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Abstract: Particle swarm optimization (PSO) is one of the most famous swarm-based optimization
techniques inspired by nature. Due to its properties of flexibility and easy implementation, there is
an enormous increase in the popularity of this nature-inspired technique. Particle swarm optimization
(PSO) has gained prompt attention from every field of researchers. Since its origin in 1995 till now,
researchers have improved the original Particle swarm optimization (PSO) in varying ways. They
have derived new versions of it, such as the published theoretical studies on various parameters
of PSO, proposed many variants of the algorithm and numerous other advances. In the present
paper, an overview of the PSO algorithm is presented. On the one hand, the basic concepts and
parameters of PSO are explained, on the other hand, various advances in relation to PSO, including
its modifications, extensions, hybridization, theoretical analysis, are included.

Keywords: particle swarm optimization (PSO); variants of particle swarm optimization; parameter
tuning; advances in particle swarm optimization; hybridization of particle swarm optimization

1. Introduction

In today’s complex life, everyone knowingly and unknowingly takes decisions that may
be related to single or multiple objectives. The eventual goal of these decisions is to maximize
the benefit or to minimize the loss. From all of the available options, we prefer to choose the
best option. So, optimization is a process of finding as effective as possible an outcome, or it
is an act of choosing the best option from among the available options with the objective of
maximization or minimization and with or without any given set of constraints. It has several
components, such as decision variables, constraints and objectives. It is a well-known topic
among numerous scholars and research groups engaged in the development and advancement
of any area of science, engineering, technology, mathematics, philosophy and many more.
Attempts are always made to continuously improve the existing work. There is a long list
of algorithms available in the literature. These can be classified as exact and approximate
algorithms. Due to the limitations of the exact methods, research is more tilted towards the
approximate methods. Approximate methods are mainly heuristic and metaheuristic. The
metaheuristic algorithms are non-deterministic in nature.

Broadly, there are three main branches of metaheuristic algorithms: Evolutionary
algorithms (EA); physics and chemistry-based algorithms; and swarm intelligence-based
algorithms. Inspired by the principles of natural selection and natural genetics, the evo-
lutionary algorithms (EA) are always famous with the research scientists. Some of the
evolutionary algorithms (EA) are genetic algorithms, virulence optimization algorithms,
differential search algorithms, biogeography-based algorithms, differential evolution al-
gorithms, cultural algorithms, etc. The physics and chemistry-based algorithms are those
algorithms that mimicked some physical and/or chemical laws i.e., their inspiration source
is from physics and chemistry. Famous algorithms in the category of physics and chemistry
algorithms are: big bang–big crunch, galaxy-based search algorithm, spiral optimization,
electro-magnetism optimization, black hole, charged system search, etc. Swarm intelligence
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(SI) is a major branch of computational intelligence, based on studying the collective behav-
ior of swarms in nature that interact with each other locally in the absence of any kind of
supervision. Swarm intelligence is also termed as collective intelligence. Examples of SI
include ant colonies, birds flocking, animal herding, bacterial growth, fish schooling, etc.
Until now, a wide variety of research has been carried out on various swarm intelligence
algorithms to solve different optimization problems (which has been elaborated in Table 1).

Table 1. List of some of the swarm intelligence-based algorithms.

Name of Algorithm Year Description Ref. No.

Artificial hummingbird algorithm 2022
Zhao et al. proposed an artificial hummingbird algorithm (AHA) to tackle
optimization problems and proved its effectiveness over other metaheuristics
with experimental results.

[1]

Chimp Optimization Algorithm
(Khishe and Mosavi (2020a)) 2022

Jia et al. presented an enhanced chimp optimization algorithm (EChOA) and
analyzed its performance on 12 classical benchmark functions and 15
CEC2017 benchmark functions.

[2]

Rat swarm optimization (Dhiman et al. (2021)) 2021
Dhiman et al. presents swarm-based rat swarm optimization and tested its
performance on unimodal, multimodal and CEC-15 special session
benchmark functions.

[3]

African Vulture’s Optimization Algorithm
(Abdollahzadeh et al. (2021) 2021

A new metaheuristics, namely African Vulture’s Optimization Algorithm
(AVOA) is proposed by Abdollahzadeh et al. They proved it as a best
algorithm on 30 out of 36 benchmark functions.

[4]

Dragonfly optimization 2021

Bhardwaj and Kim proposed dragonfly node identification algorithm (DNIA)
and evaluated its robustness and efficiency using statistical analysis,
convergence rate analysis, Wilcoxon test, Friedman rank test, and analysis of
variance on classical as well as modern IEEE CEC 2014 benchmark functions.

[5]

Horse herd optimization algorithm 2021

In order to solve high dimensional optimization techniques, MiarNaeimi et al.
developed a new meta-heuristic algorithm called the Horse herd Optimization
Algorithm (HOA).Through statistical results, they demonstrated the merits of
their proposed algorithm.

[6]

Gaining-sharing knowledge-based algorithm 2020
Mohamed et al. proposed a gaining-sharing knowledge-based algorithm and
proved it was better by completing experiments on various problems, along
with CEC 2017 benchmark functions.

[7]

Coronavirus optimization algorithm 2020
Martinez-Alvarez et al. introduced a novel bio-inspired metaheuristic, based
on the coronavirus behavior. They elaborated major advantages of coronavirus
optimization algorithm compared to other similar strategies.

[8]

Harris Hawks Optimization 2019
Heidari et al. proposed a novel paradigm called Harris Hawks Optimizer
(HHO), and tested it on 29 benchmark problems and several real-world
engineering problems

[9]

African Buffalo Optimization 2015

Odili et al. developed a novel optimization technique, namely the African
Buffalo Optimization (ABO) and checked its validation on a number of
benchmark Traveling Salesman Problems. Authors recommended to use ABO
to solve knapsack problems.

[10]

The list of swarm intelligence algorithms is too long to explain each and every al-
gorithm, such as the particle swarm optimization (PSO), ant colony optimization (ACO),
firefly algorithm (FA), honey bee algorithm (HBA), grey wolf optimization (GWO), bat
algorithm (BA), krill herd algorithm (KHA), cuckoo search algorithm (CSA), flower pollina-
tion algorithm (FPA), lion optimization algorithm (LOA), salp swarm algorithm (SA), cat
algorithm (CA) and many more to come.

The success of these algorithms in terms of the lesser number of iterations, less com-
putational efforts, etc. is largely based on their parameter tuning and parametric control.
These algorithms have a common objective of searching for a good quality solution using
less computational effort. For this objective, according to the researchers, there should be a
proper balance between the exploration and exploitation abilities of the algorithm. Explo-
ration is the process of searching entirely new regions of a whole searching space, whereas
exploitation is the process of searching only those regions of a search space those are near
to the already visited and searched area. According to Eiben and Schippers [11], these
concepts of exploration and exploitation abilities were not fully understandable because,
on one hand, there was no accepted opinion among the researchers about exploration and
exploitation, and on the other hand, an increase in one’s capability resulted in the weakness
of the other one. Therefore, a proper balance is imperative between the exploration and
exploitation capabilities for the success of any algorithm to solve the optimization problem.
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However, due to the stochastic nature of the optimization problems, it is very difficult to
achieve a balance between these components.

Success in solving any kind of optimization problem depends upon the selection of an
appropriate algorithm. This was also proved by Wolpert and Macready [12], in their theo-
rem called as the “no free lunch” theorem, that no algorithm is perfect to solve every kind of
optimization problem. So, the main concept is to choose wisely an appropriate optimization
technique to solve a given hand -in optimization problems, with less computational effort
and a higher rate of convergence performance. Kennedy and Eberhart [13] introduced an
evolutionary algorithm particle swarm optimization (PSO) as an optimization technique,
based on the concept of birds flocking, fish schooling and even human social behavior.
The main idea and structure of the algorithm was inspired by evolutionary computation.
Presently, it is considered to be one of the leading swarm intelligence algorithms that is
widely used in hybrid techniques, due to its simplicity, capability of searching for the global
optimum and higher rate of convergence.

2. Concept of Particle Swarm Optimization (PSO) Technique

The particle swarm optimization (PSO) technique is a well-known population-based
metaheuristics technique to solve optimization problems. This algorithm simulates the
social behavior of birds within the flock to attain the target of food. With the combination
of both self and social experience, a swarm of birds approaches their target of food. They
continuously update their position, according to their own best position and the best
position of the entire swarm, and regroup themselves, resulting in an optimal formation.
This social–psychological behavior of birds inspired Russell Elberhart (electrical engineer)
and James Kennedy (social psychologist) to apply this principle of social interaction to
problem solving. Kennedy and Eberhart [13] developed the particle swarm optimization
(PSO) technique for the purpose of optimizing continuous non-linear functions. This
nature-based swarm-intelligence algorithm works on iterations. It starts with a population
(called a swarm) of candidates’ solutions. Here, each particle represents a potential solution
to the given problem. In every iteration, the population is updated by updating the velocity
and position of each individual. These updates are based on personal best value (pbest)
and global best value (gbest). Eberhart and Kennedy called pbest and gbest the two basic
values. In the pbest model, the particles are influenced by their own position, but in the
gbest model, the position of the particles is influenced by the best position found by any
member of the entire population. Then, accordingly, each particle will converge to this new
position. In short, we can say pbest is the best position or location obtained so far by the
individual itself. Gbest is the best position by any individual obtained so far in the entire
population during the search process in the solution space.

2.1. Updating of Velocity and Position of Particle in the Swarm
2.1.1. Updating of Velocity

In this algorithm, the regulation of velocity is considered as a major feature, as it is the
main mechanism used to move the position of a particle to search for an optimal solution in
the search space. Eberhart used the maximum values of velocity, and discussed results for
different values of velocity. The velocity of particle k in the swarm in the (i + 1)th iteration,
is updated, according to the following Equation (1):

Vk(i + 1) = Vk(i ) + c1 r1

(
pk

best,i − Xk(i)
)

+ c2 r2

(
gbest,i − Xk(i)

)
(1)

where Vk(i + 1) is the velocity of particle k at the (i + 1)th iteration; Xk(i) is the position
of particle k in the ith iteration; pk

best,i is individual best position of the particle k in the ith

iteration; gbest,i is the global best position of the any particle in the ith iteration;c1 and c2
are the real acceleration coefficients that control how much the global and individual
best positions should influence the particle’s velocity; r1 and r2 are uniformly distributed
random numbers in the range 0 and 1, used to maintain an adequate level of diversity
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in the population. There are three components of the velocity update Equation (1) of kth

particle in the (i + 1)th iteration, namely:

• Momentum part;
• Cognitive part;
• Social part.

A brief description of the velocity equation has been illustrated in Table 2.

Table 2. Details of the components of velocity update Equation (1).

Notation Name of Component Contribution of the Component in Updating the Velocity

Vk(i ) Momentum part
It serves as a memory of the immediate past flight as it uses the previous velocity. It is
also taken to be inertia component that makes a balance between the exploration and
exploitation of each particle in search space.

c1 r1

(
pk

best,i − Xk(i)
)

Cognitive part This cognitive part drives the particles to their own best position and is equivalent to the
distance of the particle from its personal best position till now.

c2 r2

(
gbest,i − Xk(i)

)
Social Part This is the social component of the velocity equation that drives the particle to the best

position determined by the swarm.

2.1.2. Updating the Position of Particle

The position of each particle k, at every iteration (i + 1)th, varies according to the
following Equation (2):

Xk(i + 1) = Xk(i) + Vk(i + 1) (2)

where Vk(i + 1) is the velocity of particle k at the (i + 1)th iteration; Xk(i+ 1) is the position
of particle k in the (i + 1)th iteration; Xk(i) is the position of particle k in the ith iteration.

Figure 1 illustrates the state of swarm at the iteration (i + 1)th. It shows how the
velocity of particle k is updated and that, in turn, updates the position of the kth particle in
the iteration (i + 1)th.
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2.2. Standard Particle Swarm Optimization (SPSO)

The authors Shi and Elberhart [14] introduced a new parameter ω, called the inertia
weight of a particle. With this new parameter, the velocity update Equation (1) changed to
Equation (3):

Vk(i + 1) = ω Vk(i ) + c1 r1

(
pk

best,i − Xk(i)
)

+ c2 r2(gbest,i − Xk(i)) (3)

The particle swarm optimization (PSO) algorithm with this improvement is commonly
referred to as the standard PSO.

2.3. Pseudocode of PSO Algorithm

The Pseudocde of the particle swarm optimization algorithm is illustrated in the
Algorithm 1 as follows:

Algorithm 1: The Pseudocde of the algorithm is as follows

INPUT: Fitness function, lower bound, upper bound is the part of problem i.e., it will be given in the problem.
Np (Population Size), I (No. of iteration),ω, c1 , c2 are to be chosen by the user.

1. Initialize a random population (P) and velocity (v) within the bounds;

2. Evaluate the objective function value (f) of P;

3. Assign pbest as P and fpbest as f;

4. Identify the solution with best fitness and assign that solution as gbest and fitness as fgbest .

For iteration:-
for i = 1 to I

for k = 1 to Np
Determine the velocity (vk) of kth particle;
Determine the new position (Xk) of kth particle;
Bound Xk;
Evaluate the objective function value fk of kth particle;
Update the population by including Xk and fk;

Update pk
best and fpbest i f fk < fpk

best
then

{
pk

best = Xk
fpbest = fk

;

Update gbest and fgbest i f fpk
best

< fgbest then

{
gbest = pk

best
fgbest = fpk

best

.

end
end

2.4. Working Example of PSO

The PSO algorithm can be more understandable with a working example with some
iterations. The example is illustrated as below:

Example: min f(x) = x2
1 + x2

2 + x2
3 + x2

4 0 ≤ xi ≤ 10 i = 1, 2, 3, 4
Solution: Parameter setting of PSO algorithm
Population Size (Np) = 5, Inertia Weight (w) = 0.7, Acceleration Coefficient = c1 = c2 = 1.5,

Maximum iteration = 10
Iteration !: Generate random positions and velocities within domain 0 ≤ xi ≤ 10 and

evaluate fitness of positions i.e.,

X(position) =


4 0 0 8
3 1 9 7
0 3 1 5
2 1 4 9
6 2 8 3

 f (X)(fitness function) =


80

140
35

102
113

 v(velocity)


9 6 1 8
5 1 3 0
7 4 1 4
3 0 2 1
1 6 8 7


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Here fitness value of velocity is not required, fitness value of only positions is required

p(1)
best =


4 0 0 8
3 1 9 7
0 3 1 5
2 1 4 9
6 2 8 3

 fpbest
=


80

140
35

102
113


In the first iteration as we do not have any historical information, so current position

is considered as best direction i.e., pbest = X.
Now, gbest =

[
0 3 1 5

]
fgbest

= 35
So, in iteration 1, we get:

V =


9 6 1 8
5 1 3 0
7 4 1 4
3 0 2 1
1 6 8 7


v(1)

1

v(1)
2

v(1)
3

v(1)
4

v(1)
5

X =


4 0 0 8
3 1 9 7
0 3 1 5
2 1 4 9
6 2 8 3


X(1)

1

X(1)
2

X(1)
3

X(1)
4

X(1)
5

f (X) =


80

140
35

102
113



p1
best =


4 0 0 8
3 1 9 7
0 3 1 5
2 1 4 9
6 2 8 3


p(1)

best, 1

p(1)
best, 2

p(1)
best, 3

p(1)
best, 4

p(1)
best, 5

fpbest
=


80

140
35

102
113


gbest =

[
0 3 1 5

]
fgbest

= 35

Iteration 2 (First solution):
To calculate v(2)

1 , X(2)
1 .

Let r1 =
[
0.4 0.3 0.9 0.5

]
and r2 =

[
0.8 0.2 0.7 0.4

]
v(2)

1 = wv(1)
1 + c1r1 (p

(1)
best, 1 − X(1)

1 ) + c2r2 (gbest − X(1)
1 )

= [1.5 5.1 1.75 3.8]
X(2)

1 = X(1)
1 + v(2)

1
= [4 0 0 8] + [1.5 5.1 1.75 3.8 ]
= [5.5 5.1 1.75 11.8 ] /∈ [0, 10]

This is the new position of first particle in the second iteration but new position is not
within the bounds.

So, by using corner bounding strategy

X(2)
1 =

[
5.5 5.1 1.75 10

]
∈ [0, 10]

f(X(2)
1 ) = 159.32

No updation in pbest as f(2)pbest, 1 = 159.32 > f(1)pbest, 1 = 80 and

No updation in gbest ∴ gbest =
[
0 3 1 5

]
and fgbest

= 35
Iteration 2 (Second Solution):
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To Calculate v(2)
2 , X(2)

2

v(2)
2 = wv(1)

2 + c1r1 (p
(1)
best, 2 − X(1)

2 ) + c2r2 (gbest − X(1)
2 )

=
[
−0.1 1.3 −6.3 −1.2

]
X(2)

2 = X(1)
2 + v(2)

2
= [3 1 9 7] + [−0.1 1.3 −6.3 −1.2]
= [2.9 2.3 2.7 5.8] ∈ [0, 10]

f(X(2)
2 ) = 8.41 + 5.29 + 7.29 + 33.64 = 54.63

Update pbest as f(2)pbest, 2 = 54.63 < f(1)pbest, 2 = 140

No updation in gbest as fgbest
= 35 < f(2)pbest, 2 = 54.63

∴ gbest =
[
0 3 1 5

]
and fgbest

= 35

Iteration 2 (Third Solution):

v(2)
3 = wv(1)

3 + c1r1 (p
(1)
best, 3 − X(1)

3 ) + c2r2 (gbest − X(1)
3 )

= [4.9 2.8 0.7 2.8]

X(2)
3 = X(1)

3 + v(2)
3 = [0 3 1 5] + [4.9 2.8 0.7 2.8]

= [4.9 5.8 1.7 7.8] ∈ [0, 10]
f(X(2)

3 ) = 121.38

No updation in pbest as f(2)pbest, 3 = 121.38 > f(1)pbest, 3 = 35

No updation in gbest, ∴ gbest =
[
0 3 1 5

]
and fgbest

= 35
Iteration 2 (fourth Solution):

v(2)
4 = wv(1)

4 + c1r1 (p
(1)
best, 4 − X(1)

4 ) + c2r2 (gbest − X(1)
4 )

= [−0.3 0.6 −1.75 −1.7]
X(2)

4 = X(1)
4 + v(2)

4 = [2 1 4 9] + [−0.3 0.6 −1.75 −1.7]
= [1.7 1.6 2.25 7.3] ∈ [0, 10]

f(X(2)
4 ) = 2.89 + 2.56 + 5.0625 + 53.29 = 63.8025

Update pbest as f(2)pbest, 4 = 63.8025 < f(1)pbest, 4 = 102

No updation in gbest ∴ gbest =
[
0 3 1 5

]
and fgbest

= 35
Iteration 2 (Fifth Solution):

v(2)
5 = wv(1)

5 + c1r1 (p
(1)
best, 5 − X(1)

5 ) + c2r2 (gbest − X(1)
5 )

= [−6.5 4.5 −1.75 6.1]

X(2)
5 = X(1)

5 + v(2)
5

= [6 2 8 3] + [−6.5 4.5 −1.75 6.1] = [−0.5 6.5 6.25 9.1] /∈ [0, 10]

∴ X(2)
5 =

[
0 6.5 6.25 9.1

]
f(X(2)

5 ) = 42.25 + 39.0625 + 82.81 = 164.1225

No updation in pbest as f(2)pbest, 5 = 164.1225 > f(1)pbest, 5 = 113

No updation in gbest ∴ gbest =
[
0 3 1 5

]
and fgbest

= 35
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So, in iteration 2, we get:

V =


1.5 5.1 1.75 3.8
−0.5 1.3 −6.3 −1.2
4.9 2.8 0.7 2.8
−0.3 0.6 −1.75 −1.7
−6.5 4.5 −1.75 6.1


v(2)

1

v(2)
2

v(2)
3

v(2)
4

v(2)
5

X =


5.5 5.1 1.75 10
2.9 2.3 2.7 5.8
4.9 5.8 1.7 7.8
1.7 1.6 2.25 7.3
0 6.5 6.25 9.1


X(2)

1

X(2)
2

X(2)
3

X(2)
4

X(2)
5

f (X) =


159.32
54.63

121.38
63.8025

164.1225



p(2)
best =


4 0 0 8

2.9 2.3 2.7 5.8
0 3 1 5

1.7 1.6 2.25 7.3
6 2 8 3


p(2)

best, 1

p(2)
best, 2

p(2)
best, 3

p(2)
best, 4

p(2)
best, 5

fpbest
=


80

54.63
35

63.8025
113


gbest =

[
0 3 1 5

]
fgbest

= 35

Iteration 3 (first Solution):

v(3)
1 = wv(2)

1 + c1r1 (p
(2)
best, 1 − X(2)

1 ) + c2r2 (gbest − X(2)
1 )

= [−6.45 0.645 −1.925 1.16]

X(3)
1 = X(2)

1 + v(3)
1

= [5.5 5.1 1.75 10] + [−6.45 0.645 −1.925 1.16]
= [−0.95 5.745 −0.1725 11.16] /∈ [0, 10]
= [0 5.745 0 10]
f(X(3)

1 ) = 133.005025

No update in pbest as f(3)pbest, 1 = 133.005025 > f(2)pbest, 1 = 80

No update in gbest as fgbest
= 35 ∴ gbest =

[
0 3 1 5

]
and fgbest

= 35
Iteration 3 (second Solution):

v(3)
2 = wv(2)

2 + c1r1 (p
(2)
best, 2 − X(2)

2 ) + c2r2 (gbest − X(2)
2 )

= [−3.55 1.12 −6.195 −1.32]
X(3)

2 = X(2)
2 + v(3)

2
= [−3.55 1.12 −6.195 −1.32] + [2.9 2.3 2.7 5.8]

= [−0.65 3.42 −3.495 4.48] /∈ [0, 10]
= [0 3.42 0 4.48]
f(X(3)

2 ) = 11.6964 + 20.0704 = 31.7668

Update pbest as f(3)pbest, 2 = 31.7668 < f(2)pbest, 2 = 54.63

Update gbest as fgbest
= 35 > f(3)pbest, 2 = 31.7668

∴ gbest =
[

0 3.42 0 4.48
]

fgbest
= 31.7668
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Iteration 3 (third Solution):

v(3)
3 = wv(2)

3 + c1r1 (p
(2)
best, 3 − X(2)

3 ) + c2r2 (gbest − X(2)
3 )

= [−5.39 −0.014 −2.24 −2.132]
X(3)

3 = X(2)
3 + v(3)

3
= [4.9 5.8 1.7 7.8] + [−5.39 −0.014 −2.24 −2.132]
= [−0.49 5.786 −0.54 5.668] /∈ [0, 10]
= [0 5.786 0 5.668]
f(X(3)

3 ) = 33.4778 + 32.1262 = 65.604024

No updation in pbest as f(3)pbest, 3 = 65.604024 > f(2)pbest, 3 = 35

No Updation in gbest ∴ gbest =
[
0 3.42 0 4.48

]
and fgbest

= 31.7668
Iteration 3 (fourth Solution):

v(3)
4 = wv(2)

4 + c1r1 (p
(2)
best, 4 − X(2)

4 ) + c2r2 (gbest − X(2)
4 )

= [−2.25 0.966 −3.5875 −2.882]
X(3)

4 = X(2)
4 + v(3)

4
= [1.7 1.6 2.25 7.3] + [−2.25 0.966 −3.5875 −2.882]
= [0 2.566 0 4.418]
f(X(3)

4 ) = 26.10308

Update pbest as f(3)pbest, 4 = 26.10308 < f(2)pbest, 4 = 63.8025

Update gbest as fgbest
= 35 > f(3)pbest, 4 = 26.10308

∴ gbest =
[
0 2.566 0 4.418

]
and fgbest

= 26.10308

Iteration 3 (fifth Solution):

v(3)
5 = wv(2)

5 + c1r1 (p
(2)
best, 5 − X(2)

5 ) + c2r2 (gbest − X(2)
5 )

= [−0.95 −0.0552 −5.425 −3.1142]
X(3)

5 = X(2)
5 + v(3)

5
= [0 6.5 6.25 9.1] + [−0.95 −0.0552 −5.425 −3.1142]
= [0 6.4448 0.825 5.9858]
f(X(3)

5 ) = 78.045825

Update pbest as f(3)pbest, 5 = 78.045825 < f(2)pbest, 5 = 113
No update in gbest

∴ gbest =
[
0 2.566 0 4.418

]
andfgbest

= 26.10308

So, in iteration 3:

V =


−6.45 0.645 −1.925 1.16
−3.55 1.12 −6.195 −1.32
−5.39 −0.014 −2.24 −2.132
−2.25 0.966 −3.5875 −2.882
−0.95 −0.0552 −5.425 −3.1142


v(3)

1

v(3)
2

v(3)
3

v(3)
4

v(3)
5

,
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X =


0 5.745 0 10
0 3.42 0 4.48
0 5.786 0 5.668
0 2.566 0 4.418
0 6.4448 0.825 5.9858


X(3)

1

X(3)
2

X(3)
3

X(3)
4

X(3)
5

f(X) =


133.005
31.7668

65.604024
26.10308
78.046



p(2)
best =


4 0 0 8
0 3.42 0 4.48
0 3 1 5
0 2.566 0 4.418
0 6.4448 0.825 5.9858


p(3)

best, 1

p(3)
best, 2

p(3)
best, 3

p(3)
best, 4

p(3)
best, 5

fpbest
=


80

31.7668
35

26.103088
78.046


Similarly, other iterations can be performed. This example is solved completely up to

the third iteration only. This is the just the explanation of the working of particle swarm
optimization (PSO) algorithm through an example. It is not possible to obtain an optimal
solution by manual calculations. Further iterations can be performed through proper
software for the PSO algorithm.

3. Parameters of PSO

There are a number of control parameters in the particle swarm optimization (PSO)
algorithm, namely the number of particles, size of neighborhood, number of iterations,
acceleration coefficients, inertia weight, dimension of the problem and random values asso-
ciated with the cognitive and social component of the velocity update equation. In addition,
if velocity clamping and constriction are used, then maximum velocity and coefficient
of constriction are also considered to be very effective control parameters (Engelbrecht,
A.P.) [15]. These parameters have a great impact on the convergence speed, performance
and quality of the solution obtained. The fine tuning of the parameters is required, to avoid
premature convergence. Discussions of these parameters are as below:

3.1. Population Size

Swarm size (ns) is the number of particles in the whole swarm. A large number of
the particles cover a larger part of the search space per iteration, but it also increases the
computational complexity per iteration. It can also be possible that a larger number of
particles may lead to a lesser number of iterations to obtain an optimal solution. From
the heuristics found in the publications, the success rate of getting a good solution in the
PSO algorithm is greater with a swarm size of 20 to 50 particles (Eberhart and Shi) [16].
However, it is also found that the optimal population size is usually problem dependent.

3.2. Number of Iterations

In the same way as the swarm size, the number of iterations is also problem dependent,
to obtain a good solution in the particle swarm optimization (PSO) algorithm. On the one
hand, a lesser number of iterations may prematurely stop the search process, and on the
other hand, a larger number of iterations only adds to the computational complexity in
obtaining a quality solution, if the termination criterion depends on a number of iterations.

3.3. Neighborhood Size

The size of the neighborhood is related to the degree of social interaction among the
swarm members. The less interaction that there is in a neighborhood of a smaller size leads
to a slow but reliable convergence. The more interaction that there is in a neighborhood
of a larger size leads to a fast convergence. For instance, if the size of a neighborhood is
defined as two, then particle (k) compares its fitness value with particle (k − 1) and particle
(k + 1) (Eberhart and Shi) [16]. From the heuristics found in the publications, the size of a
neighborhood is usually taken to be 15% of the population size in most of the applications.
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3.4. Acceleration Coefficients

The impact of the cognitive and social component on the particle’s velocity is managed
by the acceleration coefficients c1 and c2, along with the random numbers, r1 and r2. A
proper balance between the values of c1 and c2 is required, as inappropriate values of
c1 and c2 may result in divergent and cyclic behavior of the whole swarm. Impact of
different values of c1 and c2 is explained in Table 3.

Table 3. Impact of different values of Acceleration Coefficients.

Values of Acceleration Coefficients Impact of Acceleration Coefficients Corresponding Change in Velocity
Update Equation (1)

c1 = c2 = 0

In this case, the particle moves on with the
same current speed till it reaches the boundary
of the search space as its velocity is
independent from the impact of personal best
and global best position.

Vk(i + 1) = Vk(i )

c1 > 0 and c2 = 0

Here, the social component of the velocity
does not influence the particle’s velocity and
particle will move in the global search space
according to its own best position.

Vk(i + 1) = Vk(i ) +

c1 r1

(
pk

best,i − Xk(i)
)

c1 = 0 and c2 > 0

Here, the cognitive component of the velocity
does not influence the particle’s velocity and
particle will move in the global search space
according to its neighbor’s best position.

Vk(i + 1) = Vk(i ) +

c2 r2

(
gbest,i − Xk(i)

)
c1 = c2 The particle is attracted towards the average of both pbest and gbest position.

c1 >> c2
Here, the personal best position will generally effect the particle’s velocity more, that leads to
excessive wandering in the search space.

c1 << c2
Here, the best position of other members of the swarm has more impact on particle’s velocity that
leads to pre mature convergence.

3.5. Velocity Clamping

It is the property of a good optimization algorithm to create an optimal balance be-
tween the exploration and exploitation objectives. It was found in the basic PSO algorithm
that the velocity quickly explodes to larger values and, as a result of it, the position of the
particle changes rapidly, that leads to the divergence of the whole swarm. To overcome this
problem, Eberhart and Kennedy [16] introduced the concept of velocity clamping i.e., the
velocities are clamped to stay within the boundary constraints. Vmax denotes the maximum
allowed velocity that creates a better equilibrium between the global exploration and local
exploitation. If the velocity of the particle reaches beyond this specified limit Vmax, then that
velocity of the particle is set to the maximum velocity value (Vmax). Vmax is an important
parameter as it controls the explosion of velocity. Higher values of Vmax encourage global
exploration, but it may risk the possibility that the particles may miss a better search area.
Since the particles are moving faster, they may jump over the optimal solution and continue
to roam in a useless region in the global search area, and on the other hand, the smaller
values of Vmax encourage local exploitation but may risk the possibility that the particles
become trapped in the local optima, resulting in the particles not exploring a better search
space. So, to create a balance between exploration and exploitation, an appropriate value
of Vmax is required.

We can write Vmax as written in Equation (4):

Vmax = δ (Xmax − Xmin) (4)

where Xmax and Xmin are, respectively, the maximum and minimum values of X and δ ε (0, 1].

3.6. Constriction Coefficient

To ensure and enhance the convergence speed of the PSO algorithm and to ensure a
balance between exploration and exploitation, Maurice Clerc [17] suggested the parameter
constriction coefficient χ (Clerc and Kennedy) [18]. He implemented it on the basic velocity
update Equation (1) of the original PSO algorithm.
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The velocity update Equation (1) changes to Equation (5):

Vk(i + 1) = χ [Vk(i ) + c1 r1

(
pk

best,i − Xk(i)
)

+ c2 r2

(
gbest,i − Xk(i)

)
] (5)

where the constriction coefficient χ is given by

χ =
2κ∣∣∣2 − ϕ −
√
ϕ (ϕ − 4)

∣∣∣ (6)

where ϕ = ϕ1 + ϕ2 and ϕ1 = c1 r1,ϕ2 = c2 r2, κ is a function of c1 and c2.
Equation (6) is used under the condition that ϕ ≥ 4 and κ ∈ [0, 1].
Parameter κ controls the exploitation and exploration abilities of the swarm. If κ ≈ 0

then the convergence is faster with local exploitation, and if κ ≈ 1 then the convergence is
slow with a higher degree of exploration. Usually κ is set to a constant value. However, a
higher degree of exploration with local exploitation can be achieved by taking the initial
value of κ near to 1, then decreasing it to 0. When Clerc’s constriction factor is used with
the PSO algorithm, then ϕ = 4.1 and thus constant multiplier κ ≈ 0.729.

3.7. Inertia Weight

The notion of inertia weight ‘ω’ of a particle in the basic PSO algorithm was first intro-
duced into the literature by Shi and Eberhart [14], to improve its convergence performance.
This coefficient controls the global and local exploration and the exploitation capacity of
the swarm, by determining the influence of the previous velocity on the particle’s current
movement. With the introduction of this new parameterω, the velocity update Equation (1)
is changed to velocity update Equation (3). The suitable value of ω results in fewer iter-
ations on average to find a sufficiently optimal solution. To balance the global and local
search and to ensure the convergence to a sufficiently optimal solution in a lesser number
of iterations, an adjustment in the value of the inertia weight ω, is extremely important.
Larger values ofω facilitate the global exploration and smaller values promote the local
exploitation. As originally proposed, the value of the inertia weightω is often decreased
linearly from about 0.9 (ωmax) to 0.4 (ωmin) during a run.

It is described as follows Equation (7) (Eberhart and Shi [19]):

ω = ωmax −
ωmax − ωmin

itermax
× iter (7)

where itermax is the maximum number of iterations, iter is the current iteration, ωmax and
ωmin are initial and final values of the inertia weight respectively.

Van den Bergh and Engelbrecht [20] stated a strong relationship ( see Equation (8))
between acceleration coefficients c1, c2 and inertia weightω as:

ω >
1
2
( c1 + c2) − 1 (8)

Eberhart and Shi [19] made a comparison between the constriction coefficient (χ) and
inertia weight (ω). The authors considered that both of the approaches are equally effective.
As both the constriction coefficient and inertia weight aim to create a balance between the
exploration and exploitation capabilities, this results in an improvement in the convergence
time and quality of solution obtained. Low values of the constriction coefficient and inertia
weight result in exploitation, whereas higher values result in exploration. Eberhart and
Shi [19] also proved that if velocity clamping and constriction coefficient are used together,
even then convergence can be faster.

4. Advances on Particle Swarm Optimization (PSO) Algorithm

Due to the simplicity and wide range of applications of the particle swarm optimization
(PSO) algorithm, it has gained more attention from a variety of researchers belonging to
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different fields. Houssein et al. [21] presented a rigorous and systematic review on the
developments, recent trends, hybridization, parallelization and diverse applications of
the particle swarm optimization (PSO) algorithm. Many researchers are working on the
advancement of the PSO algorithm. As a result, more research is being completed in this
area, that has led several researchers to report problems with the original PSO algorithm,
such as premature convergence, performance issues, etc. In order to lessen these types
of problems and improve its effectiveness and efficiency, researchers have made many
advances on the original PSO algorithm. The advances on PSO algorithm have been
sectioned into four categories:

• Modifications of original PSO;
• Extensions of applications of PSO;
• Theoretical analysis on PSO;
• Hybridization of PSO.

4.1. Modifications of Original PSO

There are modifications of the PSO algorithm, including fuzzy PSO, bare-bones PSO,
etc. Krohling and Renato [22] made a modification in the original particle swarm algo-
rithm by introducing the concept of Gaussian probability distribution. In their proposed
algorithm, they only needed the parameter ‘the number of particles’ to be specified before
actually using the algorithm. The experimental results of the Gaussian particle swarm
algorithm showed that the Gaussian swarm outperformed the standard PSO. Baskar and
Suganthan [23] introduced a new version of the PSO, called concurrent PSO (CONPSO), to
improve the convergence performance of the original PSO. By testing this new version of
the PSO on six classical functions, the authors proved that this new version of the PSO, i.e.,
the CONPSO, outperformed many other approaches of PSO. Kennedy and Eberhart [24]
reworked the original particle warm optimization (PSO) technique and introduced a bi-
nary particle swarm. According to the authors, this new version of the PSO algorithm
could optimize any function, continuous or discrete. They discussed this algorithm with
various examples and applications. To make the basic particle swarm algorithm more
understandable, Kennedy [25] eliminated the velocity formula. The author compared
several variations and discovered its similarity with other stochastic population-based
problem-solving methods, and suggested new avenues of investigation.

Mendes et al. [26] modified the original PSO algorithm by the concept of fully informed
particles in the original PSO, as they felt that each of the particles in the swarm need not
be affected only by the best performer among his neighbors. With the help of numerical
experiments, the authors revealed that this new modified version of PSO outperformed the
original PSO. Cervantes et al. [27] proposed to resolve the classification problems by making
some modifications in the original PSO. So, a binary version of the PSO algorithm was
compared with some machine-learning techniques, and the authors showed the promising
results. Shi and Eberhart [28] made use of a fuzzy system to adopt the inertia weight of
the particle swarm optimization (PSO) algorithm and introduced a new variant of PSO,
called fuzzy adaptive PSO. Experiments on three test functions concluded that this fuzzy
adaptive PSO was a promising optimization technique.

To detect facial emotion, Ghandi et al. [29] presented a novel approach called guided
particle s optimization (GPSO) by modifying the original particle swarm optimization (PSO)
algorithm. The authors proved that their emotion detection algorithm gave promising
results in terms of accuracy in the detection of emotions. In order to obtain an optimum
solution, Tanweer et al. [30] derived a new PSO algorithm, namely the self-regulating PSO
(SRPSO) algorithm, by incorporating the best of the human-learning strategies. The authors
proposed the learning strategies, on the one hand using a self-regulatory inertia weight
for better exploration, and on the other hand using self-perception of the global search
space for better exploitation. The statistical analyses indicated the superiority of the SRPSO
over other metaheuristics. Presently, many researchers are also working on the further
modification of the original PSO algorithm.
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4.2. Extensions of Applications of PSO

Since its origin in 1995, researchers have also widened/extended the range of ap-
plication of the original PSO algorithm to a variety of optimization problems, such as
constrained, multi objective, multi modal, discrete and binary optimization. To solve
the multi-objective optimization problems, Seok et al. [31] introduced a modified variant
of the PSO algorithm, namely the homogeneous particle swarm optimizer (HPSO). The
authors proved the excellent exploration ability of the proposed algorithm with other
multi-objective PSO algorithms by making a comparison study. The authors, Coello and
Lechuga [32], extended the application of the original particle swarm optimization (PSO)
to solve the multi-objective optimization problems by using a Pareto dominance approach
to determine the flight direction of the particle. By testing it with some standard test
functions, the authors concluded that their approach was highly competitive in comparison
to the other multi-objective optimization techniques. Mohamed et al. [33] proposed a new
algorithm by hybridizing particle swarm optimization (PSO) with two other statistical
techniques—Ranking and Selection (R&S), and Mean Square Error Criterion (MSE), in
order to solve the stochastic optimization problems, called (STPSO). The authors proved
the robustness of their proposed algorithm with experimental results. In order to solve
the NP hard knapsack problems (KPs), Bansal and Deep [34] designed a modified binary
particle swarm optimization (MBPSO) algorithm. The authors tested this new modified
binary PSO version on 10 benchmark problems, and by comparing the results with both the
binary particle swarm optimization (BPSO) and the genotype phenotype-modified binary
particle swarm optimization (GPMBPSO), showed its effectiveness in terms of reliability,
cost and the quality of the solution obtained over the other algorithms.

To efficiently solve the different problems on power systems, Rahmani et al. [35] proposed
an evolutionary modified particle swarm optimization. On the basis of numerical experiments,
the authors proved that their proposed algorithm was efficiently able to solve the constrained
economic dispatch (ED) problem with a comparatively higher rate of convergence than the
basic PSO. To efficiently solve the clustering problem, Neshat and Yazdi [36] proposed a new
cooperative algorithm that utilized the global search ability of the PSO algorithm and the local
search ability of k-means. The authors made a comparison of their proposed algorithm with
other algorithms, such as PSO with constriction factor (CF-PSO) and k-means algorithms and
revealed the convergence efficiency of their proposed algorithm. In order to solve the university
course timetabling problems using PSO, the authors, Kanoh and Chen [37], introduced a new
algorithm, using transition probability into the basic PSO algorithm. With the help of the
experimental results, the authors demonstrated the effectiveness of their proposed algorithm
over evolutionary strategy to solve the time-table problems. Garsva and Danenas [38] presented
a new PSO algorithm by using a linear SVM (support vector machine) approach to solve both
small and large scale classification problems. On the basis of the experiments, the authors
concluded that their proposed PSO-LinSVM approach gave comparatively better results than
other similar approaches.

The basic PSO algorithm does not work well for solving problems of mobile robot
path planning, due to its slow convergence and limitations on application. To overcome
this, the authors, Li et al. [39], derived the improved particle swarm optimization (IPSO)
algorithm. By making a comparative study with other approaches on the standard bench-
mark functions, the authors proved that their derived algorithm gave a better solution
with a lower number of iterations. In order to monitor the conditions of the surge arrester,
Hoang et al. [40] proposed a novel differential particle swarm optimization(PSO)-based
support vector machine (SVM) classifier, namely (DPSO-SVM). The authors, through exper-
iments on several benchmark functions, showed the superiority of the proposed algorithm
(DPSO-SVM) in order to improvise the classifier’s performance. In neuro fuzzy system
(NFS), usually a gradient-based algorithm was used by the researchers, but Karakuzu
et al. [41] used an improved PSO (iPSO) to introduce the first embedded high-speed,
low-cost implementation of the neuro fuzzy network (NFN) hardware through online
training on a field programmable gate array (FPGA). The authors tested its proposed
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implementation method on practical problems. The results showed the efficiency of the
proposed implementation over other approaches available in the literature. In order to
solve a power consumption minimization problem, Liao et al. [42] suggested a PSO-based
algorithm, namely distribution PSO (DPSO). The improved algorithm of PSO was checked
on a luminous control problem and the results showed the effectiveness of the modified
algorithm, along with its suitability to be parallelized. The same optimization problem
performed differently with different settings of the parameters. Based on the concept of the
building block thesis, Li et al. [43] proposed two variants to the PSO algorithm, namely the
PSO with a fixed phase (PSOFP) algorithm, and the PSO with a dynamic phase (PSODP)
algorithm. These new variants were tested on benchmark functions to solve the single
objective numerical optimization, and revealed the robustness of the proposed variant of
the PSO algorithm.

The areas of application for the PSO algorithm has been extended by many researchers,
but there is still a need to explore more areas of application of the PSO algorithm.

4.3. Theoretical Analysis on PSO

By realizing the importance of the appropriate values of the control parameters in the
PSO algorithm, such as the inertia weight, acceleration coefficients, number of particles, etc.,
the researchers diverted their attention towards the theoretical aspects of the PSO algorithm
and derived many theories related to parametric selection to obtain an optimal solution
in a lower number of iterations and with a higher rate of convergence. Their theoretical
analysis includes parametric setting, convergence analysis, etc. Shi and Eberhart [14]
had proposed a new PSO parameter, called inertia weight ‘ω’ into the original particle
swarm optimizer to improve its convergence performance. The authors explained the
impact of this new parameter through examples. Shi and Eberhart [44] investigated the
convergence performance of the particle swarm optimization (PSO) algorithm with a
linearly decreasing inertia weight, and tested it on four non-linear functions. On the basis
of the results, the authors concluded that some of the disadvantages of PSO could be
overcome by adjusting the inertia weight. By obtaining motivation from the Gaussian and
Cauchy probability distribution in the PSO algorithm, the authors Krohling and Coelho [45]
proposed a modified variant of the PSO, namely PSO-E, that made use of the exponential
probability distribution to upgrade the convergence performance. The numerical results on
well-known classical functions indicated the competence of PSO-E in finding the solution
in a lower number of iterations. Feng et al. [46] proposed a new adaptive inertia weight
approach in the particle swarm optimization (PSP) algorithm. The performance of this
newly proposed variant of PSO was checked on three classical benchmark functions and
the results were also analyzed to prove its higher speed of convergence and more capability
in locating the optimal solution in comparison to other optimization techniques. In order
to balance between the local exploitation and the global exploration abilities for the PSO
variant, Qin et al. [47] introduced a modified variant of PSO, called the adaptive inertia
weight PSO algorithm (AIW-PSO). The authors proved the efficiency of the proposed
algorithm (AIW-PSO) by comparing its results with other modified variants of the PSO,
namely fuzzy adaptive inertia weight PSO, random number inertia weight PSO and linearly
decreasing inertia weight PSO. The results showed that this new algorithm, AIW-PSO,
outperformed the other algorithms.

Keeping in mind the importance of the parameter inertia weight in the PSO, Jiao et al. [48]
proposed a dynamic inertia weight particle swarm optimization algorithm. The authors
tested their improved PSO on six classical problems and concluded that the proposed
variant improved the search performance of the standard particle swarm optimization
(SPSO) algorithm.

Inertia weight is considered to be the most important parameter in the PSO algorithm.
Usually,ω is chosen to be of small value in the range [0, 1] but Deep et al. [49] considered
varying the values of ω, and proposed two variants of PSO, namely the globally adaptive
inertia weight (GAIW) PSO and the locally adaptive inertia weight (LAIW) PSO. By testing
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these variants on various benchmark problems, the authors concluded that the proposed
variant outperformed the basic PSO in terms of accuracy, efficiency and convergence
speed. To improvise the convergence speed and to overcome the stagnation behavior of
the basic PSO algorithm, Deep et al. [50] proposed a new variant of the basic PSO called
fine grained inertia weight PSO (FGIWPSO). By testing their proposed variant of PSO
on ten benchmark functions, the authors showed its effectiveness over the basic PSO, in
terms of the quality of the solution obtained and the rate of convergence. To overcome the
disadvantages of premature convergence of the PSO, Isiet and Gadala [51] conducted an
extensive sensitivity analysis on the impact of the control parameters of the PSO algorithm.
For parametric analysis, the authors considered a constraint optimization problem, and
discovered that the PSO is most sensitive to inertia weight (ω) and acceleration coefficients
(c1 and c2), and therefore suggested some optimal parametric combinations, and on the
basis of a verification study of the suggested parameters showed that the proposed PSO
could outperform some other metaheuristics.

4.4. Hybridization of PSO Algorithm

When the PSO algorithm is combined with some traditional and evolutionary opti-
mization algorithms, in order to improve the effectiveness and efficiency of the algorithm
and to compensate for the weakness of each other, then that is termed as the hybridization
of the PSO. One can also say that combining the advantages of the PSO with the advantages
of another optimization algorithm is called the hybridization of PSO algorithm, or the
blending of the PSO with another optimization algorithm. The researchers hybridized
PSO with many other algorithms, including the genetic algorithm (GA), the differential
evolution (DE), the Ant Colony optimization (ACO), the simulated annealing (SA), the
artificial Bee colony (ABC), etc. and found very promising results.

Nowadays, the PSO has become one of the researchers’ choices for the purposes of
hybridization. Deep and Bansal [52] introduced the qPSO algorithm by hybridizing the
PSO with a quadratic approximation operator. The authors considered the two variants of
the PSO algorithm, namely the PSO with linearly decreasing inertia (PSO-W) and the PSO
with constriction factor (PSO-C) for the purpose of hybridization, and proposed two new
variant of PSO, namely qPSO-W and qPSO-C. The performance of the proposed variant was
tested on 15 benchmark problems. The numerical results showed that the new hybrid PSO
variants outperformed the basic PSO variants. For the purpose of microgrid optimization,
Bao et al. [53] compared their proposed Multi-PSO-SVM prediction model with the other
three algorithms and proved its superiority over them. To force the PSO algorithm to jump
out of the stagnation situation, Liua et al. [54] hybridized particle swarm optimization
(PSO) with differential evolution (DE) and proposed a novel hybrid algorithm, namely
PSO-DE. On the basis of numerical experiments on constrained numerical and engineering
optimization functions, the authors showed that their proposed novel approach resolved
the convergence issues of basic PSO and also improved the quality of the solution obtained.

To overcome the various problems related to the PSO algorithm, Pu et al. [55] proposed
an HPSO algorithm, and with experimental results proved the higher rate of stability,
clustering efficiency and the global search ability of their algorithm over others. By using
python tools, Mao et al. [56] developed a PSO-LSTM-based model to investigate the
speed of road traffic in Kunming City, China. Singh et al. [57] introduced a new hybrid
version of the particle swarm optimization (PSO) algorithm, namely the hybrid particle
swarm optimization (HPSO) by combining two different approaches of PSO i.e., standard
particle swarm optimization (SPSO) and mean particle swarm optimization (MPSO). By
conducting numerical experiments on several benchmark problems, the authors concluded
that that their proposed algorithm worked efficiently in comparison to SPSO and MPSO, in
terms of speed and quality of solution. For the purpose of grid scheduling and resource
management, Ankita and Sahana [58] proposed a PSO-based Ba-PSO scheduling algorithm.
Song et al. [59] introduced a PSO-SVM regression model and proved its higher accuracy by
proving that the average relative errors of the regression results of the specific supported
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roadway i.e., the wood-supported roadway, the I-steel-supported roadway and the bolt-
net-supported roadway were all <5%.

Yang [60] proposed an improved PSO-BP combined forecasting model. This newly
combined forecasting model is used in the college student entrepreneurship prediction
experiment. Pozna et al. [61] presented a hybrid version of PSO, namely Particle Filter-
Particle Swarm Optimization (PF-PSO) algorithm and proved its application to the fuzzy-
controlled servo system. To obtain an optimal solution for the dynamic facility layout
problem (DFLP), Nasab and Emami [62] proposed a hybrid PSO (HPSO) that mapped
the discrete feasible space of the DFL problem into a continuous space with the help of
coding procedure, and after that, the search for good quality solutions of the problem. For
further improvements in their proposed algorithm, the authors combined it with simulated
annealing. With the help of different experiments using their proposed algorithm, they
proved that it was comparatively efficient compared to other variants. To create a balance
between the global and local search abilities, Esmin and Matwin [63] proposed a hybrid
PSO algorithm (HPSOM) by integrating PSO with a genetic algorithm, using the mutation
process. On the basis of the numerical experiment, the authors showed that their proposed
method significantly outperformed SPSO in terms of factors such as convergence speed,
stability and the quality of the solution obtained.

In order to stabilize the stability of the power system, Elazim and Ali [64] hybridized
the particle swarm optimization (PSO) and the bacterial foraging optimization algorithm
(BFOA), and proposed a new version, namely the bacterial swarm optimization (BSO). To
check the validity of the proposed version BSO, numerical experiments were conducted
by the authors and the results presented the effectiveness of the proposed controller over
the original PSO and BFOA algorithm. In order to optimize the learning rate of the neural
network, Enireddy and Kumar [65] combined the cuckoo search algorithm with the particle
swarm optimization (PSO) algorithm and proposed an improved image classification
algorithm for content-based image retrieval (CBIR). On the basis of the experimental results,
the authors showed the classification accuracy and faster learning with this proposed neural
network algorithm.

Garg [66] proposed a guided hybrid approach, namely a PSO-GA algorithm, in order
to solve the constrained optimization problems. On the basis of a comparative study
conducted on various engineering design optimization problems, the author proved the
effectiveness of the proposed algorithm over other evolutionary algorithms in searching
for the near optimal global solution. Singh and Singh [67] proposed a new hybrid variant
of particle swarm optimization (PSO) and the Grey Wolf optimizer (GWO), namely the
HPSOGWO, by using exploitation capabilities from PSO and exploration capabilities from
GWO. The authors tested their newly derived hybrid variant on 23 classical problems
and by their experimental results showed that the newly developed variant outperformed
other algorithms in respect of convergence and the accuracy of the solution obtained. Al-
Thanoon et al. [68] presented a new hybrid algorithm by combining the advantages and
strengths of both the particle swarm optimization (PSO) algorithm and the firefly algorithm
(FFA), to provide a balance between the exploration and exploitation capabilities. The
authors compared the performance of the newly proposed algorithm with the standard
particle swarm optimization (PSO) algorithm and firefly algorithm (FFA) and yielded better
results by proving its efficiency in obtaining a high classification performance.

To solve different nonlinear and convex optimal power flow (OPF) problems, Khan et al. [69]
introduced an effective and novel hybrid firefly particle swarm optimization (HFPSO) algorithm.
They coded their technique, using MATLAB software, and checked its effectiveness on several test
functions, and showed that the proposed algorithm had a faster rate of convergence and had more
capability to handle several complex OPF problems. Qinghai [70] explained the basic principles
of the PSO algorithm, and discussed its advantages and disadvantages. He discussed some of
the improved and hybrid versions of the standard particle swarm optimization (SPSO) algorithm
and suggested its future research scope. Nowadays, researchers are working more in the area of
hybridization, because hybridization makes it possible to combine the advantages of the hybridized
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algorithms by setting aside their weaknesses, leading to the development of a highly efficient
hybridized algorithm.

5. Conclusions

On the one hand particle swarm optimization (PSO) algorithm is popular among the
scientific community, due to its simplicity, easy implementation and competence to be
applied to a wide range of problems. On the other hand, the modifications, extensions and
hybridization of the PSO algorithm during the last few decades indicates that there are a lot
more opportunities to make improvements to the algorithm, to increase the effectiveness
of the results. The researchers have worked on the limitations of the PSO algorithm, such
as obtaining trapped in the local optima, premature convergence, impropriate accuracy,
etc. The researchers have tried to make it more applicable to more classes of optimization
problems. In the present paper, by presenting an overview of the PSO algorithm, we
have explained the basic concepts and parameters of PSO, along with a variety of the
advancements of the PSO algorithm. From the current literature survey on the PSO
algorithm, we have also found that a large amount of research has been carried out on the
PSO algorithm, but more areas of the applications of PSO can be enhanced in the future
research. Research both on the applications aspect and the hybridization of the algorithm
can also be conducted. The theoretical aspect can also be further explored in future research,
in order to lessen the number of known parameters and criteria of their selection for the
easy implementation of the particle swarm optimization (PSO) algorithm to its wide range
of applications.

Author Contributions: S.B.S. conceived the idea to write the review on achievement of Particle
Swarm Optimization Algorithm. M.J. prepared the draft version of this article. All the authors
revised and finalized the final draft of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: For this research work, there is no external funding agency.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all individual participants
involved in this study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, W.; Wang, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications.

Comput. Methods Appl. Mech. Eng. 2022, 388, 114194. [CrossRef]
2. Jia, H.; Sun, K.; Zhang, W.; Leng, X. An enhanced chimp optimization algorithm for continuous optimization domains. Complex

Intell. Syst. 2022, 8, 65–82. [CrossRef]
3. Dhiman, G.; Garg, M.; Nagar, A.; Kumar, V.; Dehghani, M. A novel algorithm for global optimization: Rat Swarm Optimizer. J.

Ambient. Intell. Humaniz. Comput. 2020, 12, 8457–8482. [CrossRef]
4. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-

tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]
5. Bhardwaj, S.; Kim, D.-S. Dragonfly-based swarm system model for node identification in ultra-reliable low-latency communication.

Neural Comput. Appl. 2021, 33, 1837–1880. [CrossRef]
6. MiarNaeimi, F.; Azizyan, G.; Rashki, M. Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional

optimization problems. Knowl. Based Syst. 2021, 213, 106711. [CrossRef]
7. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A

novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [CrossRef]
8. Martínez-Álvarez, F.; Asencio-Cortés, G.; Torres, J.F.; Gutiérrez-Avilés, D.; Melgar-García, L.; Pérez-Chacón, R.; Rubio-Escudero,

C.; Riquelme, J.C.; Troncoso, A. Coronavirus optimization algorithm: A bioinspired metaheuristic based on the COVID-19
propagation model. Big Data 2020, 8, 308–322. [CrossRef]

9. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

http://doi.org/10.1016/j.cma.2021.114194
http://doi.org/10.1007/s40747-021-00346-5
http://doi.org/10.1007/s12652-020-02580-0
http://doi.org/10.1016/j.cie.2021.107408
http://doi.org/10.1007/s00521-020-05056-6
http://doi.org/10.1016/j.knosys.2020.106711
http://doi.org/10.1007/s13042-019-01053-x
http://doi.org/10.1089/big.2020.0051
http://doi.org/10.1016/j.future.2019.02.028


Appl. Sci. 2022, 12, 8392 19 of 21

10. Odili, J.B.; Kahar, M.N.M.; Anwar, S. African Buffalo Optimization: A Swarm-Intelligence Technique. Procedia Comput. Sci. 2015,
76, 443–448. [CrossRef]

11. Eiben, A.E.; Schippers, C.A. On evolutionary exploration and exploitation. Fundam. Inform. 1998, 35, 35–50. [CrossRef]
12. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
13. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; IEEE Press: Piscataway, NJ, USA, 1995; pp. 1942–1947.
14. Shi, Y.; Eberhart, R.C. A Modified Particle Swarm Optimizer. In Proceedings of the IEEE International Conference on Evolutionary

Computation, Anchorage, AK, USA, 4–9 May 1998; IEEE Press: Piscataway, NJ, USA, 1998; pp. 69–73.
15. Engelbrecht, A.P. Computational Intelligence: An Introduction; John Wiley and Sons: Hoboken, NJ, USA, 2007; Chapter 16;

pp. 289–357.
16. Eberhart, R.C.; Shi, Y. Particle Swarm Optimization: Developments, Applications and Resources. In Proceedings of the IEEE

Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; Volume 1, pp. 27–30.
17. Clerc, M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. In Proceedings of the

IEEE Congress on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1951–1957.
18. Clerc, M.; Kennedy, J. The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE

Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]
19. Eberhart, R.C.; Shi, Y. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In Proceedings of the

IEEE Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 July 2000; Volume 1, pp. 84–88.
20. Van den Bergh, F.; Engelbrecht, A.P. A Study of Particle Swarm Optimization Particle Trajectories. Inf. Sci. 2006, 176, 937–971.

[CrossRef]
21. Houssein, E.H.; Gad, A.G.; Hussain, K.; Suganthan, P.N. Major advances in particle swarm optimization: Theory analysis and

application. Swarm Evol. Comput. 2001, 63, 100868. [CrossRef]
22. Krohling, R.A. Gaussian Swarm: A Novel Particle Swarm Optimization Algorithm. In Proceedings of the Cybernetics and

Intelligent systems IEEE, Singapore, 1–3 December 2004; Volume 1, pp. 372–376.
23. Baskar, S.; Suganthan, P.N. A Novel Concurrent Particle Swarm Optimization. In Proceedings of the Congress on Evolutionary

Computation, Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 792–796.
24. Kennedy, J.; Eberhart, R. A Discrete Binary Version of the Particle Swarm Optimization. In Proceedings of the International

Conference on Neural Network, Perth, Australia, 12–15 October 1997; Volume 4, pp. 4104–4107.
25. Kennedy, J. Bare Bones Particle Swarms. In Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 26

April 2003; IEEE Press: Piscataway, NJ, USA, 2003; pp. 80–87.
26. Mendes, R.; Kennedy, J.; Neves, J. The Fully Informed Particle Swarm: Simpler, maybe Better. IEEE Trans. Evol. Comput. 2004, 8,

204–210. [CrossRef]
27. Cervantes, A.; lsasi, P.; Galvan, I. Binary Particle Swarm Optimization in Classification. Neural Netw. World 2005, 15, 229–241.
28. Shi, Y.; Eberhart, R.C. Fuzzy adaptive particle swarm optimization. In Proceedings of the 2001 Congress on Evolutionary

Computation CEC2001, Seoul, Korea, 27–30 May 2001; IEEE Press Los Alamitos, COEX, World Trade Center: Seoul, Korea, 2001;
pp. 101–106.

29. Ghandi Bashir, M.; Nagarajan, R.; Desa, H. Classification of Facial Emotions using Guided Particle Swarm Optimization I. Int. J.
Comput. Commun. Technol. 2009, 1, 36–46.

30. Tanweer, M.R.; Suresh, S.; Sundararajan, N. Self regulating particle swarm optimization algorithm. Inf. Sci. 2015, 294, 182–202.
[CrossRef]

31. Hwang, S.K.; Koo, K.; Lee, J.S. Homogeneous Particle Swarm Optimizer for Multi-Objective Optimization Problem. 2001.
Available online: www.icgst.com (accessed on 21 September 2021).

32. Coello, C.A.C.; Lechuga, M.S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In Proceedings of the
Congress on Evolutionary Computation (CEC’2002), Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1051–1056.

33. Mohamed, A.W.; Zaher, H.; Korshid, M. A particle swarm approach for solving stochastic optimization problems. Applied. Math.
Inf. Sci. 2011, 5, 379–401.

34. Bansal, J.C.; Deep, K. A Modified Binary Particle Swarm Optimization for Knapsack Problems. Appl. Math. Comput. 2012, 218,
11042–11061. [CrossRef]

35. Rahmani, R.; Othman, M.F.; Yusof, R.; Khalid, M. Solving Economic Dispatch Problem using Particle Swarm Optimization by an
Evolutionary Technique for Initializing Particles. J. Theor. Appl. Inf. Technol. 2012, 46, 526–536.

36. Neshat, M.; Yazdi, S.F. A New Cooperative Algorithm Based on PSO and K-Means for Data Clustering. J. Comput. Sci. 2012, 8,
188–194.

37. Kanoh, H.; Chen, S. Particle Swarm Optimization with Transition Probability for Timetabling Problems. In Adaptive and
Natural Computing Algorithms; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7824,
pp. 256–264.

38. Garsva, G.; Danenas, P. Particle Swarm Optimization for Linear Support Vector Machines Based Classifier Selection. Nonlinear
Anal.: Model. Control 2014, 19, 26–42. [CrossRef]

39. Li, X.; Wu, D.; He, J.; Bashir, M.; Liping, M. An Improved Method of Particle Swarm Optimization for Path Planning of Mobile
Robot. J. Control. Sci. Eng. 2020, 2020, 3857894. [CrossRef]

http://doi.org/10.1016/j.procs.2015.12.291
http://doi.org/10.3233/FI-1998-35123403
http://doi.org/10.1109/4235.585893
http://doi.org/10.1109/4235.985692
http://doi.org/10.1016/j.ins.2005.02.003
http://doi.org/10.1016/j.swevo.2021.100868
http://doi.org/10.1109/TEVC.2004.826074
http://doi.org/10.1016/j.ins.2014.09.053
www.icgst.com
http://doi.org/10.1016/j.amc.2012.05.001
http://doi.org/10.15388/NA.2014.1.2
http://doi.org/10.1155/2020/3857894


Appl. Sci. 2022, 12, 8392 20 of 21

40. Hoang, T.T.; Cho, M.-Y.; Alam, M.N.; Vu, Q.T. A novel differential particle swarm optimization for parameter selection of support
vector machines for monitoring metal-oxide surge arrester conditions. Swarm Evol. Comput. 2018, 38, 120–126. [CrossRef]
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