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Abstract: Nowadays, healthcare is becoming very modern, and the support of Internet of Things (IoT) is 
inevitable in a personal healthcare system. A typical personal healthcare system acquires vital parame-
ters from human users and stores them in a cloud platform for further analysis. Acquiring fundamental 
biomedical signal, such as with the Electrocardiograph (ECG), is also considered for specific disease 
analysis in personal healthcare systems. When such systems are scaled up, there is a heavy demand for 
internet channel capacity to accommodate real time seamless flow of discrete samples of biomedical 
signals. So, there is a keen need for real time data compression of biomedical signals. Compressive 
Sensing (CS) has recently attracted more interest due to its compactness and its feature of the faithful 
reconstruction of signals from fewer linear measurements, which facilitates less than Shannon’s sam-
pling rate by exploiting the signal sparsity. The most common biomedical signal that is to be analyzed is 
the ECG signal, as the prediction of heart failure at an early stage can save a human life. This review is 
for a vast use-case of IoT framework in which CS measurements of ECG are acquired, communicated 
through Internet to a server, and the arrhythmia are analyzed using Machine learning (ML). Assuming 
this use-case specific for ECG, in this review many technical aspects are considered regarding various 
research components. The key aspect is on the investigation of the best sensing method, and to address 
this, various sensing matrices are reviewed, analyzed and recommended. The next aspect is the selec-
tion of the optimal sparsifying method, and the review recommends unexplored ECG compression 
algorithms as sparsifying methods. The other aspects are optimum reconstruction algorithms, best 
hardware implementations, suitable ML methods and effective modality of IoT. In this review all these 
components are considered, and a detailed review is presented which enables us to orchestrate the 
use-case specified above. This review focuses on the current trends in CS algorithms for ECG signal 
compression and its hardware implementation. The key to successful reconstruction of the CS method 
is the right selection of sensing and sparsifying matrix, and there are many unexplored sparsifying 
methods for the ECG signal. In this review, we shed some light on new possible sparsifying techniques. 
A detailed comparison table of various CS algorithms, sensing matrix, sparsifying techniques with dif-
ferent ECG dataset is tabulated to quantify the capability of CS in terms of appropriate performance 
metrics. As per the use-case specified above, the CS reconstructed ECG signals are to be subjected to ML 
analysis, and in this review the compressive domain inference approach is discussed. The various da-
tasets, methodologies and ML models for ECG applications are studied and their model accuracies are 
tabulated. Mostly, the previous research on CS had studied the performance of CS using numerical 
simulation, whereas there are some good attempts for hardware implementations for ECG applications, 
and we studied the uniqueness of each method and supported the study with a comparison table. As a 
consolidation, we recommend new possibilities of the research components in terms of new transforms, 
new sparsifying methods, suggestions for ML approaches and hardware implementation. 

Keywords: compressed sensing (CS); electrocardiogram (ECG); biomedical signal; reconstruction; 
compression ratio; reconstruction accuracy 
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1. Introduction 
Internet of Things (IoT) is a digital revolution which happens to be larger than any 

other technological revolution and its presence is felt in each and every domain, from 
huge commercial applications to small domestic applications, and thanks to the usage of 
smart connected devices, the phenomenon tends to become Internet of Every Thing [1–3]. 
IoT is intended to connect things of the physical world to the Internet for the exchange of 
information with a framework that comprises of various sensors, actuators wireless link, 
communication protocols, and data processing technologies that interact with each other 
to provide greater communication ability for various applications [4,5]. This huge data 
collected from large sensor network causes a delay in network traffic which leads to the 
degradation of overall performance with respect to computational abilities, battery life-
time of devices and so on [6–8]. To optimize data transmission, various approaches have 
been explored, where CS seems to be a suitable contender to be incorporated [9–11]. The 
need for an IoT framework is vital in biomedical applications, especially in sharing the 
remote patient’s body conditions and biomedical signals to a healthcare worker. One of 
the important biomedical signals under consideration is the Electrocardiograph (ECG) 
signal to diagnose the heart function of patients remotely. There is a compulsory need to 
compress the ECG signal before sending it to the cloud to meet the bandwidth capacity 
and to serve multiple parallel remote patients. It is also important that the quality of the 
decompressed signal should be good enough to yield accurate data analytics results in 
machine learning algorithms to predict arrhythmia [12,13]. 

In applying CS to the ECG signal and to communicate the information to IoT, a de-
tailed study has to be carried out on the key research and technical aspects which in-
cludes the investigation of the best sensing phenomenon suitable for ECG, the selection 
of optimal sparsifying methods, the study of optimal reconstruction algorithms, the right 
choice of hardware for implementation, strategies of the ML methods and IoT modalities. 
These key points will be elaborated more in Section 6 after the fundamental background 
is elaborated upon in Sections 2–5. In a nutshell, the contribution of this paper is to ad-
dress the above key research and technical aspects through a detailed review on various 
transforms and sensing matrices that are used for CS for ECG, a review on various spar-
sifying methods and compression algorithms for ECG, a review of CS reconstruction al-
gorithms and the proper performance metrics, a review of ML models for ECG classifi-
cation, a study of compressive learning and a review of hardware implementations and 
IoT methodologies. We have also recommended some possible outcomes from this re-
view.  

This review article is organized as follows: Section 2 gives the theoretical concepts of 
CS with basic mathematical formulation, summarizes CS algorithms with various per-
formance metrics used for classification and evaluation of reconstructed signal quality 
and applications. Section 3 starts with introduction to ECG signal, heart and its related 
diseases and implementation of CS on the ECG Signal. Section 4 discusses the IoT 
Framework used for remote patient monitoring. Section 5 focusses on various Deep 
Learning algorithms and their application for Bio-Medical signal analysis. Section 6 pre-
sents a detailed survey of previous work on CS in compressing the ECG signal, its merits, 
demerits, application and comparative analysis to quantify better CS algorithm, reveal-
ing the path for new research directions. Finally, Section 7 outlines the paper’s conclu-
sions. 

1.1. Compressive Sensing 
A typical IoT framework with a CS block for remote ECG monitoring is given in 

Figure 1. The accurate reconstruction of ECG signal from digital compressed information 
is very vital to meet the requirement [14,15]. The emergence of compressive sensing (CS) 
or Compressed Sampling is acknowledged as a defining moment in the field of signal 
processing for sensing and reconstructing a digital signal at very low sampling rates 
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[16,17]. CS has gathered a significant identity due to its potential to reconstruct signals 
from sampled data below the Nyquist rate [18,19]. CS works against the conventional 
signal compression algorithm principles [20–22]. The efficient l1-minimization based CS 
method to reconstruct signal using a smaller number of samples is discussed in reference 
[23] with mathematical background and fundamental formulation of CS framework.  

 
Figure 1. A generalized block diagram of an IoT-based healthcare system. 

CS comprises of three process, sparse representation, sampling, and reconstruction 
of the signal [24]. A basic CS block diagram is shown in Figure 2. In 2004, CS obtained a 
new entity as David Donoho, Emmanuel Candes, Justin Romberg and Terence Tao came 
with a fundamental findings on a CS mathematical basis [25]. 

 
Figure 2. The CS compression scheme. 

1.2. Need for CS in Bio Electric Signals 
A continuous signal, sampled as per the Nyquist theorem, yields a large quantity of 

samples; hence, the traditional sampling method could be incapable for high-frequency 
signals [26]. Also, power consumption will be more due to the use of sensors in a large 
quantity. Hence, the compression techniques arise as an inevitable process in conven-
tional signal processing. When monitoring bioelectric signals using WBSNs (wireless 
body sensor networks), some of the important parameters have to be considered such as 
power consumption, device cost and data compression [27–29]. In order to achieve the 
above limitations, data compression has to be done before transmission. However, con-
ventional data compression methods are computationally intensive and fail to achieve 
these parameters. Hence, CS can be adopted as the efficient data compression method-
ology for bioelectric signals and other applications [30–33]. It should also be noted that in 
spite of all the benefits of CS, it has a demerit in that the reconstruction is an iterative 
process and requires more computation [24,25]. However, in an IoT framework, the 
computation is done in cloud support by cloud platforms. 
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2. Overview of Compressive Sensing Algorithm 
CS is a data acquisition technique which results in reduction of transmitted power 

and data by combining sampling and compression through random projections. The 
signal could be recovered accurately if it has a low information rate and is sparse in na-
ture either in time or in some transform domain. The number of samples required for 
precise recovery is determined by the sparsity of the signal. The reconstruction will be 
accurate if the signal being acquired has a lesser information rate which implies the sig-
nal is sparse in any of the transform domains. The number of samples required for pre-
cise recovery of the original signal also depends on reconstruction algorithm [34–37]. 
Moreover, CS manages noise in the measurements effectively. 

2.1. CS Data Acquisition 
CS theory can be expressed mathematically for signal acquisition, signal x being the 

original signal can be reconstructed by utilizing m << n patterns, where Φ ∗  being the 
sensing matrix through measurement vector. This sensing matrix is made up of 1 s and 0 
s and to generate N-pixel random patterns through either Bernoulli or any other distri-
bution patterns such as Hadamard, wavelet, and speckle which could be employed. Se-
lecting the sensing matrix Φ is one of the important strategies in CS research; commonly, 
a random matrix is considered and the data is represented where the signal is more 
sparse [38–40]. Figure 3 gives an idea of the sensing matrices. 𝑌 ∗ = Φ ∗ X ∗  m << n (1)

Assuming x to be a large vector of N signal values. Consider Φ matrix, having di-
mension m ∗ n  where  m ≪ n . The product y = Φ ∗ x  yields a much smaller, com-
pressed vector of data y = Φ ∗ x, Φ is the sensing matrix, and y is the vector of measured 
values. It should be noted that m much lesser than n and when m is equal to n no 
compression takes place. 

There are certain considerations in order to achieve faithful reconstruction; hence, 
the CS matrix should undergo the following properties [41,42]. 
• Null Space Property 
• Restricted Isometry Property (RIP) and 
• Incoherence 

Figure 4 interprets the sparsifying matrix model which represents the signal of in-
terest sparsely. A signal represented in sparse domain yields more desirable signal 
compression for efficient storage, data bandwidth and power usage, as it concentrates on 
the most related quality of data itself and also leads to a more effective signal detection, 
classification and other pattern recognition objectives. Original and Sparse representation 
of ECG signal is depicted in Figure 5 [43–45]. 

 
Figure 3. The CS sensing matrix. 
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Figure 4. Sparsifying matrix. 

2.2. Sensing Matrices in CS 
The sensing matrix plays a vital role in designing the CS algorithm, and the most 

important aspect in CS theory is to design efficient sensing matrices. A few important 
sensing matrices are the Random sensing matrix, the Deterministic sensing matrix, the 
Structural sensing matrix, the Optimized sensing matrix and the Binary sensing matrix. 

Compressed sensing commonly makes use of random sensing matrices such as 
Gaussian and Bernoulli. These matrices are unstructured type and they need large 
memory storage and involve high computational complexity. Hence they are not feasible 
for hardware implementation. Contrary to this, the deterministic sensing matrix is simple 
to implement and widely used for practical applications. Though it does not satisfy RIP it 
is preferred due its compatibility with hardware application. Toeplitz and circulant are 
the types of structured sensing matrix with minimal parameters, and these measurement 
matrices can be accomplished for different applications [46–52]. 

2.3. Compressive Sensed Signal Reconstruction 
The primary concept CS aims to reconstruct the original signal from a minimal 

number of measurements. To recover the original signal from the compressed domain, 
the signal 𝑥 must have a sparse representation in any specific domain. The signal 𝑥 can 
be modeled as 𝑥 = 𝛹𝑠 the acquisition process can be modelled as y = 𝛷𝑥 (2)

where as y is incomplete measurement of  𝑥  and 𝛷 is the sensing matrix. Naturally, 
most of the signals are sparse, i.e., they have few non-zero elements or have a sparse 
representation in another domain. Here, 𝑠 being the sparse representation of 𝑥 and Ψ 
the sparsifying matrix, because it maps the signal into a domain where its representation 
is sparse. Ψ may be a transformation matrix (e.g., DWT, DCT) mapping to a sparse do-
main can be expressed mathematically as: 𝑥 = Ψ𝑠 (3)

Considering 𝑠 being the sparse representation of 𝑥, Equation (3) is obtained by 
combining Equations (2) and (3) y = 𝛷Ψ𝑠 (4)

By solving an optimization problem and using y, 𝑠 can be retrieved. This can be 
found out using the 𝑙 , 𝑙 , and 𝑙  norms, though 𝑙 -norm yields a precise result, as it is a 
nonprogrammable hard issue; it is rarely used and the 𝑙 -norm is not recommended, as it 
creates significant errors. Since 𝑙 norm has less error, it is the most suitable and com-
monly used norm for this optimization problem [53–58]. It is denoted as in the following 
equation: 𝑚𝑖𝑛𝒔  12 ‖y − ΦΨs‖ + 𝜏‖s‖  (5)

The CS reconstruction algorithms are classified into various categories, some of the 
most commonly used algorithms with their sub category are as listed in Table 1. 
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Table 1. The CS reconstruction algorithms and its subcategories. 

CS Algorithm Subcategories 

Convex type Optimiza-
tion [59] 

Basis Pursuit (BP) 
Basis Pursuit denoising 
Dantzig Selector 
Total Variation denoising 
Bp-Simplex 
Bp-Interior 
Fixed Point Continuation 
Gradient Projection for Sparse Representation (GPRS) 

Greedy Algorithm [60] 

Matching Pursuit (MP) 
Gradient Pursuit (GP) 
Orthogonal MP (OMP) 
Regularized OMP (ROMP) 
Compressive Sampling MP (Cosamp) 
Subspace Pursuit (SP) 

Thresholding Type [61] 
Iterative Hard Thresholding (IHT) 
Iterative Soft Thresholding (IST) 
Approximate Message Passing (AMP) 

Combinatorial/Sublinear 
Algorithm [62] 

Fourier Sampling Algorithm 
Chaining Pursuits 
Heavy Hitters on Steroids (HHS) 

Non-Convex Type [63] 

Focal Underdetermined System Solution (FOCUSS) 
Iterative Re-weighted Least Squares 
Sparse Bayesian Learning Algorithms 
Monte-Carlo based algorithms 

Bregman Iterative type 
[64] 

Linearized Bregman 
Logistic Bregman 
Split Bregman 

Each approach has certain pros and inherent cons, convex optimization can suc-
cessfully reconstruct original signal form a smaller number of measurements. However, 
computational complexity is more [65–68]. Greedy algorithms are normally fast and time 
complexity is less, so it requires a matrix-inverse operation in each iteration, which re-
quires more expensive hardware [69–74]. Combinational algorithms can quickly recon-
struct data, but they require unusually structured samples, which could be difficult to 
obtain in practice [75–81]. The Non-Convex algorithm requires lesser measurements to 
recover a signal, performs better even under weaker RIP for larger signal and is difficult 
to implement, while the complexity is similar to that of convex optimization technique 
[82–85]. The Bregman algorithm is fast and gives a more sparse output, but computa-
tional cost is very high [86–88]. Figure 5 illustrates an overall communication framework 
using CS. 

  



Appl. Sci. 2022, 12, 8368 7 of 37 
 

 
Figure 5. Communication framework using CS. 

2.4. CS Performance Metrics 
There are certain performance evaluation metrics that can be used to assess the re-

constructed signal quality and amount of compression achieved. Some of the notable 
metrics that are extensively used in CS literature are the percentage root-mean-squared 
difference (PRD), Quality Score, Root mean square error, signal to noise ratio (SNR) and 
the compression ratio (CR) [89–91]. The mathematical definition of them is as follows 

CR ratio of (N) original signals to (M) compressed signals CR = NM (6)

PRD ensures the quality of the reconstruction; thus, it is the measure of error be-
tween the reconstructed signal and the original signal, PRD(%) =  ̄ ∗ 100 (7)

where x̄ is the reconstructed signal and x being the original signal. 

Quality Score (QS): it is used to measure the overall performance of data compres-
sion, it considers both the CR and reconstructed signal quality, for better compression 
performance the QS should be higher. QS = CRPRD (8)

If the CR value is high, to recover the original signal less data is sufficient. The re-
covery signal quality and confidence are accessed through SNR and PRD values. If the 
PRD value is low the reconstructed signal has a high degree of confidence similarly the 
high value of SNR indicates that the reconstructed signal is of high quality. The other 
common measures widely used are reconstructed signal to noise ratio (RSNR), which 
represents differences between signals energy before and after the compression and root 
mean square error (RMSE). 

Apart from CS performance metrics there are some other metrics to be considered in 
ECG signal classifications [92–94] Accuracy = TP + TNTP + TN + FP + FN (9)

Precision = TPTP + FP (10)

Sensitivity = TPTP + FN (11)

Specificity = TNTN + FP (12)

Recall = TPTP + FN (13)
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PPV = TPTP + Fp (14)

NPV = TNTN + FN (15)

TP, TN, FP, FN, PPV and NPV are the numbers of True Positive, True Negative, 
False Positive, False Negative, Positive Predictive Value and Negative Predictive Value 
respectively. 

3. Compressive Sensing for ECG Signal 
Knowing that many signals satisfy the sparsity property, the applications of CS can 

be listed as follows: speech and audio signal processing [95,96], underwater signal pro-
cessing, power system monitoring [97,98], acoustic and linear frequency modulated sig-
nal processing [99], image reconstruction [100–103], radar and communications [104–
106], pattern recognition [107–111], video processing [112,113], micro and nano electron-
ics and VLSI [114–116] and biomedical applications [117–122]. 

As this paper relates to ECG signal compression, this section gives some basic ideas 
of the heart and its related function. The heart is divided into four chambers: the left and 
right atrium and the left and right ventricles, [123,124] and some of the most commonly 
occurring heart diseases are: 
• Coronary artery disease (Blood vessel disease) 
• Arrhythmias, problems related to rhythm of Heart 
• Congenital heart disease (defects at birth) 

Cardiovascular disease (CVD) refers to a group of illnesses that affect the heart and 
blood vessels [125–127]. The ECG records the electrical activity of the heart [128–130]. The 
history of the ECG dates back to 1781, and the machine traced the electrical exertion of 
the human heart for the first time [131–135]. 

It is common to use online public databases such as NYU Langone’s Electronic 
Medical Record, MIT-BIH database, PhysioNet, Physikalisch-Technische Bundesanstalt 
(PTB), The American Heart Association (AHA) database etc. to evaluate CS algorithms 
for ECG signals [136]. Arrhythmia is one of the most frequent cardiological diseases [137–
141]. Arrhythmias can be classified in many different ways but in general it can be cate-
gorized in two principal ways: 
• Origination of arrhythmia in the heart 
• Whether the arrhythmia increases or decreases the heart rate [142–144]. 

The domain conversion approach is a type of compression where the time domain 
signal is translated to a frequency or other domain, and data compression is applied fol-
lowing the conversion. Wavelet transforms, Fourier transforms, and discrete cosine 
transforms are some of the transform examples. The majority of lossy compression algo-
rithms are based on domain conversion [145–147]. 

In general, the ECG signal is not sparse. The sparse representation approach will be 
used since the frequency domain ECG signal has appropriate sparse qualities. Figure 6 
represents original ECG and its sparse representation [148]. 
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Figure 6. Original and Sparse representation of the ECG signal.  

4. IoT Framework for Remote Patient Monitoring 
The interconnection of computers by means of standard Internet protocol suite 

globally can be defined as Internet [149]. The traditional Internet focused on computers 
interestingly advancing from the Internet of PCs to the Internet of Things (IoT), which 
accentuates things instead of computers [150], which connect all things to the Internet. 
IoT is a network of devices that can communicate user data without human involvement 
and stays in line with predetermined protocols [151]. IoT has enabled a variety of appli-
cations pertaining to remote monitoring for patients where ECG monitoring has been 
extensively researched and implemented. [152]. The exponential growth of inter-
net-connected devices, by the means of connected wire or wireless, has caused IoT to gain 
popularity and become a growing topic of conversation both for commercial and 
non-commercial purposes which serves billions of users worldwide such as in govern-
ment networks, academia, business, public and private networks [153]. IoT is the next 
phase of device-to-device communication where internet-connected smart devices and 
sensors are used to gather, transfer, store, and analyze various forms of data. 

The architecture of IoT depends upon its functionality and implementation in dif-
ferent sectors, Figure 7 depicts the basic process flow of IoT. It can be divided into 4 Stage 
known as Sensing Layer, Network Layer, Data processing Layer, and Application Layer 
[154]. One of the most appealing uses of the Internet of Things is connected health, which 
allows patients to be observed and treated remotely from their residences rather than 
being forced to go to health facilities [155–160]. Hence, investigating compression strate-
gies may be helpful to extend the life cycle of wearable sensors. 
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Figure 7. The fundamental architecture of IoT. 

5. Deep Learning & Data Analytics for Bio-Medical Signal 
The idea of an artificial neural network and its mathematical model was given by 

Warren McCulloch and Walter Pitts [161–164] and used in various applications [165,166] 
including biomedical signal classifications. Some of the commonly used Deep learning 
algorithms are discussed in [167,168] and are listed below. 
• Convolutional Neural Networks (CNNs) 
• Long Short-Term Memory Networks (LSTMs) 
• Recurrent Neural Networks (RNNs) 
• Generative Adversarial Networks (GANs) 
• Radial Basis Function Networks (RBFNs) 
• Multilayer Perceptrons (MLPs) 
• Self Organizing Maps (SOMs) 
• Deep Belief Networks (DBNs) 
• Restricted Boltzmann Machines (RBMs) 
• Gated Recurrent Unit (GRU) 
• Auto Encoder (AE) 
• Variational Auto Encoder (VAE) 
• Denoising Auto Encoder (DAE) 
• Sparse Auto Encoder (SAE) 

CNN introduces learning filters that perform operations on each input sub-region. 
Basic CNN architecture is comprised of convolution layers, the normalization layer, 
pooling and the fully connected layer. The first three layers are used for feature extraction 
and for classification of signal fully connected layer takes the responsibility [169,170]. 
Some of the popularly used CNN architectures in the classification of physiological sig-
nals are AlexNet, which uses 5 convolutional layers and 3 fully connected layers, Visual 
Geometry Group (VGG), which was constructed with the help of 13–15 convolutional 
and three fully-connected layers, GoogLeNet, which utilizes 21 convolutional layers with 
three fully-connected layers, ResNet, which employed 152 convolutional layers, Dense-
Net, which used 121 convolutional layers and only 1 fully-connected layer, etc. [171–174]. 
The various biomedical signals acquired in an IoT framework are classified generally 
using CNN, and there are new trends to learn information in the compressed domain. 
Many more such use cases will be discussed in the next section. 
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6. Detailed Review of CS Based ECG IoT Framework and Analysis 
In the discussion so far, we have discussed how CS can be applied for the use-case of 

IoT framework to acquire an ECG signal and be processed in a remote cloud for further 
analytics using ML algorithms. Let us revisit the key research and technical aspects 
mentioned in Section 1. The primary task is the investigation of the best sensing matrix of 
CS for ECG. This involves reviewing various sensing matrices used in literature. In this 
review several sensing matrices are discussed, and the best method is recommended in 
Section 6.4. The next task is the selection of optimum sparsifying methods which involves 
the analysis of all sparsifying techniques used in literature. As any best compression al-
gorithm can be used as a sparsifier, some novel compression methods are recommended 
as sparsifying methods in Section 6.4 based on our review. To support the process of se-
lection of optimum reconstruction algorithm, several reconstruction algorithms are dis-
cussed and tabulated, and the appropriate algorithm can be selected based on the plat-
form. We also consider the right choice of hardware and IoT modalities in our review, 
and the tabulated results will be helpful for hardware choice and IoT modality. In ap-
plying ML for decision making, there are two different strategies: one is to learn ML 
models from the reconstructed signals, and the other one is to learn ML models from the 
CS measurements. We discussed both strategies in the review. All the aspects we men-
tioned in Section 1 are considered in our review, and Section 6.4 discusses more on rec-
ommendations that are given based on the review. In this section, we did a literature re-
view on the work assuming the following research components: (i) CS sensing matrix 
and the sparsifying techniques (ii) ML algorithms for ECG analysis in CS framework (iii) 
IoT and real time CS implementation. For every research component the performance 
metrics of the implementation are compared and tabulated. The goal of this study is to 
enable to architect the use-case with the best sensing matrix, novel sparsifying tech-
niques, optimal and effective ML algorithms, efficient hardware implementation and IoT 
deployment. 

6.1. CS Implementations-Sensing and Sparsifying Matrices 
The signal that has redundant information is said to be compressible and there are 

lot of compression methods for ECG signals. CS is also a method to compress the signal, 
but it is performed in the sensing stage where only required number samples or meas-
urements are done on the signal and the original signal is reconstructed from the incom-
plete linear measurements by exploiting the sparsity of the signal. If the signal is not 
sparse it can be represented as a sparse signal using a sparsifying matrix. Any prevailing 
conventional compression techniques can be used as a sparsifier. Let us discuss some 
sparsifying techniques that have been used for ECG signal compression which is already 
used in CSA. 

Let us consider some novel compression techniques that had been used for ECG and 
explore the method of using it in CS. One such method is Discrete Anamorphic Stretch 
Transform. In this study, [175] Thilagavathy R et al. have investigated a technique on 
compression using the 1D complex Discrete Anamorphic Stretch Transform (DAST). 
Here, for pre compression of ECG signal 1D DAST with three different kernel functions 
(Superlinear, Sublinear and Linear) it is proposed. DAST stretches and warps the ECG 
signal which results in the allocation of huge samples for sharp features, decreased the 
occupied bandwidth (OBW) and data required for storage. For inverse DAST two tap 
phase recovery filter is used to recover the phase of the DAST. Their experiment using 
MIT-BIH arrhythmia database shows that the highest average CR obtained for 3 and 6 
level DWT is 3.25 and 2.8 respectively. Authors claim that the pre compression using 
DAST improves the compression attained using the secondary compression scheme such 
as Discrete Wavelet Transform (DWT) and (RLE) Run-length encoding. The proposed 
scheme achieved a higher CR and is suitable for cardiac patient monitoring remotely. 
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Fatemeh Mohammadi et al. proposed another non-invasive technique [176] to de-
termine whether the ectopic foci located in the right or left atrium and also to identify the 
exact anatomical location of the ectopic foci inside the atrium. 12 lead ECG signal dataset 
was exploited from Tehran arrhythmia clinic database and estimation and optimization 
of sparse coefficients was contributed by the use of Gradient Projection for Sparse Re-
construction algorithm (GPSR) that performed well in locating arrhythmias in the right 
and left atria accurately. 

Another work [177], addresses two MAXimum Feasible Subsystem which have been 
implemented and investigated for reconstruction of compressed ECG signals. For signal 
compression, Random Normalized Matrices (RNM) is used and in recovery of ECG sig-
nals it out preformed the state-of-the-art CS sparse recovery algorithms such as 
Smoothed 𝑙  Norm (𝑠𝑙 ) and BP. 

Hongqing Liu addresses [178] the power line interference (PLI) that is present in 
ECG signal while reconstructing. They utilized the sparsity of signals to execute PLI 
suppression and as well as to reconstruct the ECG signal. Joint optimization estimation 
was formulated to simultaneously perform the PLI suppression and ECG recovery in the 
transform domains. Optimization problem was solved with the help of two popular effi-
cient greedy algorithms such as BP and CoSaMP for ECG reconstruction and PLI sup-
pression using MIT-BIH PTB diagnostic ECG database. 

In [179], Chandan Kumar Jha et al. demonstrated the ECG data compression tech-
nique based on the tunable Q-wavelet transform (TQWT) which provides modifiable 
parameters to attain better compression. The performance of the TQWT compression 
technique was evaluated on various records of MIT-BIH arrhythmia dataset the perfor-
mance result obtained for 48 first lead ECG records of duration 1 min in terms of CR, 
PRD, PRD1, QS, QS1 and SNR are 20.61, 4.43, 6.37, 5.88, 3.46, and 55.93 dB respectively 
and for 48 first lead ECG records of duration 30 min was 21.98, 7.11, 9.23, 4.24, 2.57 and 
48.48, respectively. 

Tsung-Han Tsai et al. [180] investigates the lossless compression technique for mul-
ti-channel ECG, which utilizes the adaptive linear prediction for intra channel and inter 
channel decorrelation to remove redundancy in lossless mode with an adaptive Golomb–
Rice codec for entropy coding and achieved an average CR of 2.809 saved average power 
of 36.5 mW. 

Asma Maalej et al. [181] discusses the innovative wavelet-based compression 
scheme for ECG signals in e-Health cardiac online diagnostic applications. The com-
pressibility of continuous-time sampled ECG signals has been investigated in this re-
search using 75 ECG signals which are normal and pathologic and 54 different orthogo-
nal and biorthogonal wavelets to determine the best wavelet for ECG compression. After 
the (level-crossing analog to digital converter) LC-ADC model sampling, OMP algorithm 
is used to compress. The effectiveness of both LC-ADC and bior3.1 wavelet decomposi-
tion, followed by thresholding, is computed and is compared with conventional ADC. 
This resulted in 33% bits reduction compared to conventional ADC with PRD ranging 
from 0.1 to 2.1 percent and an acceptable diagnostic quality. 

In her research work [182], Luisa F. Polania et al. utilized the correlation between 
consecutive heartbeats to determine the magnitude of the coefficients of the sparse rep-
resentation in support of the signal. In this proposed scheme, normalization, sampling 
and quantization of ECG signal is carried out at the encoder stage, and most of the 
computational process is done at the decoder side using block sparse Bayesian learning 
(bSBL) algorithm. Daubechies db4 wavelets were used, and the effectiveness of the pro-
posed bSBL algorithm for reconstruction of original signal is evaluated. The superiority 
of the proposed scheme was compared with SPIHT algorithm where the proposed 
method outperformed for low PRD values and reconstruction SNR. When compared 
with SOMP, MSBL and CoSOMP this method was capable of recovering the ECG signal 
with lesser measurements. 
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Another article [183] proposes an ECG compression algorithm which relies on re-
sidual error coding based on variable-length classified signature, envelope vector sets 
(VL-CSEVS) and wavelet transform. The suggested approach used an energy-based 
segmentation technique where a high-energy ECG frame possessing important clinical 
information as QRS complex was represented with short segments and a low-energy 
ECG frame with or without clinical information with large segments and tested on the 
MIT-BIH Arrhythmia and MIT-BIH Compression Test Dataset to get high CR with low 
reconstruction error, and the average time taken for compression and reconstruction was 
0.619 and 0.279 s respectively, retaining the diagnostic information of the reconstructed 
signal. 

The authors of [184] Israa Tawfic et al. explored CS for wireless ECG system with 
iterative method using WBAN and DWT sparsification. They presented two greedy 
pursuit techniques named Least Support Orthogonal Matching Pursuit (LS-OMP) and 
Least Support Denoising-Orthogonal Matching Pursuit (LSD-OMP). The effectiveness of 
the LS-OMP is tested from Physio Bank ATM records and to get a sparse signal DWT was 
used. The stopping condition in the algorithm successfully found the correct signal in a 
smaller number of iterations. Similarly, this was experimented for other record using 
three level DWT with filter type Symlets8. The transmitted signal was affected with 
WGN = 10 dB noise, reconstructed signal is achieved with RSNR = 25.0677. Three per-
formance measures were used to check the ability of proposed algorithm and compared 
with the other three greedy methods such as MP, OMP and (Compressive Sampling 
Matching Pursuit) CoSaMP. Results showed that there is a significant performance in 
terms of reconstruction quality and compression rate. 

Michael Melek et al. [185] proposed an ECG compression method in wavelet domain 
based on adaptive greedy reduced-set matching pursuit with partially known support 
(ARMP-PKS). The ECG signal is segmented into non-overlapping blocks of definite 
length and sparcification of the signal is performed on each block using Daubechies 5 
DWT. The wavelet coefficients are thresholded to improve the performance, keeping 
only the top magnitude coefficients. CS is applied to the wavelet coefficients of each 
block and the reconstruction capability of ARMP-PKS is evaluated on MIT-BIH Ar-
rhythmia Database. ARMP-PKS displayed a significant improvement in reconstruction 
time and SNR. 

Javad Afshar Jahanshahia.b et al. [186] discussed a CS technique with lower-rank 
limitation for efficient data acquisition and signal recovery for multichannel ECG in 
WBSN. For effective signal recovery, an analytical method is implemented based on al-
ternating direction method of multipliers (ADMM) to effectively solve the optimization 
problem. Specifically, two optimization methods are defined 𝑙  norm and nuclear norm 
for sparsity and the low-rank constraint respectively. Daubechies-4 (db4) wavelets and 
DCT are used as the temporal and spatial sparsifying bases for reconstruction of MECG 
signals using MIT-BIH and PTB database. Considering the additive white Gaussian noise 
(SNR = 10 dB) to all the experiments, the proposed algorithm achieved higher recon-
struction accuracy with a smaller number of required transmission packets and lesser 
computational complexity with low reconstruction error. 

Shuang Sun et al. [187] makes a study on the acquisition of heart sound (HS) signals 
by CS in WBSN. The main purpose is to find the best sparsifying basis among the wavelet 
family, the best reconstruction techniques and frame size among the widely used ones. 
BP was considered as recovery algorithm, setting the frame size to 1024 and it is imple-
mented over 52 different types of wavelet basis. The experimental results conclude that 
with the reduction of CR, PRD decreases significantly. The results demonstrate that 
rbio3.1, bior3.1 and bior3.3 had bad recovery performance when CR is greater than 35%. 
Keeping db2 as sparsifying matrix and the frame size to 1024 for fair comparison, dif-
ferent reconstruction algorithms bring about different signal qualities. PRD for almost 
every CR region and the best efficiency was obtained by BP. OMP algorithm gave satis-
factory result for 35% of CR value. However, when CR is greater than 50%, PRDs and 
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SSIMs of OMP and CoSaMP methods are unsatisfactory, and analysis of frame size con-
cluded that the frame size from 256 to 4096 has little influence on the reconstruction 
quality. The different frame sizes have undefined differences in terms of PRD and SSIM. 

Another paper [188] addresses the design of bi orthogonal wavelet filters to increase 
the sparsity of ECG signal in CS domain in ECG and fetal ECG compression based on 
double exponential wavelet 2 (dew2). From the observed result it can be noted that the 
sparse representation in fetal ECGs was better compared to other wavelets where the 
obtained reconstruction quality was enhanced as there was an improvement in PRD and 
PSNR. In some dataset dew1 performed better than dew2 as the prior had good sparse 
representation. 

Fabio Pareschi et al. [189] investigated on Rakeness-Based CS optimization tech-
niques for improving reconstruction performance of an ECG Signal using three iterative 
algorithms such as OMP, CoSaMP and Iterative Hard Thresholding (IHT) at decoder and 
evaluated their performance in terms of energy required for reconstruction. On two 
separate ARM architectures, three iterative techniques were explored, and certain 
trade-offs were considered, OMP emerges as the best reconstruction algorithm, both in 
terms of energy consumption and reconstruction quality. 

In [190] Zhimin Zhang et al. examined the four commonly used CS recovery algo-
rithms such as CoSaMP, OMP, Expectation Maximum-based block sparse Bayesian 
learning (BSBL-EM) and Bound-Optimization-based block sparse Bayesian learning 
(BSBL-BO) to identify the suitable algorithm for real-time application for CS-based ECG 
signal processing. PRD and Reconstructing time (RT) were chosen as performance met-
rics. For various values of CR BSBL-BO and BSBL-EM algorithms performed superiorly, 
specifically BSBL-BO resulted in giving the best PRD while BSBL-EM attained the better 
RT at various CR. It resulted in saving more hardware resources and reducing the burden 
of sampling and storing. 

Article [191] discusses the aim of enhancing the reconstruction quality of ECG sig-
nals in CS algorithm. Enrico Picariello et al. proposed a new method for dictionary matrix 
optimization. The dimensions of the dictionary matrix were reduced by using a Multiple 
Orthogonal Matching Pursuit (M-OMP) algorithm in an initial training phase. As a result, 
the OMP algorithm used in reconstruction estimates the signal coefficients in a reduced 
domain, which in turn increased the signal’s quality and execution time was also re-
duced. PhysioNet and MIT-BIH Arrhythmia Database were explored for evaluation, and 
this method achieved greater performance in terms of PRD and also exhibited a better 
reconstruction quality. 

The work performed by Ruixia Liu et al. in [192] discusses about ECG signal cor-
rupted with different noise signals and efficient way of denoising and recovering. They 
considered two noises baseline wander interference and Gaussian white noise and 
overcame the noise by using the low-pass filtering method and alternating direction 
method of multipliers (ADMM) optimization algorithm. This BP-ADMM is based on the 
conventional BP algorithm, which can reconstruct the ECG signals with denoising. To 
improve the original variables and dual variables at the same time this scheme adds a 
secondary penalty term and reduces constraint conditions. By decomposing the objective 
function in parallel the calculation speed is improved by dual decomposition method, the 
simulation results conclude that the proposed algorithm gave its best in ECG denoising 
with higher SNR and lesser mean square error (MSE). 

Yih-Chun Cheng et al. [193] proposed low-complexity CS techniques in WBSN for 
monitoring ECG signals. To simplify the support augmentation and to estimate the ef-
forts in the recovery algorithm, properties of ECG were utilized in the wavelet domain to 
extend the partially known support set (PKS). OMP algorithm based variable orthogonal 
multi-matching pursuit (vOMMP) that combines the advantages of OMP and orthogonal 
multi-matching pursuit (OMMP) is proposed to successfully augment the support set 
with reliable supports as a first step and as a second phase. The OMMP is used to in-
crease the probability of recovering the missing supports to increase the reconstruction 
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performance. For reducing the computation complexity matrix-inversion-free scheme 
based on QR decomposition was utilized to implement pseudo-inverse operation. The 
performance of the proposed scheme was evaluated, complexity analysis and simulation 
results proved to attain good performance with less complexity. 

Yaguang Yang et al. [194] conducted study on adaptive ECG signal processing sys-
tem adapting the quantity of data transmitted based on the channel status. Partial DCT 
matrices and LDPC matrices were used as measurement matrices. Later, performances of 
various recovery algorithms were evaluated using CR, MSE, PRD and SNR. BSBL algo-
rithm gave the best result with low data rate. 

Wireless body area network (WBAN) is a trending technology which allows exam-
ining and collecting patient health data using wearable sensors. WBAN communicates 
through the Internet and other wireless technologies like Bluetooth, ZigBee, Wireless 
Sensor Networks (WSNs) etc. Here are a few studies which are carried out using CS on 
WBSN. 

This approach by Yue-Bin Zhou [195] initiated to cut down the energy consumption 
of WBAN node, a data compression energy-saving strategy was presented. Using CS 
technique for signal compression, Sparse Representation Classification (SRC) algorithm 
was selected to recognize the normal and abnormal signal. SRC identifies the nodes that 
are collecting normal signals and set them to dormant state these normal physiological 
signals collected by WBAN nodes will not be transmitted and put the nodes to sleep state 
which reduces the amount of data acquisition and transmission, which in turn reduces 
the data transmission energy consumption of WBAN node. Similarly, if the abnormal 
signal is identified it is sent directly to the central base station, and reconstruction of the 
signal is done through CS reconstruction algorithm. FFT was chosen as transformation 
matrix, and sparse random matrix was selected as measurement matrix. Signal recogni-
tion simulation result shows the effectiveness of proposed model based on the PRD and 
SNR evaluation index. The minimum 𝑙  algorithm has faster computing speed com-
pared with 𝑙  minimum convex optimization algorithm. Considering both recognition 
time and data rate, greedy algorithm is a preferable algorithm for the ECG SRC algo-
rithm. 

This paper [196] by Yunfei Cheng et al. proposes a fast and accurate non-sparse ECG 
signal recovery algorithm based on BSBL known as BSBL-Alternating direction method 
of multipliers algorithm (ADMM) for ECG tele-monitoring system. The proposed 
BSBL-ADMM method can recover non-sparse ECG signals in the time domain with high 
accuracy and speed. A digital CS based practical wearable ECG tele-monitoring system 
was built and the experimental outcome demonstrated that the proposed approach can 
directly recover ECG signals in the time domain without the need of a dictionary matrix 
with fast speed and acceptable accuracy. The suggested technique is quick and resilient 
for various ECG datasets because of ADMM. 

This study [197] by Zhimin Zhang et al. recommended CS algorithms for recon-
structing under-sampled and compressed ECG signal. This method involved two steps: 
ECG signal subsampling and reconstruction. Initially sparsity enhancement was done by 
sub-sampling the ECG signal and using Cut and Align (CAB) it was mapped onto a 
two-dimensional (2D) space, later using nonlinear optimization model 2D signal was 
reconstructed. Compression of original signal was achieved using Gaussian random 
matrix and recovery of signal is done using four well known algorithms, two from MP 
that is OMP and CoSaMP and another two from BSBL method such as 
Bound-Optimization based Block Sparse Bayesian Learning (BO-BSBL) and Expecta-
tion-Maximum-based Block Sparse Bayesian Learning (EM-BSBL). Performance evalua-
tion was carried out by PRD and Reconstruction Time (RT) is also considered. The sug-
gested CS technique demonstrated to be capable of reconstructing original signals faith-
fully with just 30% data acquisition. The obtained results prove that the reconstruction 
accuracy was better in BSBL methods and for implementation MP methods proved to be 
very efficient. 
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Anurag Singh et al. [198] proposed a work in which a joint CS method is considered 
for compression and recovery of multi-channel ECG (MECG) signals for tele-monitoring 
applications. Here two specific sparse recovery algorithms are jointly used from 
weighted mixed-norm minimization (WMNM) algorithms, one is iterative and referred 
as Sub-band weighted MNM (SWMNM), and the other is a non-iterative algorithm called 
Prior weighted MNM (PWMNM). The proposed recovery algorithms exploit multi-scale 
signal information through a sub band weighting strategy. This weighting strategy in-
corporates additional information about diagnostically relevant wavelet coefficients in 
the optimization problem formulation and emphasizes them in the final reconstruction. 
Results are averaged for PTB database, PRD = 6.60, SNR = 23.67 WEDD = 6.07 and CSE 
data base, PRD = 16.74, WEDD = 13.96. It has a capability of achieving classification ac-
curacy of 73.2% when MECG signals are jointly reconstructed using only about 10% of 
compressed measurements. The proposed method was capable of reducing the number 
of CS measurements required for effective reconstruction. 

Mohammadreza Balouchestani et al. [199] discuss a modified low sampling rate 
approach based on CS theory with incorporation of BSBL framework for classification of 
normal and abnormal ECG signals. Sparse reconstruction algorithm was evaluated using 
SPARCO toolbox. ECG databases were subjected to a random sensing matrix, this ran-
dom sensing matrix was examined with three different sensing matrix variants con-
cluded that with minimum energy consumption the Binary Toeplitz matrix provided 
good SNR and better compression performance. The recovery of sparse signals from 
quantized random measurements is validated through BPBQ (Basis Pursuit De Quan-
tizer) toolbox, and performed better on CR, and PRD with high probability and with 
reasonable accuracy. 

Shengxing Liu et al. [200] proposed a self-training dictionary scheme (STDS) based 
on an approximated 𝑙  norm constraint method (A𝑙 CM), it is designed by making use 
of an accelerated gradient descent method for ECG signal compression and reconstruc-
tion to attain better accurate sparse representation. In the compression stage, the original 
ECG signal is recorded and compressed by sampling matrix. Then the compressed data is 
transmitted through IoT platform and received by the data center for reconstruction of 
original ECG signals. In this work STDS is used for sparse representation. A training step 
is required for the learned dictionary; training data is taken from the original ECG signal. 
This method performed superior in terms of the RSNR, for both low and high CR. It 
provided a better precise estimation of the ECG signal even when CR = 0.2, RNSR was 
high compared to other methods. 

Jeevan K. Pant et al. [201] proposed ECG Signal Compressive Sampling by Encour-
aging Second-Order Sparsity Differences and with the aid of using a Dictionary Learning. 
The regularised least-squares (l -RLS) algorithm, for the reconstruction of ECG signals 
and dictionary learning algorithm for improving the l -RLS algorithm is proposed in 
this study, On the second-order difference of the signal, the pseudo-norm is employed to 
promote sparsity. The l -RLS algorithm is associated with the reduction of a pseu-
do-norm regularised square error. A sequential variant of the basic conjugate-gradient 
(BCG) approach is used to perform the optimization. The l -RLS technique is used to 
reconstruct signals, and the linear least-squares method is used to update the dictionary. 
Simulation results shows that the l -RLS approach improves signal reconstruction per-
formance, and the average computation time was also less. 

Tohid Yousefi Rezaii et al. [202] investigated a new method to find out the sparsity 
order of the signal by reducing the reconstruction error, the Optimum Sparsity Order 
Selection (OSOS). Using the dictionary matrices based on Gaussian kernel functions 
representation of the sparse signal is obtained, the OMP algorithm was used to estimate 
the active coefficients of the model. By knowing the optimum sparsity order, a sensing 
matrix which has RIP property was used to achieve compressed ECG signal. The pro-
posed algorithm provided fair compression ratio, parameter error, efficient denoising 
and good improvement in SNR. The raised Cosine dictionary represented more sparsi-
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fying dictionary, it is much more efficient than Gaussian kernel and this method can 
work with any sparsifying kernel. 

Luisa F. Polanía et al. [203] investigated the (Restricted Boltzmann machines) 
RBM-OMP-like algorithm wavelets and “learned overcomplete dictionaries” are utilized 
to sparsify ECG signals. RBM is a type of undirected graphical model made up of layer of 
binary stochastic hidden units and a layer of stochastic visible units. Daubechies-4 
wavelet transform used as the sparsifying transform at decomposition level L = 4. Simu-
lation result revealed that the RBM-OMP-like algorithm performed better when using 
learned overcomplete dictionaries than wavelets. 

Another proposal by Manas Rakshit et al. [204], discusses CS based efficient beat 
type dictionary learning. For individual ECG records, the proposed algorithm provides 
high-quality reconstructed signal without training stage. It incorporates both beat type 
dictionary and non-uniform random sensing matrix. Based on the morphology of the 
ECG beats the matching beat type dictionary is employed for recovery of the ECG sig-
nals. A cross-correlation based template matching approach is used to determine the type 
of ECG beat in the recovered signal. The kind of the beat is identified by determining the 
greatest cross-correlation coefficient. The qualitative and quantitative analysis concluded 
efficiency by analyzing CR, PRD, PRD1, RMSE, SNR and (fractional distortion measure) 
FDM. It produced greater CR and the power consumed by the proposed scheme was 
11.35μW which is very less. 

The authors Dana ˇCerná et al. [205] provided the complete description to build 
wavelet dictionaries with reduced dimensionality for modelling the ECG signals, these 
dictionaries are created from known wavelet families. Each dictionary is created by tak-
ing the models from a wavelet basis and translating them in a smaller step than the 
wavelet basis itself. There are two parts to each of the suggested dictionaries. A discrete 
cosine basis denoted as matrix 𝐷 , is used in one of the components few elements, and 
the Wavelet dictionary denoted as matrix 𝐷  is the other component. As a result of the 
horizontal concatenation of 𝐷  and 𝐷  matrices, the full dictionary D modeling is built 
as D= [𝐷 ∗ 𝐷 ] and it was illustrated to reduce the dimensionality of three records from 
the Arrhythmia database. The wavelet dictionary is constructed for different scales with 
translation parameter b = 1 and b = ¼ and approximation was realized. 

Pasquale Daponte et al. [206] this paper presents a dynamic CS method for moni-
toring ECG signal with multiple lead, and transfer of information through IoT networks. 
The CS algorithm utilizes a sensing matrix that is constructed from a vector obtained by 
precisely integrating ECG signals from two separate leads. The sensor node obtains a 
compressed signal for every ECG frame and sends it to the cloud server, together with 
the vector defining the sensing matrix. As a result, the sensing matrix can be recon-
structed in the cloud server, and all of the ECG leads can be recovered, Mexican hat 
wavelet kernel is used as sparsity matrix and to solve the reconstruction problem this 
method utilized two minimization algorithms the Multiple Sparse Bayesian Learning 
(M-SBL) and the Multiple FOCal Underdetermined System Solver (M-FOCUSS). The 
proposed method obtained low PRD. 

Mohammed M. Abo-Zahhad et al. [207] exploit a single-lead ECG compression 
method in which the Q, R and S wave peaks and periods are detected for each heartbeat 
in preprocessing stage, later this QRS complex is estimated these estimated QRS complex 
is compared with original ECG signal and the difference signal is considered as error 
where these error signal is compressed with CS method. DWT sparsifying dictionaries 
(The bi-orthogonal wavelet filter “bior4.4”) is adopted for entire process. The results in-
dicate that an average compression ratio of 11:1 with PRD1 = 1.2% are obtained and 
proved an improved result in compression ratio. 

Jan Saliga et al. [208] presented an alternate method for CS and reconstruction of 
ECG signal, which offers a high CR. This is achieved by high decimation and requantiz-
ing the measurement signal. QRS detector algorithm using Hilbert transform was used to 
detect exact R wave position for signal segmentation, the reconstruction employed a 
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dynamic ECG model, based on Differential Evolution (DE) algorithm to find the ECG 
model parameters for signal reconstruction. It had been experimented varying the deci-
mation factor D for different CR values and achieved better results for higher D. The re-
sults indicated the similar quality of reconstruction for 𝑙  and 𝑙 , based on error function 
minimization. Experimental results validate the 𝑙  norm as the better choice for the re-
construction. It reduces the noise interfering with ECG signals and minimizes the loss of 
diagnostic information. 

In another method employed by Fahimeh Nasimi et al. [209] the sparsity of an ECG 
frame was increased by removing the redundancy in a normal frame to detect heart rate 
variability (HRV). The ECG signal is divided into frames of equal duration. Uniform 
sensing matrix is used for sensing the signal and later Selective compression is done. The 
reconstruction of original Signal is performed using basic pursuit. The performance 
evaluation was performed on HRV analysis and energy-based distortion analysis, and 
this method reached an accuracy of 99.9%, for a CR of 25. The average PRD is less than 10 
for all compression ratios. 

The work proposed by Ashok Naganath Shinde et al. [210] explores CS reconstruc-
tion of biomedical signals using Haar Wavelet Matrix through ‘Average Fitness-based 
Glowworm Swarm Optimization’ (AF-GSO) model. Compression of signals were pro-
cessed by transformation, evaluation and normalization stages and the statistical analysis 
and error performance are performed. 

Another such paper proposed by Grazia Iadarola et al. [211] discusses a dynamic 
method for reconstructing multi-lead ECG signal based on CS with Internet of Medical 
Things (IoMT) using the circulant matrix as sensing matrix which was dynamically ana-
lyzed through the signal samples collected by the first lead and Mexican hat wavelet was 
used for signal sparsification. The suggested dynamic technique has a better signal re-
construction than the conventional CS multi-lead method employing a random sensing 
matrix. The effectiveness of the recommended system is evaluated using ECG signals 
from the Physikalisch-Technische Bundesanstalt (PTB) Database. At CR = 10 obtained a 
reasonable value of PRD equal to 7.05%. 

Pasquale Daponte et al. [212] investigated his study on heart sound signals based on 
CS using Deterministic Binary Block Diagonal (DBBD) matrix as sensing matrix. The 
major benefit of using this is that it does not require generation of random numbers in the 
acquisition node and the computational complexity is also less at the compression phase. 
DCT and the Mexican Hat wavelet are the two different sparsity matrices were used in 
this method. The method was evaluated on a wide set of heart sound signals available 
from the PhysioNet database and compared the result with another CS methods. DBBD 
matrix gave its best result when used with DCT matrix and Mexican Hat matrix perfor-
mance was also convincible demonstrated result gave an outstanding performance 
achieving PRD = 23.88% for CR = 10. 

Table 2 contains the literature survey discussions with respect to various applica-
tions and CS implementation on ECG signal and its reconstruction algorithm. 
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Table 2. CS Models and the Reconstruction algorithm. Note: when a quantifiable data is not available it 
is marked as -. 

Author Sensing Matrix Signal Sparsification Reconstruction 
Algorithm 

Data Set Result/Remarks 

Thilagavathy R et 
al. [175] 1D complex DAST 

DWT and Run-length 
encoding (RLE) 

IDWT and 
Run-length De-

coding 

MIT-BIH ar-
rhythmia data-

base 

Average CR = 99.97% 
Execution time = 0.4568 
s and 0.3857 s with and 

without DAST. Not 
exact CS but lot of po-

tential to be CS 

Fatemeh Moham-
madi et al. [176] 

Independent 
component analy-

sis (ICA) 

sparse coefficients 
based on the learning 

dictionary 
GPSR 

Tehran ar-
rhythmia clinic 

database 

Average accuracy = 
70.24% 

Fereshteh Fakhar 
Firouzeh et al. 

[177] 

Random Normal-
ized Matrices 

(RNM) 
DCT 

Smoothed 𝑙  
Norm (𝑠𝑙 ) and 

BP 

MIT-BIH ar-
rhythmia  

CR = 50 % PRD for 𝑠𝑙  = 8:36 BP = 16:25 

Hongqing Liu et 
al. [178] 

- Daubechies4  
Wavelet 

BP and CoSaMP MIT-BIH PTB 
diagnostic ECG 

suppression ratio = 18 
dB and MSE = −130 dB 

Chandan Kumar 
Jha et al. [179] 

- 
dead-zone quantiza-
tion and run-length 

encoding 

Tunable 
Q-wavelet 
transform 
(TQWT) 

MIT-BIH ar-
rhythmia data-

base 

Accuracy = 98.35% 
Sensitivity = 95.77% 
Specificity = 99.19% 

Tsung-Han Tsai et 
al. [180] 

Multi-channel 
Linear Prediction 
unit(MLP) and LP 

Golomb-Rice encoding 
algorithm 

Golomb-Rice 
Decoder  MIT-BIH & PTB 

Multichannel Average 
CR = 4.073 

CR improved by 33%  
Asma Maalej et al. 

[181] 
LC-ADC DWT OMP algorithm PTB-diagnostic Average CR = 63% 

Luisa F. Polania et 
al. [182] 

Gaussian sensing 
matrix 

Daubechies db4 
wavelet 

BSBL 
 

MIT-BIH Ar-
rhythmia 

PRD = 3.55, CR = 10. 
PRD = 2.07, CR = 14 

Hakan Gurkan et 
al. [183] 

variable-length 
classified signa-

ture 
and envelope vec-
tor sets VL-CSEVS 

wavelet transform Huffmn decoder 
MIT-BIH Com-
pression Test 

Database 

PRD = 1.2 to 5.6%  
MPRD = 1.627 to 

8.631% 
average CRs = 4:1 to 

20:1 
Israa Tawfic et al. 

[184] 
Random Gaussian 

matrix DWT sparsification 
LS-OMP and 

LSD-OMP 
Physio Bank 

ATM RSNR = 31.0543 

Michael Melek et 
al. [185]  Gaussian matrix Daubechies 5 DWT 

ARMP-PKS al-
gorithm 

MIT-BIH Ar-
rhythmia  

RSNR ARMP-PKS = 
22.6, 3.7 & 14.4 dB 

Javad Afshar Ja-
hanshahia.b et al. 

[186] 

Random binary 
measurement ma-

trix 

Kronecker sparsifying 
db4 wavelet and DCT ADMM 

MIT-BIH and 
PTB database 

CR = 8, 
time = 0.061 s 

PRD = 3.32, PRDN = 
7.48, QS = 1.95 

Shuang Sun et al. 
[187] Bernoulli matrix db2 BP PhysioNet Da-

tabase 

Irls for best reconstruc-
tion quality and BP for 

efficient algorithm 

S. Abhishek et al. 
[188] 

Random sensing 
matrix 

dew2 

M-SBL (Multiple 
sparse Bayesian 
learning algo-

rithm) 

MIT-BIH  and 
MIT challenge 

data set  

Average performance 
of ‘dew2’ is higher in 

fetal ECGs 

Fabio Pareschi et Rakeness-Based Symlet 6 wavelet  OMP, CoSaMP MIT-BIH Ar- OMP preferred for 



Appl. Sci. 2022, 12, 8368 20 of 37 
 

al. [189] CS optimization and IHT rhythmia 
Database 

lower energy and 
high reconstruction 

quality 

Zhimin Zhang et 
al. [190] 

Gaussian random 
matrix (GRM) 

used as measure-
ment matrix 

Fourier transform 
CoSaMP, OMP, 
BSBL-EM and 

BSBL-BO 

MIT-BIH Nor-
mal Sinus 

Rhythm Data-
base 

PRD for OMP = 7.51% 
to 81.95%, 

CoSaMP = 6.07% to 
71.09%, 

BSBL-BO = 1.75% to 
15.33%  

BSBL-EM = 1.79% to 
38.09%. 

Enrico Picariello et 
al. [191] 

Binary 
Matrix Dictionary matrix OMP algorithm 

MIT-BIH Ar-
rhythmia 

PRD < 9% for various 
CR 

Ruixia Liu et al. 
[192] 

Gaussian random 
matrix 

STFT analysis diction-
ary 

BP-ADMM al-
gorithm MIT-BIH ECG 

5 dB noise 
mean SNR = 7.129 

Yih-Chun Cheng 
et al. [193] 

Binary 
sensing matrix DWT 

PKS-vOMMP 
algorithm 

 MIT-BIH Ar-
rhythmia Achieved better SNR 

Yaguang Yang et 
al. [194] 

Gaussian matrix 
Partial DCT and 

low-density parity 
check (LDPC) matrices 

BP, OMP, 
CoSaMP, and 

BSBL 

MLII-type data 
from MIT-BIH 

CR < 60% BSBL algo-
rithm gave best result 

Yue-Bin Zhou 
[195] 

Sparse random 
matrix  

Sparse Representation 
Classification (SRC) 

Greedy algo-
rithms 

MIT-BIH data-
base RT = 50 ms 

Yunfei Cheng et al. 
[196] 

Sparse binary ma-
trix  

without dictionary BSBL-ADMM 
MIT-BIH and 

MIT-BIH 
Long-Term  

Recovery speed was 
0.0629 s for CR = 60% 

Mean PRD = 6.92 

Zhimin Zhang et 
al. [197] 

Gaussian 
random matrix Fourier transform 

OMP and 
CoSaMP 

BO-BSBL and 
EM-BSBL 

MIT-BIH Nor-
mal Sinus 
Rhythm  

PRD ≤ 9% 

Anurag Singh et al. 
[198] 

Random binary 
sensing matrix Wavelet 

SWMNM and 
Non-iterative 

algorithm 
PWMNM 

PTB and 
MIT-BIH data-

base 

PRD1 = 1.31, QS = 4.88 
for MIT-BIH, classifica-
tion accuracy = 73.2% 

for 10% of compressed 
data 

Mohammadreza 
Balouchestani et 

al. [199] 

Random sensing 
matrix 

Dictionary BSBL framework MIT-BIH data-
base 

65% reduction in pow-
er and 15% incense-

ment on SNR 

Shengxing Liu et 
al. [200] Binary matrix 

Self-training diction-
ary scheme (STDS) 

A𝑙 CM frame-
works 

MIT-BIH Ar-
rhythmia data-

base 

CR = 0.5 Running time 
= 0.0039 s 

PND = 0.2454% RSNR = 
53.0814 dB 

Jeevan K. Pant et 
al. [201] 

Basic conjugate 
gradient Dictionary learning 

l -RLS algo-
rithm 

MIT-BIH data-
base 

reduction in computa-
tional time 

Tohid Yousefi Re-
zaii et al. [202] OSOS Dictionary based OMP algorithm Physionet ATM 

Gaussian matrix SNR = 
9.5078 dB, cosine ma-
trix SNR = 7.9655 dB 

Luisa F. Polanía et 
al. [203] RBM 

wavelets and learned 
overcomplete diction-

aries 
OMP 

MIT-BIH and 
European ST-T 

Average recall =  
96.34% 

Precision = 93.92%  
Manas Rakshit et Non-uniform Beat type dictionary  a beat type dic- MIT-BIH and 33.5% greater CR 
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al. [204] Random sensing 
matrix 

tionary NSRDB PRD1 = 9% 

Dana ˇCerná et al. 
[205] - 

Wavelet dictionaries 
and DCT OOMP MIT-BIH PRD = 0.51% 

Pasquale Daponte 
et al. [206] 

Dynamic sensing 
matrix 

Mexican hat wavelet M-SBL and 
M-FOCUSS 

MIT-BIH Ar-
rhythmia 

PRD = 0.71%, CR = 2 
PRD = 2.82% 

CR = 10 
Mohammed M. 

Abo-Zahhad et al. 
[207] 

Random Gaussian 
Matrix DWT, bior4.4  MIT-BIH data-

base 
CR = 11:1 

PRD1 = 1.2% 

Jan Saliga et al. 
[208] Bernoulli matrix The Mexican Hat and 

the Symlet-4 wavelet 
Differential 
Evolution  

MIT-BIH ar-
rhythmia data-

base 

𝑙  norm as the better 
choice 

Fahimeh Nasimi et 
al. [209] 

Uniform sensing 
matrix DWT technique Basic pursuit 

MIT-BIH and 
MIT-BIH Long 

Term 

Accuracy = 99.9%, for a 
CR = 25 

PRD < 10 

Ashok Naganath 
Shinde et al. [210] Gaussian matrix Haar Wavelet matrix AF-GSO 

Physiobank 
database 

attained less error for 
neighbour count is 

equal to 2  
Grazia Iadarola et 

al. [211] 
Circulant matrix Mexican hat wavelet M-FOCUSS PTB Database PRD = 7.05% with Less 

error. 

Pasquale Daponte 
et al. [212] 

DBBD matrix DCT and Mexican hat 
wavelet matrix 

OMP Physiobank 
database 

PRD = 23.88% for CR = 
10. 

less computational 
complexity 

6.2. Learning Algorithms on ECG 
The important block of the use-case of our interest is the decision-making block and 

in case of CS for ECG there are 2 approaches in implementing the learning algorithms (i) 
learning from the ECG signal reconstructed from CS measurements (ii) Learning directly 
from the CS measurements. 

6.2.1. Learning on Reconstructed ECG Signal 
The IoT framework considered for the review has an important decision-making 

block implemented using AI. Hongpo Zhang et al. [213] quantified the effect of CS for 
monitoring ECG remotely using deep learning technique based on non-iterative method. 
The combination of CNN and LSTM was made to learn directly the mapping relationship 
between the original signal and the measurements. This method has the ability to recon-
struct original ECG signal more accurately without any prior knowledge. The results 
proved the reconstruction error is lower than other methods. The clinical requirement 
was achieved at CR ≤ 70%, for Normal Sinus Rhythm Database (NSRDB), MIT-BIH Atrial 
Fibrillation Database (AFDB) and CR ≤ 90% for EDB dataset. 

Lijuan Zheng et al. [214] implemented a singular value decomposition (SVD) based 
compression procedure including period normalization, for ECG Arrhythmia signals. 
The decompressed data is given to a CNN and SVM models to classify abnormal ECG 
signal, certain commonly used indicators such as CR, PRD, PRDN, Root Mean Square 
Error (RMS), SNR and Quality Score (QS) achieved an Average value of 53.77, 9.23, 12.81, 
5.28, 18.07 and 5.83 respectively. Even if some information is lost, a high-quality classifi-
cation result can be achieved 

The study proposed by Bo Zhang et al. [215] relates to multi-objective optimiza-
tion-based ECG signal compression using a neural network. The neural network learns 
the changes in ECG characteristics and its structural parameters are adjusted under the 
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guidance of the multi-objective function. By learning the diverse properties of ECG data 
compression, neural networks will adapt the parameters of network structure. The 
computational time required for obtaining original signal was less. For CR = 9, average 
PRD = 20 and average encoding time taken was around 7 s. 

In [216] Wenzhuo Li et al. proposed 1-D CNN based Compressed Learning algo-
rithm to classify compressed on-device multi-class ECG signal directly without recon-
struction. Consequently, the processing power is drastically reduced and the perfor-
mance of the proposed hardware design is validated by implementing the algorithm on 
various hardware design such as FPGA, Artix-7 Low power board and UMC 40 nm Low 
Power Process technology, the hardware architecture with the 1-D CL classifier achieves 
an energy efficiency of 0.83 μJ/Classification under a 1.1 volt power supply at a frequency 
of 5 MHz, This strategy yielded a significant performance boost with an average accuracy 
of 98.35%, under CR = 0.2 and displayed an increase in average accuracy. 

Article [217] quantifies the impact of compressed sensing and reconstruction 
methods on ECG arrhythmia detection with SVM classifiers. Sophie Zareei et al. focused 
their work to determine acceptable compression ratios for ECG signals that retain critical 
information. Reconstruction of original signal is done through two widely used algo-
rithms, such as BP and OMP and identification of the suitable CR which retains the nec-
essary information of ECG signal. Outcome of the investigation illustrates that few 
sparsely sampled signals are sufficient for SVM classifier to detect type of arrhythmia, for 
the CR value up to around 1:7 ECG signals are recovered and then classified with the 
same quality for BP and OMP algorithms. Thereafter, after increasing the compression 
ratio BP outperformed OMP in detecting the arrhythmia for ECG signal, as a trade-off 
negative correlation was witnessed. 

In order to deal with missing data, Vanika Singhal et al. [218] proposed unsuper-
vised deep blind compressed sensing concept and combined the signal reconstruction 
and classification in a single frame. The analysis of the signals is done directly from the 
partially observed or compressed domain. The results concluded that this method out-
performed compared to other methods for 2:1 compression the average classification 
accuracy was 100% which contributed a superior result. 

Jia Li et al. [219] proposed ECG signal Classification based on CNN using the 
ADADELTA and biased dropout algorithms to improve performance where the 
ADADELTA optimizer is used to increase the learning rate and convergence speed. The 
1D information fusion vector was transformed into a 2D image with the help of one-hot 
encoding technique to improve the accuracy and speed of classification. This model was 
experimented on the MIT-BIH arrhythmia database, which was capable of achieving an 
average accuracy of 99.1% and 97% which displayed a fair performance in terms of the 
sensitivity and positive predictive rate. 

A deep-learning strategy has been presented by Shadhon Chandra Mohonta et al. 
[220] in which the network classifies the scalogram image obtained by CWT based on the 
signature associated to arrhythmia. The 2D CNN is trained for automated arrhythmia 
identification using the recordings of CWT. The suggested method is trained and tested 
to identify five various types of heartbeats. The proposed method displayed an average 
sensitivity, specificity, and accuracy of 98.87%, 99.85%, and 99.65%, respectively. The 
outcome demonstrated that the proposed model can effectively identify arrhythmia for 
small segments of ECG signal which made the model computationally faster and simpler. 

Roberta Avanzato et al. [167] proposed an automated heart disease recognition 
technique based on 1-D CNN 5-layer architecture using ECG signals. Here the signals 
were directly fed to a well-trained CNN network. This model was validated using the 
MIT-BIH Arrhythmia Database, which consisted of more than 4000 ECG signal samples 
extracted from 25 male and 22 female subjects. The experimented output result gave an 
outstanding result of an average classification accuracy of 98.33%. The confusion matrix 
from the testing dataset indicated 99% accuracy. The sensitivity and the specificity were 
98.33% and 98.35%, respectively. 
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V. Jahmunah et al. [221] developed an automated system for ECG classification 
which classifies 4 classes of ECG signal which are normal, coronary artery disease (CAD), 
myocardial infarction (MI) and congestive heart failure (CHF) classes. The classification 
is done by using CNN and unique GaborCNN models. Weight balancing was used to 
balance the dataset, as the ECG data used in this work were imbalanced. Lead II ECG 
signals from 92 healthy controls, 7 CAD, 148 MI and 15 CHF patients were considered for 
categorization. The performance of GaborCNN was better due to its less computational 
complexity and the classification accuracy was more than 98.5% for all the 4-classes, 
while on the other hand, CNN also gave its best performance. 

Xue xu et al. [222] proposed a combined network of CNN and RNN designed for 5 
classes of ECG signal classification. This model consists of 2 convolutional layers, ReLU 
layer, residual blocks, 2 bidirectional long short-term memory (biLSTM) layers and 2 
fully connected layers where each residual block involved the structure of a 
Squeeze-and-Excitation Network (SENet) with lightweight property to recalibrate the 
feature map of the network. The last dense layer has 5 outputs equivalent to the classes 
considered. Experimentation on an MIT-BIH dataset the developed network achieved a 
sensitivity, accuracy and specificity of 95.90%, 95.90% 96.34% for classification of 5 ECG 
classes and compared the obtained result with other existing models where the proposed 
method exhibited better performance. 

Yunqing Liu et al. [223] proposed an inverted residual block-embedded deep neural 
network (IRBEDNN) to classify arrhythmia diseases based on processed ECGs. VGG-like 
architecture was used for extracting the features of different arrhythmia diseases and on 
the other hand inverted residual block was used to reduce network complexity. The ef-
fectiveness of the proposed system was verified by conducting experiments on the 
MIT-BIH database and achieved the overall classification accuracy of 96.326% and com-
pared the result with other methods. This model has also been tested on the INCARTDB 
and achieves an overall accuracy of 97.110%. 

Ali Mohammad Alqudah et al. [224] developed an efficient and fast deep learning 
method for classification of cardiac arrhythmias in up to 17 classes. This method used 
beat-wise ECG signal analysis using iris spectrogram where a single ECG beat was ana-
lyzed and calculated the iris spectrogram. Later, this spectrogram was given to 2D CNN 
for classification. This model was implemented using 744 ECG signals from 45 different 
persons and was able to obtain an overall classification accuracy of 99.13. This approach 
was found to be faster and more efficient for classification and can be implemented for 
real-time arrhythmia detection. 

The study proposed by Rui Fang et al. [225] developed an automatic classification 
method for identifying myocardial infarction using 3-D ECG image and a Grad-CAM ++ 
method based on a VGG network. Here the ECG data were segmented into heartbeats 
based on the R-peak and normalized. Then, the heartbeat data was converted into a top 
view of a colored 3-D ECG and divided into three parts: ST, whole heartbeat, and QRS 
images for a multi-VGG19BN for training and classification. Later, the classification 
outputs were summed to obtain the final results. Grad-Cam ++ method was used to pro-
vide visually interpretable heatmaps. The experimented output demonstrated that the 
proposed model effectively classified 3-D ECG images with high accuracy and obtained 
accuracy, sensitivity and specificity of 95.65%, 97.34% and 90.80% for the PTB database. 

Another such paper based on CNN by Ali Sellami et al. [226] for heartbeat classifi-
cation was proposed. In order to overcome the imbalance between classes a 
batch-weighted loss function was used to quantify the loss. Experiments were carried out 
on a single-lead raw ECG signal as it is without any data preprocessing and feature ex-
traction and multiple heartbeats were also considered for more effective classification. 
This method outperformed existing methods for intra-patient and inter-patient paradigm 
and achieved an accuracy, positive productivity, sensitivity and specificity of 99.48%, 
98.83%, 96.97% and 99.87% for intra-patient and 88.34%, 48.25%, 90.90% and 88.51% for 
inter-patient respectively. 
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This paper by Amin Ullah et al. [227] developed a robust algorithm to classify the 
ECG signal effectively in the presence of environmental noise. 1D CNN with two con-
volutional layers, two down-sampling layers, and a fully connected layer was used in the 
proposed model. Classification accuracy was improved by transforming the 1D data into 
2D images. Later the 2D CNN model consisting of three 2D-convolutional layers, three 
down-sampling layers, and a fully connected layer was also used. The effectiveness of the 
proposed method was tested on MIT-BIH arrhythmia database and achieved the classi-
fication accuracy of 97.38% and 99.02% for 1D and 2D model respectively. The obtained 
performance indicates that the 2D CNN model is more effective than 1D for classification. 

The paper proposed by Monica fira et al. [228] discusses the study on dictionary se-
lection for ECG signals in CS domain. This article proposes the construction of diction-
aries which are directly constructed from R waves. Authors examined three different 
types of projection matrices in various types of dictionaries. The K-nearest neighbors 
(KNN) classifiers are used to classify the reconstructed signals and in addition to this an 
MLP was also used to classify the recovered signals. Experiments were carried out using 
MIT-BIH database for cardiac patterns compressed sensing (CPCS) and Patient specific 
classical compressed sensing methods (PSCCS). Authors concluded that the dictionar-
ies-based method used for reconstruction has more impact for reconstructing the original 
signal. 

Another approach presented by Weibin Cao et al. [229] discusses an effective 
method for Real-Time ECG signal reconstruction based on CS. In this work CS and Gen-
erative adversarial networks (GAN) are concatenated with each other for recovery of 
signals over long time period. Sparse binary matrix was used as sensing matrix. The 
concepts are experimented upon MIT-BIH and PTB datasets where all the experiments 
were carried out directly on time domain, and the obtained result demonstrated that this 
method achieved better performance compared to other existing models with respect to 
reconstruction time and accuracy. The reconstruction accuracy of the ECG signal was 
evaluated using PRD. The proposed model enhanced the reconstruction accuracy by 2% 
and the PRD value is equal to 0.39%. 

The discussions have been tabulated in Table 3 with respect to various applications, 
CS implementation on ECG signal classification using various Deep learning algorithms. 

Table 3. Models based on the convolutional neural network and hybrid models. 

Author Application DL Algorithm Database Result Remark 

Hongpo 
Zhang et al. 

[213] 
QRS detection CNN and LSTM 

MIT-BIH NSRDB, 
MIT-BIH AFDB and 

European ST-T 

Average reconstruc-
tion quality = 85% 

Average time = 0.1265 
s 

lower reconstruction er-
ror 

Lijuan Zheng 
et al. [214] 

Normal, 
LBBB,RBBB and 

PVC  
CNN and SVM 

MIT-BIH cardiac 
arrhythmia 

Average 
accuracy = 99.39% 

low quality signal, 
achieved 

high accurate classifica-
tion 

Bo Zhang et 
al. [215] 

ECG data com-
pression 

multi-objective 
optimization 

neural network 

MIT BIH ECG data-
base 

data compression ratio 
is 1:19, PRD = 12%  

and CC = 99%, 

lesser computational 
time 

Wenzhuo Li et 
al. [216] 

Arrhythmia 
Classification 

1-D CNN MIT-BIH 

Average precision = 
91.73%  

sensitivity = 91.55% & 
specificity = 98.65% 

implemented on FPGA, 
Artix-7 and UMC 40 

Sophie Zareei 
et al. [217] 

Arrhythmia de-
tection SVM classifiers 

MIT-BIH Arrhyth-
mia database 

CR up to 9.77 can be 
classified with preci-
sion and sensitivity > 

negative correlation be-
tween CR and recon-

structed signal quality 
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90% 
Vanika 

Singhal et al. 
[218] 

ECG signal clas-
sification 

CNN MIT-BIH Arrhyth-
mia database 

Average accuracy = 
98% 

Reconstruction & 
classification stages are 

combined as single frame 

Jia Li et al. 
[219] 

cardiovascular 
disease detec-

tion 
CNN (LeNet-5) MIT-BIH arrhythmia 

Achieved sensitivity 
and specificity of 

99.4% 99.9%  

To increase the conver-
gence speed of the learn-
ing rate ADADELTA op-

timizer is used. 
Shadhon 
Chandra 

Mohonta et al. 
[220] 

5 types of 
Heartbeat clas-

sification 
2D CNN MIT-BIH arrhythmia 

database 

The average accuracy 
for TN4 model is 

99.65% 

Pan Tompkins algorithm 
was used for ECG wave R 

peak detection 

Roberta 
Avanzato et 

al. [167] 

Automated 
heart disease 
recognition 

1D CNN MIT-BIH arrhythmia 
database 

F1 Score Mean Accu-
racy = 98.33% 

Considered three classes 
database Normal, 

Atrial premature beat 
and Premature ventricu-

lar contraction. 

V. Jahmunah 
et al. [221] 

Automated ECG 
classification  

CNN and 
GaborCNN 

Fantasia and St. Pe-
tersburg databases 

Average success rate 
CNN = 99.55% 

GaborCNN = 98.74% 

CAD, MI and CHF heart 
diseases were considered 

for classification  

Xue xu et al. 
[222] 

ECG heart 
Signal classifica-

tion 
CNN and RNN MIT-BIH dataset Accuracy = 95.90% cardiac health application 

Yunqing Liu 
et al. [223] 

arrhythmia de-
tection 

CNN and 
inverted residual

block (IRB) 
MIT-BIH arrhythmia classification accuracy 

was 100%, clinical applications. 

Ali Moham-
mad Alqudah 

et al. [224] 

cardiac ar-
rhythmia classi-

fication 
2D CNN MIT-BIH dataset overall accuracy = 

99.13% 
Real-time arrhythmia 
detection Application 

Rui Fang et al. 
[225] 

Arrhythmia 
classification multi-VGG 

PTB-XL diagnostic 
ECG database 

inter-patient accuracy 
= 97.23% 

3-D ECG images was ca-
pable of diagnosing heart 
disease with more accu-
rately and visual inter-

pretability 

Ali Sellami et 
al. [226] 

heartbeat classi-
fication 

9-layer CNN MIT-BIH arrhythmia 
dataset 

Accuracy = 99.79% 
Achieved high classifica-

tion accuracy for sin-
gle-lead raw ECG data 

Amin Ullah et 
al. [227] 

ECG signal clas-
sification 

1D CNN and 2D 
CNN MIT-BIH arrhythmia 

Accuracy for 1D and 
2D CNN was 97.38% 
and 99.02% respec-

tively  

Performance of 2D CNN 
was better compared to 

1D CNN  

Monica fira et 
al. [228] 

Normal and 
abnormal 

heartbeat classi-
fication 

KNN and MLP MIT-BIH database 

Classification accuracy 
for KNN and MLP = 
92.5% and 93.1% re-

spectively 

Quality Score for CPCS 
and PSCCS Methods are 

17.04 and 15.46 

Weibin Cao et 
al. [229] 

Real time ECG 
monitoring 

GAN MIT-BIH and PTB 
datasets 

RT = 0.014 s Reconstruction time (RT) 
improved by 50% 

6.2.2. Learning on Direct CS Measurements 
At the decision-making block, the reconstruction of ECG signal is time consuming 

and in order to reduce the time and power usage various researches have carried out to 
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analyze the signal directly on CS measurements without reconstructing the signal. Fun-
damentally CS reconstruction is all about learning the signal using iterative algorithms 
from the linear CS measurements [24,25] and it would be a smart way to integrate the 
learning along with ML. Anyway, a systematic approach of compressed learning of ECG 
signal had not been done, but few have implemented compressed learning on ECG. 
Ching-Yao Chou et al. [230] proposed a biometric user identification using ECG known 
as Compressed alignment-aided compressive analysis (CA-CA) algorithm, this CA-CA 
algorithm uses PCA based dictionary in compressed domain, where the reconstruction of 
ECG signal is avoided and the information is directly recovered from compressed do-
main resulted in a reduction of computation time by 81.08% and classified the com-
pressed ECG signal with high accuracy. Compared to compressed learning (CL), the ac-
curacy of the proposed algorithm was improved by 7.11%, the accuracy dropped with 
respect to Reconstruction learning with alignment (RL-A) and this algorithm was tested 
only on a small ECG database. 

Another article related to compressed domain by Giulia Da Poian et al. [231] inves-
tigates the problem of heart rate estimation from ECG recordings, on compressed signal. 
QRS complex locations are detected directly in the compressed sensed domain; a tem-
plate matched filtering based QRS detection approach is considered, by calculating the 
correlation of the known QRS template and a compressed ECG. Orthogonal Daubechies 4 
wavelet was considered as a sparsifying transform. Using the cross correlation and 
matched-filtering detection method we compared the results with the Pan-Tompkins 
(PT) detection algorithm for CR=75% average Sensitivity and the Positive Predictive 
value was about 95%. 

Jing Hua et al. [232] discussed the heartbeat classification on wearable devices in CS 
domain. The original ECG signal is observed using a sparse binary random matrix, a 
template based QRS detection algorithm was developed to locate the QRS complexes 
directly by calculating the correlation of the compressive ECG measurements. Here sig-
nal reconstruction is avoided. Based on the detected QRS complexes from the com-
pressed ECG signals, the deep Boltzmann machine is used for heartbeat classification 
algorithms under varying CRs, compared to the benchmarking method the performance 
was slightly reduced. However, it achieved lower energy consumption and is thus suit-
able for wearable devices. 

Table 4 lists down the summary of these publications and their performance in 
compressed domain. 

Table 4. CS Models without the Reconstruction algorithm. 

Author Application Algorithm Database Result Remark 

Ching-Yao Chou 
et al. [230] 

biometric user 
identification 

CA-CA ECG-ID and 
PhysioNet QT 

Accuracy = 94.16% 
CT = 6.55 s 

CR = 0.5 

Computation complexity 
and power reduced 

Giulia Da Poian et 
al. [231] 

Hearth rate esti-
mation 

template matched 
filtering 

MIT Arrhythmia 
Database 

F measure PT = 
98.7% MF = 98.9% 

Detection of R-peak di-
rectly on the CS 
Measurements 

Jing Hua et al. 
[232] 

Heartbeat Classi-
fication 

Template based 
algorithm 

MIT-BIH ar-
rhythmia  

Accuracy 90.00% &
81.88% 

CR = 40% 
DBM for classification  

6.3. CS Realtime Implementations and IoT Framework 
Technologies such as the IoT and robotics systems will be essential in modernizing 

the healthcare system. Certain researches that are carried out by implementing hardware 
through IoT platform is discussed in this section. Low-complexity Field Programmable 
Gate Array (FPGA) hardware implementation was proposed for healthcare applications 
by Oussama Kerdjidj et al. in [233] in which the design was based on pipeline optimiza-



Appl. Sci. 2022, 12, 8368 27 of 37 
 

tion of the Programmable Logic (PL). Simulation of MP algorithm was carried out by 
Vivado tools, and MATLAB. A low-cost Xilinx board was utilized to examine the MP 
algorithm and the above scheme was capable of attaining reduced computational time 
and energy consumption. Though OMP is more complex than the MP algorithm, the re-
sult obtained was similar when compared to the former one. 

Authors Hamza Djelouat et al. [234] aim to address issues such as power consump-
tion and medical record security in an IoT-based health monitoring system based on CS 
technique. A unique sparse sensing matrix was constructed, with sparse Bernoulli matrix 
and linear shift feedback registers (LFSRs) architectures to realize an efficient encryption 
module. Based on an orthonormal Symlet-4 wavelet matrix representation matrix, a 
sparsifying matrix was constructed and OMP algorithm was considered for reconstruc-
tion of the ECG signal. This research displayed that transmission is kept secure even if 
the attacker can acquire 95% of the information. The reconstructed ECG signal in the high 
quality (HQ) had minimal inaccuracy and can be used directly for human diagnosis. The 
quality of the reconstructed ECG in the low quality (LQ) scenario is susceptible to deg-
radation and the ECG features can still be detected and utilized. 

In another hardware implementation, Yun-Hua Tseng et al. [235] identified the 
changes present in original and reconstructed signal of QRS complex in ECG signal. To 
overcome the above issues the authors presented a novel approach by concatenating the 
high accurate method known as Near-Precise Compressed (NPC) algorithm and CS al-
gorithms together for the compression of ECG signal. NCP can be easily implemented 
using low-cost hardware. Here, hardware has been implemented using VLSI technology, 
Taiwan Semiconductor Manufacturing Company’s (TSMC) 0.18 μm Complementary 
Metal-Oxide-Semiconductor (CMOS) technology. NCP compresses the region of high 
change between the original and recovered signal and CS algorithm takes care of other 
regions of ECG signal compression. SNR and PRD are identified as evaluation matrics. 
Compared the results with other algorithms such as OMP, BSBL-BO and BSBL-EM and 
obtained a notable improvement in SNR and CR. 

In order to overcome certain limits such as energy-efficiency, cost and proper com-
pression technique, Kan Luo et al. [236] implemented a low power wireless single lead 
Bluetooth ECG monitoring device based on CS. A sparse binary matrix was explored to 
realize the CS compression. This compression technique with sleep and wake-up strategy 
aims to reduce the transmitted data size and consumed power. Utilization of 
sleep/wake-up scheme and CS compression reduced power consumption compared to 
other commercially available devices. The advantages of the proposed device are lesser 
weight, small size, low-cost, single-spot, real-time and wireless module with a good bat-
tery lifetime. 

A study by Hamza Djelouat et al. [237] investigates the efficiency of CS-based re-
al-time ECG signal reconsruction on an IoT gateway embedded with heterogeneous 
multicore platform (HMP) featuring ARM. Patients ECG data is compressed and sent to 
the gateway through Bluetooth. The data is reconstructed and categorized at the gateway 
in order to identify irregularities in the patient’s heartbeat. The odroid xu4 is used for 
data processing, while the Shimmer3 device is used for data collecting. This technique 
was capable of handling computing latency, security and privacy issues related to 
cloud-based models. Comparison results between OMP and SP in terms of PRD shows 
that SP have lower reconstruction error and OMP performed better than SP at most CRs, 
increasing number of cores and cores frequency resulted in faster reconstruction. 

In terms of significantly reducing the hardware complexity of the CS reconstruction 
OMP algorithm, Amey Kulkarni et al. [238] proposed two different modifications to the 
OMP algorithm, Thresholding technique for OMP (tOMP) and Gradient Descent OMP 
(GDOMP). To reduce reconstruction time, tOMP was used, to modify identification stage 
in OMP algorithm and to reduce chip area GDOMP was considered. For all three algo-
rithms, they implemented reconfigurable, parallel, and pipelined architectures which 
were capable of reconstructing various data vector sizes on 65 nm CMOS technology. 
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This resulted in less reconstruction time and chip area for tOMP and GDOMP compared 
to OMP ASIC design. 

Table 5 summarizes hardware implementation on CS models and its result on var-
ious applications. 

Table 5. CS models with hardware implementation. Note: when quantifiable data is not available it is 
marked as -. 

Author 
Reconstruction 

Algorithm Simulation Synthesis Hardware  Result Remarks 

Oussama 
Kerdjidj et al. 

[233] 
MP MATLAB - Zynq FPGA  

Peak Signal to 
Noise Ratio 

(PSNR) of 23.8 
db 

Utilized Static 
and Dynamic  

power 

Djelouat et al. 
[234] 

OMP algorithm MATLAB - Shimmer-3 weara-
ble device 

CR = 0.5 
PRD = 9 

& CR = 0.4, PRD 
= 2.55 

Reduced 35% of 
power 

Yun-Hua 
Tseng et al. 

[235] 

Near-Precise 
Compressed 

(NPC) and CS  
- 

Synopsys 
Design 

Complier, Ca-
dence  

TSMC 0.18 μm 
CMOS technology 

60 MHz 

CR = 40 
QS = 0.85 

Implemented 
into Xilinx Kin-

tex-7 FPGA 

Kan Luo et al. 
[236] BSBL and DCT 

Matlab  and 
LabVIEW   

BLE, Analog 
front-end chips 

AD8232,  
MSP430F1611 

reduced power 
consumption by 

77.37% 

Recovered un-
distorted 

signal. 

Hamza 
Djelouat et al. 

[237] 

OMP and SP 
Algorithm 

MATLAB 
Code Composer 
studio (TI 4.4.8 

compiler) 

Odroid xu4 and 
Shimmer-3  

achieved maxi-
mum of 47% 
faster recon-

strtion  

computational 
complexity was 

overcome 

Amey Kul-
karni et al. 

[238] 

tOMP and 
GDOMP MATLAB 

Cadence® RTL 
compiler 

65 nm, 1 V6 M 
CMOS 

Technology 

33% less RT for 
tOMP and 44% 

less chip area for 
GDOMP 

Reduction in 
hardware com-

plexity 
for OMP algo-

rithm 

6.4. Recommendations and Research Directions 
This review is all about minimizing the sampling rate of ECG for an IoT framework 

and efficient decision making on users’ heart health using CS. In this review, key research 
components are considered and, in this section, new research directions and recom-
mendations are given. Our review shows that in CS there are so many sensing matrices 
deployed and the best sensing matrix will be the one that is easy to practically implement 
and effectively reconstruct the signal. The most commonly sensing matrix used is the 
Gaussian Random matrix. Our study shows that any transforms such as FFT, DCT can 
also be used as a sensing matrix by retaining some percentage of the coefficients and 
forcing others to zero. As the sparsity of the signal is the key requirement of CS, the right 
selection of sparsifying matrix is very important, and our study shows that any transform 
that is used in ECG signal compression can be used as a sparsifying operator. Few of such 
transforms are wavelet, DCT, STFT etc. The novel transforms such as 1D-DAST as a 
sparsifier in CS are unexplored and future work can lead in this direction. QRS-based 
signal representation and sparsification is much customized for ECG and dictionary 
based sparsification is also suitable for ECG. As far as the decision making is concerned, 
learning directly from CS measurements of ECG, which is called compressive learning, is 
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more effective in terms of computation time. CS reconstruction is computationally in-
tensive task and compressive learning eliminates the need for reconstruction and thus is 
much suitable for CS framework. The functional requirements of CS are the speed and 
power of operation and the Table 5 depicted in our review helps to identify hardware 
implementations that are faster and low power. 

7. Conclusions 
In this review, a use-case of using CS measurements of ECG signal in the IoT 

framework is developed. The basic research and technical aspects are considered on this 
use-case based on the CS need. The theoretical key concepts of CS with mathematical 
formulations are discussed to shed some light on selection strategies of sensing matrix 
and reconstruction algorithms, as well as compression ratio to assure the quality of a re-
constructed ECG signal. Numerous CS construction (Measurement and Transformation 
matrix) and reconstruction algorithms with performance metrics aiming to achieve better 
classification accuracy, computational efficiency, high speed, low power and less area 
usage are also analyzed. The most appropriate sensing matrix, which has been examined 
by several CS approaches and techniques adapted to enhance the sparsity of the signal in 
order to improve the reconstruction quality, were also highlighted. Furthermore, deep 
learning algorithms, datasets, hardware implementation, and IoT framework on CS are 
also studied. Based on the review, recommendations and future research directions are 
given to select the best sensing matrix, novel deployment of sparsifying process, com-
pressive learning algorithms and faster hardware implementations that consume less 
power. The results are tabulated, and the tables shed light on the research and technical 
aspects we considered. Some of the important recommendations given are to use novel 
compression techniques such as 1D-DAST as a sparsifying method, QRS based sparsifi-
cation, DCT and DFT based sensing methods, as well compressed domain ML models. 
Specifically, this paper proposes a generalized CS based ECG framework and provides 
open research directions that should be considered when developing a CS algorithm for 
achieving better classification and reconstruction quality of the ECG signal. 
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