using the Statsmodels [34] Python library. The day is a regular working
Tuesday, meaning that we should expect to see some more usage as opposed to, e.g., a
weekend day. The results can be seen in Figure 2.

Comparing the results with those from Figure 3 (data between 09:00 15 January–09:00
16 January, Saturday and Sunday), we observe that the data present much more residuals
when sampled from a weekday when the API is being called by various clients in an
irregular fashion. Additionally, one can observe that the weekday trend is significantly
higher during the working day (between 9 and 17), while diminishing after the working
day is over and showcasing only the automated spikes. The seasonality points out the
2 spikes that occur every hour from automated processed, as it could be expected from the
initial analysis.

3.2. System Architecture and Data Collection

The system design, briefly explained, is a standard distributed architecture based on
the Kubernetes container orchestration tool, with one load-balancer in front serving several
pods that run the system’s API. Additionally, the same pods contain a second container for
Prometheus [35], responsible for gathering local data and serving it to the main instance.

Lastly, the data from each of the pods is gathered and aggregated into a central
Prometheus instance, which allows querying the dynamically changing list of pods. In case
one of the metrics disappears it means the destruction of one of the pods, which will be
replaced by a newly-created one, ensuring a fault-tolerant system.
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Figure 3. Decomposition (weekend).

Figure 4 shows all the monitored components in the system.
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Figure 4. System architecture overview—metric collection.

The data collection process is influenced by the system’s architecture. Prometheus [35]
is used as the main store for application server metrics. One of the main advantages are fact
that Prometheus allows clients to run fast queries that automatically aggregate data into
buckets of time-series data, much faster than an equivalent SQL database would be able to.
As such, in recent years it has become very popular for building large scalable monitoring
systems, for example in the domain of data centers [36].

In Listing 1, the query used to gather the data from the production environment is
given. The rate function takes care of returning values depending on the rate of change in
the data over a window of 5 min. In principle, the query performs a rolling aggregation of
the CPU usage at every 5 min, allowing the authors to capture essential information in one
value. The query is performed via a REST API call that allows automated gathering of data
to be fed to the online algorithm.

Listing 1. Prometheus query for collecting the data.

sum( r a t e (
process_cpu_seconds_tota l {

kubernetes_namespace =~
" api −process " } [ 5m]
)

)

The data are returned in the Javascript Object Notation (JSON) format as a list of
tuples, the first one containing the UNIX timestamp of the measurement, while the second
one being the aggregate value as a floating point number. The format can be clearly seen in
Listing 2.

Listing 2. Aggregated data from Prometheus.

{ " resul tType " : " matrix " ,
" r e s u l t " : [

{ " metr ic " : { } ,
" values " : [
[1641773100 , "0 .08205714228572106" ]

] } ]
}

Once the data are collected, it is processed into a data-frame as part of a Python job
using the Pandas data analytics library [7]. These data can then be used to develop the
forecasting algorithms.
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3.3. Classical Time Series Analysis Algorithms

In order to have a control method, we decided to compare the deep learning imple-
mentations developed to be run on our dataset with a more traditional algorithm, the Auto
Regressive Integrated Moving Average (ARIMA) algorithm, namely the implementation
provided by the Statsmodels library [34].

The algorithm requires 3 parameters that control the 3 different models that form up
an ARIMA model:

• p—controls the auto regression (AR) part of the algorithm.
• d—controls the differencing (I) part of the algorithm, the number of non-seasonal differences.
• q—controls the moving average (MA) part of the algorithm, the number of lagged

forecast errors.

We used a simple grid search to try several values for the parameters, using the
algorithm that provides the best root mean square error (RMSE) metric on the validation
data. We used an 80–20 train/test split on the collected dataset to test and validate the
model. The value 0 for any of the three metrics represents a “deactivation” of that specific
part of the model.

The values tested in the grid search are:

• p—[0, 1, 2, 4, 6, 8, 10];
• d—[0, 1, 2, 3];
• q—[0, 1, 2, 3].

Using the above search, we concluded that the best parameters for our dataset are (6,
0, 2) and we used them for comparison of the results with the other algorithms.

3.4. Deep Learning Algorithms

The paper offers a comparative study of three popular deep neural network archi-
tectures and validates their implementations in Tensorflow [37] on the collected CPU
metrics. The following types of deep neural networks are used in the implementation of
the algorithms:

• Convolutional neural network (CNN) model—3 layers of 1-dimensional convolutions
followed by a batch normalization layer and a rectified linear unit layer to apply
non-linear transformation to the data. The resulting tensors are passed through a last
pooling layer that averages the results of the convolutions and is fed into a 1-neuron
dense layer that outputs a predicted value.

• Recurring neural network (RNN) model—2 layers of a simple recurring neural net-
work are used in order to train the model, the first layer feeding a sequence into the sec-
ond one, then passing the information to a fully-connected dense neural network layer.

• Long short-term memory (LSTM) model—2 layers of an LSTM based neural network,
using specialized recurring neural network cells that have a special memory layer
feeding into each of the neurons in the sequence. The layers both return sequences and
feed into another pair of dense neural network layers before outputting a prediction.

The loss function used in order to perform the stochastic gradient descent optimization
for each of the models is the Huber loss function, which has a history of being adapted to
time-series and regression problems [38].

Additionally, in order to find the optimal learning rate in order to avoid over or
under-fitting the model, a learning rate scheduler is used for each algorithm for 100 epochs.
The output of the scheduler seen on a graph shows the correct moment in which the loss
on the training set starts increasing due to a too-high learning rate. Figures 5–7 show the
output in terms of mean absolute error and loss for the models, at each epoch. As it gets
higher, the loss starts increasing and it is essential to pick the learning rate that was found
right before the loss begins decaying.
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Table 1. Parameter breakdown per model - RNN

Layer Parameters
lambda (Lambda) 0

simple_rnn (SimpleRNN) 1680
simple_rnn_1 (SimpleRNN) 3240

dense (Dense) 41
lambda_1 (Lambda) 0

Figure 7. Learning rate schedule output—RNN.
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The rest of the parameters, such as those used to establish the batch sizes and the
window of data taken into consideration, were selected based on practicality. A batch of
32 windows in the data are taken for each training epoch, while the window size is equal to
20. We took 20 as it represents 100 min per input to the algorithm, 1 h and 20 min, a realistic
value to be used when doing online prediction in the future.

Table 1 holds a breakdown of the number of parameters available for training each of
the models, as well as the optimal learning rate that was found.

The optimal learning rate can be obtained using the built-in LearningRateScheduler
class provided in the Keras implementation of Tensorflow 2. Using stochastic gradient
descent with an initial low learning rate 10−8 and a momentum of 0.9, Figures 5–7 show
the results of training for an epoch with each step of the parameter. The higher the
learning rate, the quicker the algorithm converges. However, fast convergence leads to
potentially missing the global minimum and “bouncing around” the target, eventually
increasing the loss. The values presented in Table 1 are the ones just before the loss starts
increasing, leading to the conclusion that they are the parameters for which conversion
occurs the fastest.

The number of parameters comes not by choice but from the design of each of the
networks. The trainable parameters of the models are further described, layer by layer,
in Tables 2–4.

Table 1. Number of parameters and optimal learning rate for each architecture.

Architecture No. Parameters Optimal LR

CNN 25,793 1.6 × 10−5

LSTM + DNN 17,573 1 × 10−5

RNN 4961 7 × 10−6

Table 2. Parameter breakdown per model—RNN.

Layer Parameters

lambda (Lambda) 0
simple_rnn (SimpleRNN) 1680

simple_rnn_1 (SimpleRNN) 3240
dense (Dense) 41

lambda_1 (Lambda) 0

Table 3. Parameter breakdown per model—CNN.

Layer Parameters

lambda (Lambda) 0
conv1d (Conv1D) 256

batch_normalization 256
re_lu (ReLU) 0

conv1d_1 (Conv1D) 12,352
batch_normalization_1 256

re_lu_1 (ReLU) 0
conv1d_2 (Conv1D) 12,352

batch_normalization_2 256
re_lu_2 (ReLU) 0

global_average_pooling1d 0
dense (Dense) 65

lambda_1 (Lambda) 0
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Table 4. Parameter breakdown per model—LSTM.

Layer Parameters

lambda (Lambda) 0
bidirectional 33,792

bidirectional_1 41,216
dense (Dense) 65

lambda_1 (Lambda) 0

4. Results

The results from the various model implementations show promising results, en-
abling the development of a real production system that alerts system administrators
about impending load increases. This adds the potential to integrate the system with
Kubernetes in an automatic manner, making it easy to scale resources depending on their
forecasted requirements.

The dataset obtained from the CPU metrics covers the data collected from the 5 January
2022 to the 25 January 2022, a total of 20 days in which usage patterns of the service are
likely to be visible.

Taking the results and applying them to the validation dataset, Figures 8–11 graphically
show the output of the predictions for all three architectures developed in the writing of
this paper. The window seen in each of the figures represents the last 50 samples of the
validation dataset (5 min intervals each), potentially being the most unseen piece of the
data for the algorithms, offering insight into how the system would perform in real life.

Table 5 discusses the details of each of the algorithm implementations, giving some
insight as to how each of them performs. One very important metric for evaluating the
model performance on the validation set is the mean absolute error (MAE), which computes
how close the predictions are to the real values that were achieved.

Table 5. Training times and losses for each architecture.

Architecture Training Time/Epoch Val. MAE Val. Loss

CNN 8 ms 0.8446 0.1265
LSTM + DNN 9 ms 0.2175 0.0475

RNN 1 s 29 ms 0.1653 0.0843
ARIMA N/A 0.2384 N/A

In Table 5, the value “N/A” stands for “not applicable”, as the training process does
not require multiple epochs, as in the case of deep learning algorithms.

Although most of the models seem to perform fairly well, there is a clear pattern
of over-fitting and under-fitting visible between the different implementations of the
algorithms. In the case of the CNN, the graph and the MAE points to the fact that the
network does not fully capture the non-linearity of the data, leading to predictions that are
higher than the actual values they should represent. The peaks in the data are represented
but the valleys are not “deep” enough. Despite being a generally viable solution for
forecasting data that presents seasonality and other repetitive metrics, the results (including
those from Figure 8) show that the deep learning algorithms are better capable of predicting
the irregularities in the dataset. The MAE for the ARIMA model has been shown to be
better than the CNN solution, with the downside of taking a long time to test and for
the grid search algorithm to finish successfully. The fact that the training time increases
significantly with the addition of data is another drawback of using the ARIMA model.
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Figure 8. Sample validation predictions—ARIMA.

Figure 9. Sample validation predictions—CNN.

Figure 10. Sample validation predictions—RNN.
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Figure 11. Sample validation predictions—LSTM.

In the case of the LSTM implementation, the algorithm converged quite fast to a low
MAE and loss, actually achieving lower loss on the dataset than in the case of the recurring
neural network implementation. Additionally, looking at the graph in Figure 12 shows us
that the mean absolute error does not go below a specific value, indicating the fact that the
algorithm is not specialized enough. In terms of frequency, the data were collected at 5-min
intervals for the duration of 20 days, with the last 2 days being used as validation data for
the algorithm implementations validation steps.
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Figure 13. MAE and loss - RNN training

Figure 12. MAE and loss—LSTM training.

The RNN has fewer parameters and offers the best results, a trade-off between the
other 2 under and over fitting algorithms. Essentially, it would seem that the LSTM model
tends to be too complex for the nature of the task provided and ends up over-fitting to the
time-series data. The loss quickly drops after 50 epochs and does not improve afterwards,
as one can see in Figure 13. The CNN solution converges very fast and has a slightly higher
error than the other implementations, as observer in Figure 14.

Resource Usage Impact

This section discusses the significance of the more detailed results we collected in
view of understanding how the algorithm’s application in a production system would
influence power consumption. We devised an experiment for measuring the fitness of the
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forecasts provided by the best algorithm implementation out of the ones that were studied,
the RNN solution.
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Figure 13. MAE and loss—RNN training.
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4.1. Resource usage impact 361

This section discusses the significance of the more detailed results we collected in view 362

of understanding how the algorithm’s application in a production system would influence 363

power consumption. We devised an experiment for measuring the fitness of the forecasts 364

provided by the best algorithm implementation out of the ones that were studied, the RNN 365

solution. 366

We name ratio the amount of 5-minute time-intervals that the algorithm should 367

consider as being under heavy load. The experiment was performed on the validation data, 368

roughly 2 days, from the 24th to the 25th of January, 2022. 369

The "ratio" value represents the instant when a prediction considers scaling up the 370

system (for example, from 1 to 2 containers). We simplified the model by assuming the 371

system uses 0 units of power when the predicted value is below the threshold and 1 when 372

the prediction is over the ratio value. By computing some statistics (which can be consulted 373

in Table 6), we can compare the number of instances when the system should ideally scale 374

up or down to the real predictions. 375

We look at the real instances in which the system went over the threshold of computing 376

power needed to scale up (the ratio) and measure how many times the prediction was 377

correct, allowing us to understand the amount of true positives in the system. When the 378

predicted or real value for the CPU usage is not above the ratio, we consider that the system 379

is scaled down, using 0 units of power for that interval of time. 380

We took both the training and the validation data in the table, in order to see that the 381

performance of the system is not significantly worse on the validation data. 382

The legend for Table 6 is the following: 383

• Ratio - the CPU usage over which the system should scale up. 384

• Real Over - the number of real instances in which the CPU usage surpassed the value 385

(training + test data). 386

• Forecast Over - the number of forecasts where the CPU usage is above the ratio value. 387

• Real All % Over - the percentage of real predictions where the CPU usage values were 388

over the ratio. 389

• All % Over - the percentage of forecasts where the CPU usage values were over the 390

ratio. 391

• Val. Real Over - the number of real instances where the values where over the ratio in 392

the validation data. 393

• Val. Over - the number of forecast instances where the values where over the ratio in 394

the validation data. 395

Figure 14. MAE and loss—CNN training.

We name ratio the amount of 5-minute time-intervals that the algorithm should
consider as being under heavy load. The experiment was performed on the validation data,
roughly 2 days, from the 24–25 January 2022.

The “ratio” value represents the instant when a prediction considers scaling up the
system (for example, from 1 to 2 containers). We simplified the model by assuming the
system uses 0 units of power when the predicted value is below the threshold and 1 when
the prediction is over the ratio value. By computing some statistics (which can be consulted
in Table 6), we can compare the number of instances when the system should ideally scale
up or down to the real predictions.

We look at the real instances in which the system went over the threshold of computing
power needed to scale up (the ratio) and measure how many times the prediction was
correct, allowing us to understand the amount of true positives in the system. When the
predicted or real value for the CPU usage is not above the ratio, we consider that the system
is scaled down, using 0 units of power for that interval of time.
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We took both the training and the validation data in the table, in order to see that the
performance of the system is not significantly worse on the validation data.

Table 6. Table of measurements for instances where real data and forecasts go above the ratio used in
the experiment.

Ratio Real Over Forecast
Over

Real All
% Over

All %
Over

Val.
Real Over Val. Over Val.

Real % Val. %

0 0.1 3216 4072 72.8 92.2 330 390 79.5 94.0
1 0.2 2173 3397 49.2 76.9 229 331 55.2 79.8
2 0.3 1517 2349 34.4 53.2 147 232 35.4 55.9
3 0.4 1049 1580 23.8 35.8 97 156 23.4 37.6
4 0.5 891 1171 20.2 26.5 83 113 20.0 27.2
5 0.6 808 975 18.3 22.1 77 92 18.6 22.2
6 0.7 731 843 16.6 19.1 69 83 16.6 20.0
7 0.8 654 706 14.8 16.0 67 66 16.1 15.9
8 0.9 537 548 12.2 12.4 53 51 12.8 12.3

The legend for Table 6 is the following:

• Ratio—the CPU usage over which the system should scale up.
• Real Over—the number of real instances in which the CPU usage surpassed the value

(training + test data).
• Forecast Over—the number of forecasts where the CPU usage is above the ratio value.
• Real All % Over—the percentage of real predictions where the CPU usage values were

over the ratio.
• All % Over—the percentage of forecasts where the CPU usage values were over

the ratio.
• Val. Real Over—the number of real instances where the values where over the ratio in

the validation data.
• Val. Over—the number of forecast instances where the values where over the ratio in

the validation data.
• Val. Real %—the percentage of real measurements where the CPU usage values were

over the ratio in the validation data.
• Val.%—the percentage of forecasts where the CPU usage values were over the ratio in

the validation data.

We can observe that the real CPU usage is lower than the predicted one when taking
the threshold lower than 0.4 (both for the training and validation data). For example, at 0.2
the forecast is over that value 79.8% of the time while the real values were around 55.2%.
This shows a trend for the algorithm to overestimate the amount of CPU resources needed
at a certain point in time, which is not necessarily something undesirable. However, in the
context of lowering energy consumption, the best iteration of the algorithm for us is the
one that provides forecasts at all the instances when they also occur (5 min in the future).

However, when we look at the values when the ratio is larger than 0.4, it can be
observed that the predictions and the real CPU usage converge. This means that on most
instances where the CPU usage was over the ratio, the forecasting algorithm predicted
similar values. As these are 5 min time-frames, this is desirable since the scaling does
not have to occur instantly and can smoothly take place. This is to be expected of a
heuristic in general and should be used only as an informative item. In practice, scaling
around 40–50% seems to give results that are promising enough and would work in a
real-life implementation.

Given the data above, we decided to analyze the overall gains in terms of energy
consumption. To simplify the computation process, we consider the scaled-down mode of
operation as using 0 units of energy. When the system is under a load larger than the ratio
value, that time is counted as using 1 unit of energy. The measurements were performed
only on the validation dataset.
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The 3 cases present on the graphs are as follows:

• Orange—the worst-case scenario (identical for every instance), where the system is
constantly in high CPU-usage mode.

• Green—the best-case scenario, matching the real CPU resource usage. The ideal
scaling system would already know if the CPU usage will be above the threshold in
the next 5 min, scaling up before the load occurs.

• Blue—the scenario where prediction values larger than the ratio are considered “scale
up” commands.

• Red—a simple heuristic that mimics what a traditional resource scheduler would do.
It takes the previous 2 measurements and compares it to the current timestamp. If the
difference between the mean of the previous 2 measurements and the current reading
is larger than the “ratio”, a scale up is issued. Alternatively, if the difference between
the current value and the previous means is smaller by ratio %, a scale down is issued.

Figure 15 shows the values obtained for each of the different cases.
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We can now observe the values in Table 7 and the relative performance of the forecast-
ing algorithm compared to the best and the worst cases. As observed on the cumulative
sum graphs, the forecasting performance becomes better once the ratio value increases,
as there are fewer instances where the predictor has the chance to miss. The key observation
to make is that the ratio experiment was an exploratory matter devised to see at which
point one should consider scaling up, as the system could potentially stay scaled down
even at 30% CPU usage.

Table 7. Cumulative sums at various ratio levels.

Ratio Worst Forecast Ideal % From
Worst

% From
Ideal

0 0.1 415 390 330 94.0 118.2
1 0.2 415 331 229 79.8 144.5
2 0.3 415 232 147 55.9 157.8
3 0.4 415 156 97 37.6 160.8
4 0.5 415 113 83 27.2 136.1
5 0.6 415 92 77 22.2 119.5
6 0.7 415 83 69 20.0 120.3
7 0.8 415 66 67 15.9 98.5
8 0.9 415 51 53 12.3 96.2

Taking a higher threshold eliminates the intervals where the CPU usage is lower and
the system does not need to stay scaled up. However, in a real-life scenario, one would
need to balance the practicality of the solution with the risk of keeping the system under
heavy load and degrading the performance of the system. Looking at the predictions,
a value around 40% looks reasonable enough and not overly sensitive.

On average, across all experiments, we obtained an energy consumption 60% less than
the worst-case scenario and 28% more than the ideal scenario. If we take only the cases
with a ratio larger than 0.4, the numbers become 80.5% better than the worst-case scenario
and 14% worse than the ideal scenario.

As expected, the cumulative sum of the heuristic metric lowers a lot when reaching
higher values of the “ratio”, showing that the heuristic does not perform any up-scaling
unless there is a long period in which the system is potentially overworking. We consider
the heuristic to be quite efficient for a metric that is so simple, but it would most likely
under-perform the predictive model in a real-world scenario.

To argue a bit more about the significance of the heuristic result, the numbers point to
it having a cumulative sum of resource usage that is much lower than even the ideal case
when we have “ratio” values that are higher than 0.6. How is this possible?

The answer is that the ideal model can be perceived as the bottom threshold of minimal
resource usage which is necessary to ensure the smooth operation of the system. One could
scale down more often or scale up only when the system is really strained, as in the case of
the heuristic. However, this scenario means that we are not allocating enough resources
and in a real-world scenario it would likely degrade the service. It is for this reason that the
heuristic provides a poorer overall performance of the system than the predictive case.

Using the above results, we can confidently say that a best case scenario of applying
the scaling algorithm to an operational data center could lead to significant improvements
in term of computing resource usage and power consumption optimization. In reality,
many aspects are involved in data center power usage, so simple scaling down of machines
is not enough as powering off hardware ends up being at the compromise of Quality of
Service in the eventuality of a power cut or similar event [39].

5. Conclusions

In this paper, a real-world example of deep learning algorithms applied to time-series
prediction was introduced. Three different architectures were evaluated on the collected
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data and their performance was discussed in detail, as well as highlighting the benefits this
scaling could bring. Including this system as part of a Kubernetes automatic scaler could
yield significant improvements in terms of resource usage, around 60% in a real-world
scenario. The online (constant) training of the algorithm on new data could help keep the
scaler up-to-date, even in the situation when the usage patterns change significantly.

The presented results show that several different deep learning techniques can be
successfully applied to the complex task of CPU resources usage. Additionally, the novelty
of the study was represented by the comparison provided between the three different archi-
tectures. Similar papers in the field choose to focus on one specific implementation [2,3,24],
without discussing the implications of trying out different architectures and comparing
them in order to obtain the best results for the problem at hand. The most efficient archi-
tecture out of the three tested was identified, achieving the goal of the paper to efficiently
predict resource usage.

Additionally, the data extracted from the real validation data and compared with the
predictions has shown the potential for the algorithm to forecast high-load periods with
only 20% less accuracy than an ideal "oracle" which can see the future CPU usage of the
service. Compared to the worst-case scenario, improvements of up to 80% could be seen in
terms of raw computing power usage over a certain window of time, as shown in Figure 15.
These promising results could have some true real-world impact, especially when applied
at the scale of an entire data center.

Comparing this paper to other similar systems developed and introduced, the advan-
tage of this solution is mainly posed by the usage of a real production dataset coupled
with a thorough analysis and discussion on the deep learning algorithm’s effectiveness
in practice. One disadvantage that would be addressed at a future date is the lack of
comparison of this solution with other publicly available datasets.

In terms of future work, one possible path of development lies at the intersection of
the fields of Computer Science and Systems Engineering. An automated scaler could be
implemented using the Kubernetes Go API and added to any system that would require it.
The algorithm requires a very small window of data (around 1 h of 5 min intervals) points
in order to offer a good prediction for the future.

The forecasting algorithm that we designed, for example when compared to RUBAS [12],
allows us to improve the performance of the algorithm over time, given that it collects data
from the same system. As we previously mentioned, many of the other proposed methods
in the literature rely on static formulas and limited windows of data. Although it is true
that the algorithm requires a certain amount of data to offer a prediction, that data can
be used as training data for future predictions, improving its performance. Additionally,
the recurrent aspect of the implemented networks allow past events (such as a spike in the
CPU usage) to influence future predictions in a truly dynamic way, offering more robust
results regardless of the data that is input.

Due to the information provided above, this makes it easy to implement solutions
that scale dynamically based on the prediction output. This topic shall be the subject of
discussion in a future paper.
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