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Abstract: For parallel hybrid electric vehicles (HEVs), the clutch serves as a vital enabling actuator
element during mode transitions. The expected drivability and smoothness of parallel HEVs are
difficult to be achieve owing to the neglect of clutch-torque-induced disturbance and different
response characteristics of power sources during clutch slipping. To address this issue, this paper
proposes a novel control strategy to coordinate the engine and motor during the clutch slipping
process. A sliding mode control strategy based on a group-preserving scheme was applied to control
the motor. The vehicle dynamic equation was constructed by the sliding surface with the Lagrange
function. The equation solutions obtained by introducing the Runge–Kutta method were used as
motor control inputs. Meanwhile, an adaptive PI controller was designed to regulate engine speed
for the reduction in the speed difference of the clutch. The hardware-in-the-loop simulations were
conducted to validate the outstanding performance of the proposal strategy. The verification results
indicate that the proposed strategy not only reduces the vehicle jerk and frictional losses effectively,
but also improves vehicle driving comfort and reliability.

Keywords: motor control; mode transition; clutch slipping; GP-SMC; vehicle jerk

1. Introduction

More severe environmental pollution and energy crisis problems are forcing the
development of clean, efficient vehicles with low emissions. Hybrid electric vehicles
(HEVs) with artistic multi-power-source designs possess the merits of high efficiency, a
negligible driving range limitation and easy braking energy regeneration, representing
a promising development direction in the automobile industry [1–3]. To reduce fuel
consumption and emissions, HEVs can operate in a suitable mode for different traffic
conditions [4–7]. However, the frequent mode transitions will lead to the deterioration in
the performance of HEVs due to the clutch-torque-induced disturbance and differences in
dynamic characteristics between the engine and motor. A noticeable jerk occurs especially
during the clutch slipping process, which may shock the powertrain [8,9]. Hence, the
quality of the mode transition should be considered when designing the control strategy
for HEVs.

Recently, lots of control strategies have been investigated and presented that deal with
the mode transition problem for HEVs. Koprubasi et al. presented a coordinated control
strategy for parallel HEV based on hybrid control theory [10]. Hybrid controllers were
designed for several switched hybrid dynamical systems, and results demonstrate that a
seamless transition can be achieved using the proposed controllers. In [11], during mode
transitions, the model reference control (MRC) method was applied in a series-parallel
HEV to coordinate the clutch torque, motor torque and engine torque. Compared to the
conventional method, the MRC method could reduce torque interruption and achieved less
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vehicle jerk. In [12], taking various unmodeled dynamics and parameter uncertainties into
consideration, engine-side and motor-side controllers were devised separately by using
feed-forward and robust feedback control strategies. The simulation results demonstrate
that the drivability performance for a parallel HEV was improved significantly. Addition-
ally, Kim et al. utilized disturbance observers to devise a four-phase control algorithm
for parallel HEVs with a clutch during mode transitions [13]. Yang et al. proposed a
hierarchical control system based on the robust H∞ control strategy to realize a smooth
and fast mode transition for a plug-in HEV [14]. Based on the available research, it can
be deduced that the essence of these control algorithms is the coordinated control for the
engine and motor during mode transitions. The expected vehicle drivability and smooth-
ness can be guaranteed by suppressing fluctuations in coupling torque on the driveshaft
while satisfying the torque requirements of the vehicle [15]. However, the influence of
clutch torque is not considered in the existing coordinated control strategies. The speed
fluctuations on both sides of the clutch, as well as the variation in the friction coefficient
with the temperature of the friction plate, will results in a significant nonlinear charac-
teristic of the torque transferred by the clutch [16–19]. The torque ripple generated by
the engine at the side of driving plate can also have an adverse effect during the process
of clutch engagement. Despite the short duration of the slipping phase, the nonlinear
variation in torque will intensify the mismatching torque in the vehicle powertrain, leading
to an obvious unpleasant driving sensation [20–23]. Hence, further improvement in the
drivability and smoothness of HEVs during mode transition remains a challenge.

Focusing on the mode transition process from the electric mode to the hybrid driving
mode, this paper proposes a novel coordinated strategy to deal with deterioration issues in
the drivability and smoothness for parallel HEVs. First, a novel sliding mode control (SMC)
strategy based on the group-preserving (GP) scheme was devised to control the motor.
The dynamic differential equations for the vehicle during the clutch slipping process were
constructed using the sliding surface with the Lagrange function, and the solutions could
be solved by using the Runge–Kutta method. Second, an adaptive PI control strategy was
designed to adjust the engine speed to realize the trajectory tracking of the driven plate, in
which the parameter of the PI controller was updated online by a fuzzy algorithm. Finally,
hardware-in-the-loop (HIL) simulations were conducted to validate the effectiveness of the
proposed strategy.

The paper is organized as follows: Following the Introduction, the vehicle dynamic
model is described in Section 2. In Section 3, the SMC-GP strategy and adaptive PI
controller are described, respectively. Next, we explain how the proposed coordinated
control strategy was implemented in the HIL, and verification results are provided and
described in Section 4. Finally, conclusions and future works following on from this study
are presented in Section 5.

2. Parallel HEV System Model

The simplified topology of the studied parallel HEV is shown in Figure 1. The engine,
motor and automated mechanical transmission (AMT) are located on the same axis without
the configuration of an extra coupling device. Such a layout provides greater reliability
in a compact space. For dealing with different operating conditions, the clutch can be
engaged or disengaged to enable the mode transition. In the electric drive mode, the clutch
is open and only the motor provides the demanded torque to drive the vehicle [24,25].
In the hybrid drive mode, the engine drives the vehicle together with the motor, and the
clutch is locked. Therefore, the clutch serves as a vital enabling actuator element for mode
transitions of the parallel HEV. The specification of the main components of the studied
parallel HEV is listed in Table 1.
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Table 1. The main parameters of the studied parallel HEV.

Components Description

Engine Diesel type, peak torque: 800 Nm, maximum power: 162 kW
Motor Permanent magnet, peak torque: 850 Nm, maximum power: 95 kW

Gearbox AMT, gear ratios: 6.71, 3.77, 2.26, 1.44, 1, 0.77
Battery Lithium iron phosphate, nominal voltage: 483 V, capacity: 110 Ah

This study focused on the impact of both clutch-torque-induced disturbance and
different dynamic characteristics between the engine and motor on the performance of
the parallel HEV. Using the lumped parameter method [26], the differential equation for
vehicle dynamic performance during the clutch slipping process can be depicted as:
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where Je is the combined inertia of the engine and accessories, Jm is the combined inertia
of the motor rotor and transmission on the motor side, and Jw is the inertia of the wheels.
ωe, ωm and ωw are the engine speed, motor speed and wheel speed, respectively. bm is the
motor internal friction coefficient, be is the engine friction coefficient, and bw is the damping
coefficient of tires. ig and i0 are the gear ratios of the AMT and final drive, respectively.
bs and ks are the equivalent damping coefficient and spring coefficient of the driveline,
respectively. θs denotes the torsional displacement of the driveshaft. Te and Tm are the
engine torque and motor torque, respectively. Tc and TL are the clutch torque and vehicle
load torque, respectively. In addition, the vehicle load torque can be calculated by:

TL = rw

(
mg fr cos θ + mg sin θ +

CD Av2
a

21.15
+ δm

dva

dt

)
(2)

where g is the gravity acceleration, m is the gross mass, fr is the rolling resistance coefficient,
θ is the road slope angle, A is the frontal area, CD is the air drag coefficient, va is the vehicle
velocity, and δ is the modified coefficient of the rotating mass.

Additionally, the torque transferred from the clutch can be divided into three parts,
which is closely related to the friction under the action of the normal force between the two
sides of clutch [27–29]. The clutch torque is calculated by:

Tc =


0, unlock

2Ncuc(R3−r3)Fcsgn(∆ω)

3(R2−r2)
, slip

Ti, lock

(3)
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where Ti denotes the input torque of the driving plate, uc denotes the clutch friction
coefficient, Nc denotes the friction plate number, Fc denotes the normal force, R denotes
the outer radius of the diaphragm spring, r denotes the inside radius of the diaphragm
spring, and4ω denotes the speed difference. Here, sgn() is the sign function expressed as
the following mathematical formula.

sgn(∆ω) =

{
1, ∆ω ≥ 0
−1, ∆ω < 0

(4)

According to Equation (3), the clutch torque exhibits strong nonlinear characteristics,
especially in the slipping process, which has a prominent influence on the drivability and
smoothness. Moreover, the different dynamic characteristics between the motor and engine
will further cause the deterioration of driving comfort. In this paper, a coordinated control
strategy was devised to improve drivability performance of parallel HEVs during the clutch
slipping process.

3. Control Strategy Description

Comprehensively considering the energy conversion efficiency, a parallel HEV should
be started in the electric mode [30]. The motor can provide the required torque to drive
the vehicle, and the engine is shutdown in this situation. When the instantaneous velocity
is greater than the preset threshold Ve_max, the mode transition from the electric mode to
hybrid driving mode is triggered. The starting motor will start the engine at idle speed,
and then the clutch is locked. When the driving plate rotates synchronously with the
driven plate, the vehicle enters into the hybrid driving mode. On the contrary, when the
instantaneous velocity is less than the preset threshold Ve_max, the vehicle will enter the
electric mode. The diagram of the above-mentioned mode transition is shown in Figure 2.
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During the clutch slipping process, the disturbance torque is introduced to the HEV
powertrain. If the output torque of the motor is still in accordance with the torque com-
mands given by the energy management strategy (EMS), the torque demand of the driver
may not be satisfied, which results in the deterioration of the drivability performance.
Furthermore, the speed difference of the clutch may increase the torque disturbance. The
driven plate speed is equal to the speed of the motor, which can be derived from the vehicle
velocity. Then, the speed difference can be reduced by engine speed regulation. Consider-
ing the interaction between the two power sources during clutch slipping, the proposed
coordinated control strategy, including an adaptive PI control strategy for engine control
and an SMC-GP algorithm for motor control, is proposed in this research, as illustrated in
Figure 3.
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3.1. Control Strategy for the Motor

For the studied parallel HEV, the motor is a key component that can be controlled
to compensate for the disturbance torque during clutch slipping. In this situation, the
motor, as the sole power supplier for the parallel HEV, must also be able to achieve accurate
tracking of the target velocity. Here, we consider a general nonlinear system, as follows:{ .

x(t) = f (x(t), u(t), t), x ∈ Rn

x(t)|t=t0 = x0, t0 ≤ t ≤ t f
(5)

where x(t) stands for the system state, u(t) denotes the control input, and t0 and tf are the
initial time and terminal time, respectively. For a given general performance function J(u),
the control input u(t) should satisfy the following condition:

min
{

J(u) = F
(

x
(

t f

)
, t f

)
+
∫ t f

t0

[L(x, u, t)]dt
}

(6)

s.t. |u(t)| ≤ U, t ∈
[
t0, t f

]
where F(x(tf), tf) is the terminal index function, and L(x, u, t) is the Lagrange function. U is
the maximum of control input. Since the control input is independent of the Lagrange
function, the above equation can be transformed into:

min
{

J(u) = F
(

x
(

t f

)
, t f

)
+
∫ t f

t0

[
L(x, t) + u2

]
dt
}

(7)

The appropriate Lagrange function with positive constants M0 and α can be defined by:

L(x, t) = M0 exp(−αt) (8)

On the basis of this definition, we can further deduce and obtain the equation as follows.∫ t f
t0

L(x, t)dt =
∫ t f

t0
M0 exp(−αt)dt

= M0
α

[
exp(−αt0)− exp

(
−αt f

)]
≤ M0

α

[
1− exp

(
−αt f

)]
< M0

α

(9)

According to Equations (6), (7) and (9), the following inequality can be derived by

F
(

x
(

t f

)
, t f

)
+
(

t f − t0

)
U2 +

∫ t f

t0

M0 exp(−αt)dt ≤ min{J(u)} (10)

That is, if the control input u(t) is derived from Equation (8) and satisfies corresponding
constraints, a smaller performance index than that of Equation (10) can be obtained. Con-
sidering the complexity of the motor control problem during the clutch slipping process,
an SMC strategy was selected to solve this problem.
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3.1.1. SMC Strategy

In terms of control theory, SMC is a nonlinear control method with strong immunity
and robustness for parameter perturbation and external disturbance, and does not rely
on an accurate control system model [31]. The control input is changed for a certain
purpose that can force the system trajectory to move on a predetermined sliding surface.
As shown in Figure 4, the system trajectory will gradually converge to the sliding surface
S(x) = 0. Therefore, the SMC strategy is suitable for application in the motor control during
the clutch slipping process, as it can avoid the phenomenon of torque interruption and
unfavorable drivability.
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Here, the motor torque is selected as the control variable. The motor speed is regarded
as the system state variable, and its ideal trajectory xd can be defined as:

xd = ωwd·ig·i0 (11)

where ωwd is the expected wheel speed, and its value is dependent on the vehicle velocity.
From Equation (8), the sliding surface with the Lagrange function can be designed as:

S = k(x − xd) − L(x, t) = k(x-xd) −M0 exp(−αt) (12)

where k denotes the constant with a positive value. When the system is in sliding mode,
the equation

.
s = 0 will be satisfied. The control law u1 can be derived as follows:

u1 = Jm
.
xd−

Jm

k
M0α exp(−αt)+ bmx− Tc− d+

1
i0ig

[
Jw

.
ωw + bwωw + TL

]
−χsgn(s) (13)

where d is the disturbance, and it contains the modeling error and parameter perturbation; χ
is a positive constant. When the state trajectory reaches the sliding mode surface, the system
will traverse between both sides of the sliding surface and approach the equilibrium point.
During this process, the control variable will generate high-frequency oscillation [32]. In this
study, sgn(s) is replaced by the continuous function θ(s) to restrain the chattering phenomenon.

θ(s) =
s

|s|+ σ
(14)

where σ is the positive constant with a smaller value.

3.1.2. GP-SMC Strategy

In 2001, the group-preserving scheme was first proposed by Liu [33]. The differ-
ential equations representing a nonlinear system can be converted into a Lie algebra in
the augmented space of Minkowski. By using a group-preserving scheme with Cayley
transformation and Padé approximation, the augmented state points can be updated to lie
on the cone [34]. The asymptotic behavior of the original dynamic systems is preserved. In
this way, spurious solutions and ghost fixed points can be easily excluded. The differential
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equations are solved using the Runge–Kutta method, which not only maintains the charac-
teristics of the Hamilton function, but also guarantees an accuracy of O (h4), where h is the
step size.

In general, the torque required by the vehicle is determined by the EMS in accordance
with the driver’s intentions. For the proposed HEV powertrain, the vehicle velocity is
related to the motor speed and can be expressed as:

va = 0.377
Rwωm

i0ig
(15)

where Rw is the wheel radius. The precise control of the motor helps to satisfy the driver’s
driving intentions, especially during the clutch slipping process. Hence, the sliding mode
control strategy based on the group-preserving (GP-SMC) scheme ensures that the motor
can accurately accomplish a specific trajectory tracking. According to Equation (11), the
differential equations concerning the vehicle dynamic during the clutch slipping process
are reconstructed as: Jm

.
x = u1 − bmx− Tc − 1

i0ig

[
ksθs + bs

(
x

i0ig
−ωw

)]
S = k(x− xd)−M0 exp(−αt) = 0

(16)

where |u1| ≤ Tm_max, Tm_max stands for the maximum motor torque.
The Runge–Kutta method was proposed by C. Runge and M. W. Kutta in 1900, and

belongs to a single-step iterative method [35]. It is able to suppress cumulative errors and
has the advantage of high arithmetic accuracy. The four points located on the cone can be
defined as: 

x1
k = xk

x2
k = xk + τξ1

x3
k = xk + τξ2

x4
k = xk + hξ3

(17)

where h is the step size, and τ = h/2. Here, we define the variable ξ(x, t) as follows.

ξ(x, t) =
1
Jm

[
u1 − bmx− Tc −

1
i0ig

(
ksθs + bs

(
x

i0ig
−ωw

))]
(18)

Then, the slope values for these aforementioned points can be calculated by
ξ1 = ξ(xk, tk)

ξ2 = ξ(xk + λk,1ξ1, tk + τ)
ξ3 = ξ(xk + λk,2ξ2, tk + τ)
ξ4 = ξ(xk + λk,3ξ3, tk + h)

(19)

where λk,1, λk,2 and λk,3 are the regulation coefficients for the corresponding slope values.
The detailed computational procedure is listed in Figure 5, and the solution’s xk can be
regarded as the control law for the motor.
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3.2. Control Strategy for the Engine

To avoid the disturbance torque generated from the large speed difference of the clutch,
the engine was operated in the mode of speed regulation in this study. The driving plate of
the clutch should be maintained to follow the speed of the driven plate.

As far as we know, conventional PI controllers with fixed parameters are not suitable for
regulating the engine speed because of their complicated dynamic characteristics [36–38]. The
parameters of the controller must be adjusted according to the actual operating state of the
engine. Here, a fuzzy algorithm was introduced and applied in the PI controller to form an
adaptive method, rather than the method with fixed parameters. The engine speed control
principle diagram is depicted in Figure 6.

To improve the dynamic response of the engine speed regulation, eliminate integral
saturation phenomenon, and avoid overshoot and oscillation of the engine speed, the fuzzy
algorithm was adopted to correct parameters of the PI controller. The PI controller can be
expressed as:

u(t) = Kp·e(t) + Ki

∫ 0

t
e(τ)dτ (20)

e(t) = ωe_cmd −ωe(t) (21)

where Kp denotes the proportional coefficient, Ki denotes the integral coefficient, ωe_cmd
denotes the target speed for the engine, and e(t) denotes the speed error at the time t.

The parameters Kp and Ki of the controller can be normalized by Equations (22) and (23);
then, the normalized parameters K′p and K′i in the interval [0, 1] are generated, which can
be represented by the fuzzy sets {NB, NS, ZO, PS, PB}. Figure 7 shows their corresponding
membership functions.
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K′p =
Kp − Kp_min

Kp_max − Kp_min
(22)

K′i =
Ki − Ki_min

Ki_max − Ki_min
(23)

where Kp_max is the maximum of the parameter Kp, Kp_min is the minimum of the param-
eter Kp, Ki_max is the maximum of the parameter Ki, and Ki_min is the minimum of the
parameter Ki.

The speed error e and its derivative
.
e are regarded as the inputs, which can be expressed

by the fuzzy sets {NB, NM, NS, ZO, PS, PM, PB}. Their membership functions are shown in
Figure 8. The fuzzy inference rules for parameters K′p and K′i are listed in Tables 2 and 3,
respectively. Finally, accurate parameters for the PI controller were achieved by the defuzzi-
fication. In this study, the height method was applied to calculate PI controller parameters,
which can be expressed as [39]:

y(x) =

M
∑

n=1
yn

2
∏
i=1

Fn
i (Xi)

M
∑

n=1

2
∏
i=1

Fn
i (Xi)

(24)

where Fn
i is fuzzy sets, yn is fuzzy singletons, xi is the input variable, and M stands for the

number of inference rules.
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.
e.

Table 2. Fuzzy inference rules for the parameter K′p.

.
e

NB NM NS ZO PS PM PB

e

NB NB NB NB NS NS ZO ZO
NM NB NB NS NS ZO ZO PS
NS NS NS NS ZO ZO PS PS
ZO NS ZO ZO ZO PS PS PS
PS ZO ZO ZO PS PS PS PB
PM ZO ZO PS PS PS PB PB
PB ZO PS PS PS PB PB PB
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Table 3. Fuzzy inference rules for the parameter K′i .

.
e

NB NM NS ZO PS PM PB

e

NB ZO ZO ZO PS PB PB PB
NM ZO ZO PS PS PS PB PB
NS ZO PS PS PS PS PS PB
ZO NS PS ZO ZO ZO PS PS
PS NB NS NS NS NS NS ZO
PM NB NB NS NS NS ZO ZO
PB NB NB NB NS ZO ZO ZO

4. Results and Discussion

In order to validate the performance of the proposed strategy, the conducted HIL
simulations are described in this section. The verification platform included a real-time
parallel HEV model platform and a real-time control platform. Both of the two development
platforms can generate the C code and perform online calibration in the MATLAB/Simulink
environment [40].

In this study, the development process of the verification platform could be divided
into three steps. First, both the parallel HEV model and the control strategy were designed
in the MATLAB/Simulink environment. Second, by using the automatic code generation
technology, the real-time kernels of the parallel HEV model and control strategy were
generated. Third, the real-time kernel of the parallel HEV was downloaded into the
SCALEXIO LabBox, which exhibits a strong computing capacity. In addition, the other
kernel was flashed into the MicroAutobox, which is an electronic controller [41,42]. All
set parameters and verification results in SCALEXIO LabBox and MicroAutobox were
monitored by the software Control Desk operating on a laptop [40–43]. The HIL test bench
is depicted in Figure 9.

As shown here, the unified model of parallel HEV was constructed with the specifi-
cations listed in Table 1. The test cycle was taken from a stretch of typical driving cycles
that are widely used by manufacturers, as shown in Figure 9. The whole testing process
consisted of the mode transition from the electric mode to the hybrid driving mode. When
the vehicle velocity reached about 20 km/h, the engine was dragged to the idle speed
by the starting motor and immediately ignited with fuel injection. The clutch was then
engaged. After the clutch lockup, the parallel HEV entered the hybrid driving mode. To
prove the effectiveness of the proposed coordinated control strategy, the performances of
three different cases are compared in this section. A detailed description of three test cases
is listed in Table 4.

The simulation results for the two power sources for case I are shown in Figure 10.
Because the coordinated control strategy was not considered in case I, the control commands
for the engine and motor came directly from the energy management strategy. It can be
observed that the mode transition occurred around 13.62 s. At the initial stage of the clutch
slipping process, the driven plate speed was immediately reduced by about 89 r/min due
to the speed difference of the clutch. At this moment, the torque transmitted by the clutch
is regarded as an interference torque, which corresponds to a negative torque (−98.7 Nm)
on the output shaft of the engine. If this disturbance torque cannot be suppressed or
compensated in time, it will lead to a noticeable jerk and vibration in the hybrid powertrain.
This means that the coupling torque on the driveshaft does not correspond to the torque
required by the powertrain, which results in a large deviation from the actual velocity to
the target value. In addition, the variation in the friction plate coefficient with temperature
interacts with the engine torque on the driving plate side, which exacerbates the speed
fluctuations at both ends of the clutch. Until 15.69 s later, the clutch was completely
engaged and in a locked state. With the gradual increase in engine torque, the motor torque
decreased to 100 Nm, and the parallel HEV completed the mode transition.
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Table 4. Description of three test cases.

Cases Control Strategy

I Without coordinated control
II Motor control with SMC
III Motor control with GP-SMC and engine control with Fuzzy-PI

For case II, the SMC method was used to regulate the motor torque, and the engine still
followed control commands that came from the vehicle energy management strategy. It can
be seen from Figure 11 that the speed of driven plate decreased by about 43 r/min. This still
adversely affected the vehicle performance during the clutch slipping process. Although
the control strategy for the motor had a positive effect on depressing the disturbance
torque, the fluctuation in engine speed cannot be ignored in this case. Hence, the dynamic
responses of the engine should be taken into consideration.

The proposed coordinated control strategy was verified and taken as case III, whose
verification results are shown in Figure 12. Similarly, when the velocity was greater than
20 km/h, the engine was dragged to the idle speed by the starting motor. At the engine side,
an adaptive PI control strategy based on fuzzy algorithm was adopted to adjust engine
speed to synchronize with the driven plate speed and reduce the speed difference of the
clutch. The motor was controlled to compensate for the disturbance torque based on the
SMC-GP method. From Figure 12, it is seen that the proposed coordinated control strategy
exhibited a better control performance in terms of the speed and torque output from both
power sources among the parallel HEV.
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As is well-known, vehicle jerk and clutch frictional loss are two important criteria
that are widely used to quantitatively evaluate the control strategy performance for mode
transitions [44–46]. Jerk is defined as the derivative of vehicle acceleration, as shown in
Equation (25). Vehicle jerk with a large value denotes that the driveline torque occurs as
an obvious fluctuation phenomenon, and it will result in the deterioration of the vehicle’s
drivability and smoothness. The recommended value is less than 17.64 m/s3 in China and
10 m/s3 in Germany, respectively [47–49].

|J| = da
dt

=
d2v
dt2 (25)

where J is the vehicle jerk, a is the vehicle acceleration, and v is the vehicle velocity deter-
mined by the driving cycle.

Clutch frictional loss indicates the work done by friction during the clutch slipping
process, which is closely related to the clutch lifespan. The clutch frictional loss Wf can be
written as:

W f =
∫ t2

t1

Tc · ∆ωdt (26)

where t1 and t2 stand for initial time and end time of the clutch slipping process, respectively.
Figure 13 shows the vehicle jerks for the three cases, and their performance compar-

isons are summarized in Table 5. Due to the influence of disturbance torque and diversity
of dynamic responses between the two power sources, the maximum vehicle jerk during
the clutch slipping process reached up to 18.81 m/s3 for case I. In addition, vehicle jerk
fluctuations further deteriorated the drivability and smoothness performance. In case II,
the maximum vehicle jerk could be reduced to 7.65 m/s3 when the SMC method was
used to control motor to compensate for the disturbance torque. However, the clutch
frictional loss reached up to 4.983 kJ. The black dashed line represents the jerk for case III
in Figure 13. It can be observed that by using the proposed strategy, the vehicle jerk was
significantly reduced. The clutch frictional loss in case III was only 1.897 kJ, which avoids
the unnecessary energy loss and prolongs the clutch lifespan. Additionally, the maximum
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vehicle velocity error was also restricted to an acceptable range. Hence, the performance
comparison for the three cases validates the effectiveness of the proposed strategy in terms
of the smoothness and drivability improvement.
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Table 5. Performance comparison for the three cases.

Control Strategy Clutch Frictional Loss (kJ) Maximum Vehicle Jerk (m/s3) Maximum Vehicle Velocity Error (%)

Case I 6.074 18.81 7.37
Case II 4.983 8.65 3.95
Case III 1.897 4.03 1.27

5. Conclusions

This paper presents a novel coordinated control strategy to address the deterioration
of vehicle smoothness and drivability during the clutch slipping process. The strategy was
combined with the motor control and engine control, taking both torque disturbances and
model uncertainty into account. Based on the GP-SMC method, a suitable controller for
the motor was designed to reduce torque interruption. The dynamic differential equations
of the vehicle were constructed by means of the sliding surface with the Lagrange func-
tion, and solutions with an accuracy of O (h4) were obtained by using the Runge–Kutta
method. Meanwhile, an adaptive PI controller was constructed to adjust the engine speed
to reduce the speed difference of the clutch during the slipping process. To verify the
effectiveness of the proposed coordinated control strategy, a control model was formulated
in the MATLAB/Simulink environment, and HIL simulations were carried out. The results
demonstrate that the expected smoothness and drivability of a parallel HEV could be
obtained. The vehicle jerk under the proposed coordinated control was limited to 4 m/s3,
while the value without coordinated control was 18.81 m/s3. The clutch frictional losses
were also effectively reduced, which will extend the clutch lifespan. Although the com-
plexity of the proposed algorithm increased, it was still acceptable. Hence, the proposed
coordinated control strategy helps to improve the performance of parallel HEVs and pro-
mote their application in the automotive industry. For future work, the system delay and
parameter sensitivity studies will be involved to improve the robustness and performance
of the coordinated control strategy.
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Nomenclature

t combined inertia of the engine and accessories
Jw inertia of wheels
ωm motor speed
bm motor internal friction coefficient
bw tire damping coefficient
i0 gear ratio of the final drive
ks spring coefficient of the driveline
Te engine torque
Tc clutch torque
g gravity acceleration
fr rolling resistance coefficient
A frontal area
va vehicle velocity
Ti input torque of the driving plate
Nc friction plate number
R outer radius of the diaphragm spring
4ω speed difference
u(t) control input
tf terminal time
U maximum of control input
α positive constant
xd ideal trajectory
k constant with a positive value
d disturbance
σ positive constant with a smaller value
Tm_max maximum motor torque
λk,1 regulation coefficient for slope value 1
λk,2 regulation coefficient for slope value 2
λk,3 regulation coefficient for slope value 3
Ki integral coefficient
e(t) speed error at the time t
Kp_min minimum of the parameter Kp

Ki_min minimum of the parameter Ki
yn fuzzy singletons
M number of inference rules
v vehicle velocity determined by the driving cycle
t1 initial time of the clutch slipping process
J vehicle jerk
N iteration number
Jm combined inertia of the motor rotor and transmission
ωe engine speed
ωw wheel speed
be engine friction coefficient
ig gear ratio of the AMT
bs equivalent damping coefficient of the driveline
θs torsional displacement of the driveshaft
Tm motor torque
TL vehicle load torque
m gross mass
θ road slope angle
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CD air drag coefficient
δ modified coefficient of the rotating mass
uc clutch friction coefficient
Fc normal force
r inside radius of the diaphragm spring
x(t) system state
t0 initial time
J(u) performance function
M0 positive constant
S(x) sliding surface
ωwd expected wheel speed
u1 control law
χ positive constant
Rw wheel radius
h step size
Kp proportional coefficient
ωe_cmd target speed for engine
Kp_max maximum of the parameter Kp
Ki_max maximum of the parameter Ki
Fn

i fuzzy sets
xi input variable
a vehicle acceleration
Wf clutch frictional loss
t2 end time of the clutch slipping process
F(x(tf), tf) terminal index function
L(x, u, t) Lagrange function
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