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Abstract: A graphene passively Q-switched Nd:YAG laser experienced resonant pumping by an
885 nm laser diode (LD), as demonstrated in this paper. In the continuous-wave operation, the
maximum average output power was up to 1.8 W with the absorbed pump power being 11.7 W, and
the slope efficiency was 51.2%. In the Q-switching operation, the maximum average output power
was up to 639 mW with a pulse width of 2.06 µs at the repetition frequency of 102.7 kHz, while the
slope efficiency and the beam quality factor M2 were 25.3% and 1.25, respectively.
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1. Introduction

The 1 µm passively Q-switched solid-state lasers have a lot of applications such as in
wind–finding lidar, remote sensing, material processing and medical diagnosis [1–4]. The
most common solid-state laser mediums generated by the 1 µm lasers are doped with the
Nd3+ ions. Compared with the other laser mediums doped with Nd3+, the Nd:YAG crystal
is more suitable for the passively Q-switching operation due to its long upper-level lifetime,
high thermal conductivity and low thermal expansion coefficient. At present, the pump
wavelengths of the Nd:YAG lasers are the traditional 808 nm and the resonant-pumping
885 nm [5–9]. Although the former is widely used, its thermal effect is very significant
under the end-pumping mode. The latter could effectively reduce the thermal effect and
increase the output power and the conversion efficiency of the end-pumped laser due to
the reduction in quantum loss.

In the 1 µm passively Q-switched solid-state lasers, the most frequently used saturated
absorbers (SA) are the Cr:ZnSe, Cr:YAG [10–12], gold nanomaterials [13–15], semiconductor
saturable absorber mirror (SESAM) [16–18] and graphene. Among them, graphene has
the properties of a short response time, a fast recovery time, a high transmittance, a high
damage threshold, a high thermal conductivity and has excellent optical properties, due
to its zero-bandgap structure. Pure non-defective, single-layer graphene with a thermal
conductivity of up to 5300 W/m·K and a favorable optical absorption capacity was chosen,
independent of optical frequencies and optical conductivity constants. Compared with
the Cr:ZnSe and Cr:YAG crystals, graphene has the advantages of better chemical stability
and a smaller volume. Compared with gold nanomaterials, graphene is more suitable
for long-time operation due to it having a weaker photothermal effect. Compared with
SESAM, graphene has a lower cost and lower laser threshold. Moreover, graphene has
saturable absorptions in both visible and infrared bands. Therefore, graphene is of great
value in the passively Q-switching and mode-locked lasers.

A graphene-based passively Q-switched Nd:YAG laser has been reported in 2010, for
which the output power was 105 mW, with the slope efficiency of 1.3% vs. the incident
pump power [19]. A graphene-based passively Q-switched Nd:YAG laser for which the
single pulse energy was 21.98 µJ at the shortest pulse width of 584 ns has been reported in
2012 [20]. Another graphene-based passively Q-switched Nd:YAG laser has been reported
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in 2015, for which the output power was 305 mW, with an optical-optical efficiency of 10.2%
versus the incident pump power [21]. In all of the above reports, the traditional pump
wavelength of 808 nm was employed.

The end-pumping of an Nd:YAG laser using bonded crystals with different doping
concentrations through the use of an 885 nm LD has been reported in 2013, for which the
optical-optical efficiency was 23% versus the absorbed pump power in the continuous wave
(CW) operation, and the output power was 200 mW in the passively Q-switching operation
using the Cr:YAG crystal as the SA [22]. The end-pumping of a passively Q-switched
pulse train laser with the composite crystal of YAG-Nd:YAG-Cr:YAG through the use of an
885 nm LD has been reported in 2017, for which the single pulse energy was 239 µJ with a
pulse repetition frequency (PRF) of 86.3 kHz [23]. However, the end-resonant-pumping of a
passively Q-switched Nd:YAG laser using graphene as the SA through the use of a 885 nm
LD, with the advantages of a reduced thermal effect and a higher conversion efficiency, has
not been reported yet.

In this paper, we demonstrated a passively Q-switched Nd:YAG laser resonantly
pumped by the 885 nm LD using an SA of graphene. In the CW operation, the absorbed
pump power was 11.7 W, the average output power was 1.8 W and the slope efficiency was
51.2%, and the maximum average output power was 639 mW, with a pulse width of 2.06 µs
and a PRF of 102.7 kHz in the passively Q-switching operation.

2. Experimental Setup

Figure 1 shows the experimental scheme of the passively Q-switched Nd:YAG laser
based on inclusion of the graphene. A fiber-coupled LD was employed as the pump,
the core diameter and NA of which were 200 µm and 0.22, respectively. The central
wavelength and maximum output power of the LD were 885 nm and 175 W, respectively.
The dimensions of the Nd: YAG crystal with an Nd3+ doping fraction of 0.5% were 40 mm
(length) × 6 mm (width) × 2 mm (high). The crystal, both cross-sections of which were
anti-reflective at 0.8~0.9 µm and 1.0~1.1 µm, was wrapped in the heat sink made of copper
and controlled at 15 ◦C by the thermoelectric cooler. The pump beam converged into the
center of the crystal with a radius of 160 µm through the coupling system.
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Figure 1. Experimental scheme of the Nd:YAG laser.

The cavity had a L-shaped structure with a physical length of 160 mm. Compared
with the straight cavity, the L-shaped cavity could reduce the space and effectively avoid
the pump feeding back to the LD. In the device, the distance between the lenses, M1 and
M2 was 65 mm, and the distance between M1 and M3 was 95 mm. M1~M4 were all flat
mirrors. M1 had high transmittance at 0.8~0.9 µm and high reflectance at 1.0~1.1 µm at an
angle of 45◦; M2 had high transmittance at 0.8~0.9 µm and high reflectance at 1.0~1.1 µm;
M3 had high transmittance at 0.8~0.9 µm and a transmittance of 30% at 1.0~1.1 µm; M4
had high reflectance at 1.0~1.1 µm at an angle of 45◦. The graphene was laid between M1
and M3. The substrate of SA was a mirror made of a CaF2 crystal, and a graphene material
that was dissolved in ethanol was coated on one surface of the CaF2 mirror using a rotary
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coater (KW-4A, Chinese Academy of Sciences, Beijing, China). The mirror diameter of the
SA was 20 mm, which was a multilayer graphene. The transmittance of the SA at 1.064 µm
was measured and found to have been approximately 87.2%.

The absorbed pump power and average output power of the Nd:YAG laser in the
CW and Q-switching operation were measured using an Ophir power meter (power
range: 20 mW–20 W). The temporal characteristics of the Q-switched Nd:YAG laser were
measured using the Si-biased photodetector from Thorlabs, DET025AL/M, and recorded
using the oscilloscope from Tektronix MSO 3034.

3. Experimental Results

Figure 2 shows the average output power depending on the absorbed pump power of
the Nd:YAG laser in the CW and Q-switching operation. The CW operation was studied
first without the graphene. At an absorbed pump power of 11.7 W, the maximum average
output power was 1.8 W with a slope efficiency of 51.2%. After the graphene was inserted
into the cavity, under the same conditions as the above absorption pump power, the
average maximum time output power was 639 mW with a slope efficiency of 25.3% vs.
the threshold of 9.21 W. The lines of the output power vs. the absorbed pump power are
shown in Figure 2. The equation of the lines is y = a + bx, and the R2 of the lines are 0.99777
and 0.99602, respectively. The instability of the average output power of the Q-switching
operation was ±3.1%. Compared with the CW operation, during the Q-switching operation,
the average output power and the slope efficiency were lower, one possible reason for this
was that the graphene increased the intracavity loss.
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Figure 2. Average output power vs. the absorbed pump power with and without the graphene.

Figure 3 shows the pulse width (full width-half maximum) and PRF depending on
the absorbed pump power in the Q-switching operation. When the absorbed power was
close to the threshold of 9.21 W, the pulse width was 4.06 µs, and when the absorbed
power was 11.7 W, the pulse width reduced to 2.06 µs. The PRF increased from 24.7 kHz to
102.7 kHz, corresponding to the absorbed power of 9.21 W to 11.7 W. The pulse width and
PRF depending on the absorbed pump power were approximately linear.
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Figure 4 shows the relationship between the single pulse energy and peak power vs.
the absorption pump power. When the absorbed pump power was at its maximum, 11.7 W,
the single pulse energy was also at its maximum of 6.2 µJ, corresponding to the peak power
of 3 W.
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Figure 5 shows the pulse profile when the absorbed pump power reached the threshold.
The pulse width was 4.06 µs and the illustration of Figure 5 shows the corresponding pulse
sequence. When the absorbed pump power reached 11.7 W, the pulse width decreased
to 2.06 µs.
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The beam quality factor, M2, in the Q-switching operation was studied at the average
output power of 639 mW, taking advantage of the knife-edge method. Figure 6 shows the
laser beam radii depending on their location relative to the focal lens, which was used for
leading out the waist of the oscillating beam in the cavity. Through Gaussian fitting, the
M2 factors was calculated to be 1.25.
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4. Conclusions

Taking advantage of the pump of an 885 nm LD and the use of graphene as an SA, a
passively Q-switched Nd:YAG laser was demonstrated in this paper. At the absorbed pump
power of 11.7 W, the maximum average output power was 1.8 W with a slope efficiency of
51.2% when the SA was absent, and the average output power was decreased to 639 mW
with a slope efficiency of 25.3% when the SA was inserted. The pulse width decreased
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from 4.06 µs to 2.06 µs, and the PRF increased from 24.7 kHz to 102.7 kHz, corresponding
to the absorbed power from 9.21 W to 11.7 W. At the maximum average output power of
639 mW, the M2 factor was measured to be 1.25 using the knife-edge method. This research
demonstrated that the graphene passively Q-switched Nd:YAG laser being pumped by the
885 nm LD is an efficient way to generate radiation with several-microsecond-level pulse
width and a hundred-kilohertz-level PRF.
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