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Abstract: Resource optimisation is critical because 5G is intended to be a major enabler and a leading
infrastructure provider in the information and communication technology sector by supporting a wide
range of upcoming services with varying requirements. Therefore, system improvisation techniques,
such as machine learning (ML) and deep learning, must be applied to make the model customisable.
Moreover, improvisation allows the prediction system to generate the most accurate outcomes and
valuable insights from data whilst enabling effective decisions. In this study, we first provide a
literature study on the applications of ML and a summary of the hyperparameters influencing
the prediction capabilities of the ML models for the communication system. We demonstrate the
behaviour of four ML models: k nearest neighbour, classification and regression trees, random forest
and support vector machine. Then, we observe and elaborate on the suitable hyperparameter values
for each model based on the accuracy in prediction performance. Based on our observation, the
optimal hyperparameter setting for ML models is essential because it directly impacts the model’s
performance. Therefore, understanding how the ML models are expected to respond to the system
utilised is critical.

Keywords: machine learning; hyperparameter tuning; 5G; resource allocation; resource management

1. Introduction

Today, machine learning (ML) is frequently used in intelligent systems to provide
these systems with the ability to learn from problem-specific training data and to automate
the construction of analytical models and the process of solving associated tasks [1]. ML
techniques are widely utilised in advertising, recommendation systems, computer vision,
natural language processing and user behaviour analytics. Given the wide range of applica-
tions and requirements, various ML methods have been developed to provide solutions for
user needs and overcome various issues and challenges efficiently. Incorporating artificial
intelligence into network infrastructure is one of the industry strategies for addressing
the inherent complexities associated with the 5G network deployment. The expanding
usage of wireless technology is concerned to possibly congest the airwaves that our devices
utilise to communicate; thus, ML replaces conventional wireless technologies to decrease
power consumption substantially and improve network performance [2]. In general, de-
veloping an efficient ML model is a complicated and time-consuming process that entails
selecting the best algorithm and achieving the best model architecture by optimising its
hyperparameters [3].

Hyperparameters are the variables that determine the network structure and how the
network is trained. Each ML model has a unique set of hyperparameters, which require
different settings when trained on different datasets. Hyperparameter tuning is a process
of finding the best settings for the ML algorithm. The goal is to find the parameters that
produce high accuracy and low error rate. In ML, many algorithms with different features
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exist. These algorithms include logistic regression, linear regression, support vector ma-
chines (SVMs) and random forests (RFs). Each algorithm has its own optimisation method
that can be used to optimise the model parameters. For example, in logistic regression
a parameter is called lambda value can be optimised using multiple methods such as
the gradient descent method, modified Newton–Raphson method or stochastic gradient
descent method. Other intelligent algorithms, such as stacked denoising autoencoders,
convolutional networks and classifiers based on sophisticated feature extraction techniques,
have between 10 and 50 hyperparameters. The settings of hyperparameters depends on
how the experimenter chooses to parametrise the model and how many hyperparameters
are fixed at a reasonable default [4]. Published results are difficult to repeat and expand
because of the difficulties in calibrating these models, resulting in challenges in optimising
a loss function across a graph-structured configuration space, known as hyperparame-
ter optimisation. A hyperparameter optimisation method must optimise across discrete
and continuous variables whilst choosing which variables to optimise [4]. Therefore, fre-
quently optimising the prediction model necessitates a thorough understanding of both ML
methods and appropriate hyperparameter optimisation approaches. Although numerous
automated optimisation strategies exist, their benefits and downsides vary when applied to
different challenges, particularly those concerned with 5G technology. Thus, we anticipate
that learning the model’s behaviour and characteristics allows the excellent optimisation of
processing power, time and accuracy [3].

In 5G, a base station must process numerology assignment and resource allocation
for each user according to the user’s feedback. ML offers an advantage in providing rapid
adaptation to assign the allocated time, space and frequency domain in the spectrum and
satisfy the user’s Quality of Service (QoS) requirement [5]. A base station also needs to
decide on the optional waveform processing techniques, including windowing, filtering,
guard utilisation, cyclic prefix utilisation and different operating subcarrier spacings. This
resource optimisation is critical because 5G is intended to be a major enabler and a leading
infrastructure provider in the information and communication technology sector by sup-
porting a wide range of upcoming services with varying requirements. Given the network’s
rising complexity and the introduction of innovative use cases, such as autonomous cars,
industrial automation, virtual reality, e-health and various intelligent applications, ML is
projected to be critical in making the 5G vision a reality [6,7].

Given the relation between 5G and ML, this article focuses on one of the most critical
parameters in the 5G system, which is the selection of numerology or ‘subcarrier spacing’.
Moreover, 5G numerology is a method of assigning the subcarriers in 5G frequency bands
to different service types. These subcarriers are used for transmitting data and controlling
information, as well as for synchronisation and signalling. Furthermore, 5G subcarrier spac-
ing works by dividing a single carrier into multiple carriers, which are then transmitted at
different frequencies. This way, we can achieve high speeds with little power consumption
and an enhanced coverage area. We can also increase system capacity through this method,
which helps to reduce the interference between neighbouring cells. Therefore, 5G networks
must be able to choose the optimal subcarrier spacing that can be realised using ML to
achieve the benefits. This finding emphasises the importance of acknowledging the ML
model characteristics implemented into the wireless system.

The contributions of this study are as follows:

• A concise review of the recent ML algorithms used in the 5G network;
• Development of ML model training in RStudio to observe ML model accuracy based

on the hyperparameter changes;
• A description of the working principles and hyperparameter tuning of four ML models:

k nearest neighbour (KNN), classification and regression trees (CART), RF and SVM;
• Performance evaluation of the effects of hyperparameter tuning for all four ML

models studied;
• An observation of the hyperparameter tuning effects on the cross-validation accuracy

for the subcarrier spacing prediction models in the 5G system;
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• The effects of the number of neighbours, maximum tree depths, number of ran-
domly selected predictors and cost values on the accuracy of KNN, CART, RF and
SVM, respectively.

The remainder of the paper is structured as follows. Section 2 presents the related
work on ML in 5G networks. Section 3 discusses the possibility of tuning the ML model
hyperparameters to predict the subcarrier spacing in the 5G network. Section 4 focuses on
the performance comparison between the tuned ML models. The acronyms and notations
used in this paper are shown in Table 1.

Table 1. Acronyms and definition.

Acronyms Definition

5G Fifth Generation
CART Classification and Regression Trees
CNN Convolutional Neural Network
DL Deep Learning

DNN Deep Neural Network
EDRP Edit Distance with Real Penalty
FML Fast Machine Learning
KNN K-Nearest Neighbour
LCS Longest Common Subsequence
MDT Minimization of Drive Test
ML Machine Learning
QoS Quality of Service
RF Random Forest

RNN Recurrent Neural Network
SCOC Small Cell Outage Detection
SDN Software-Defined Networks
SVM Support Vector Machine

VANET Vehicular Ad Hoc Network

2. Literature Study

Since the introduction of the first generation (1G) in 1979, mobile communication
systems have revolutionised various sectors, including social and education. However, as
the number of sectors and applications that rely on these communication systems expand,
the systems face challenges in meeting user demands regarding resources, particularly
in QoS provisions and efficient spectrum utilisation. Therefore, planning resources is
crucial and can be simplified using an ML algorithm to automate the challenging process.
A study proposed by Meng et al. concentrates on base station beam selection using
semionline learning, which considers the traffic environmental variations for locating
beams [8]. Moreover, Tayyaba et al. [9] proposed a resource allocation policy framework
using a deep neural network (DNN) for dynamic vehicular networks. The proposed
framework was implemented in software-defined networks (SDNs), which demonstrated
the performance of 5G system data centres and carrier networks. However, the DNN
cannot compete in terms of time and precision in resource distribution.

ML and deep learning (DL) can also be used to detect irregularities in the Internet of
Things (IoT) applications. The results of combining these strategies are better than those of
using only one DL algorithm. In [10], several deployment and analysis approaches of the
intrusion detection system (IDS) were investigated using the IoT architecture. The most
advanced DL models available include recurrent neural network (RNN), convolutional
neural network (CNN) and a combination of the two, with RNN and CNN as the most
sophisticated systems involving a large number of tuning parameters and a long time to
obtain proper optimisation [11].

Moreover, processes such as data gathering, integration and forecasting are the key
components of a framework for resource management and network optimisation to ensure
a proper prediction model in 5G. However, problems and challenges, such as extracting con-
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texts from online data and simulating proactive optimisation still exist [12]. Therefore, fast
ML (FML) was proposed as a method for adapting 5G vehicular ad hoc network (VANET)
base stations [13]. Based on the results, FML outperforms the benchmark algorithms in
terms of performance and adaptability. The findings of the online bandit learning imply
that context awareness is critical in 5G situations. Creating a hybrid system for tracking
individuals whilst increasing total network capacity may be important in the future [14].

Moreover, ML techniques can be utilised to create a self-organising network, which
can improve network performance, reduce network downtime and increase user experience
over cellular networks. The Bayesian ML approach was proposed by Baz et al. [15] as a
novel method for optimising the performance of SDNs. In this method, each node should
detect the underlying stochastic process utilised by the controller to create the flow rules
and predict the relevant rules for packets that do not meet the flow table. Furthermore, a
small cell outage detection (SCOD) strategy was presented in [16], based on the partial key
performance indicator (KPI) data from an extensive collection of Minimisation of Drive
Test (MDT) reports. MDT reduction is an extensive collection of partial KPI data that can
be utilised to compensate for outage users in a dynamic and dense deployment of the tiny
cell environment learning technique.

However, resource limits in the existing edge ML architecture require self-organising
network functions to prioritise inference workloads. In comparison, a different training
process was performed in the central infrastructure without collaboration. This process
involves the redundant transmission of massive training data from the edge to the central
location, as well as a hyperparameter search with high space–time complexity, resulting
in considerable signalling costs and delays. Farooq et al. aimed to address these issues by
developing a system for edge intelligence. This system is a low-complexity and low-time
framework that eliminates the transfer of huge training data from the edge to the central
location and reduces the time required to discover optimal (or near-optimal) hyperparame-
ters. The results suggest that the framework strikes an acceptable compromise between
predicting the ideal hyperparameter configuration and minimising expenses. Managing
this trade-off is essential in resource-constrained contexts, such as RAN nodes. The gain is
also impacted by its operating frequency because of this framework’s dynamic nature [17].

Isabona et al. summarised that many attempts were made in the literature to manage
RF hyperparameter tuning challenges and improve predictive application performance.
These attempts include the investigation on calculating the optimal number of RF trees in
the literature and studies on how to best use the RF feature set size for robust regression
analysis of distinct datasets. The researchers discovered that the ideal size is comparatively
small if the dataset characteristics are associated and vice versa. The process of discovering
and determining the optimum practicable values of hyperparameters for an ML model to
achieve the intended, resulting modelling output is known as hyperparameter tuning or
optimisation [18].

As we gain additional knowledge about ML technologies, we can efficiently add intelli-
gence to the dynamic environment with unexpected network parameters. In a complicated
time-varying environment, uncertainties can be avoided by employing parametric learning
approaches that separately represent features based on the unique shape of training func-
tions. ML algorithms may aid in identifying anomalies, faults and intrusions and in access
control and authorisation [19]. The key works on ML approaches, along with their focus,
contributions and main method, are listed chronologically in Table 2.
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Table 2. Summary of literature study.

Author (Year) Summary Advantages Limitations/Future Work

Meng et al. (2020) [8]
Three-dimensional semi-online learning problem of beam

selection in a base station to cater vigorous traffic and
environment change.

Acclimated to traffic by learning the association
between the course of advent and the customary data. Can be further improved by enabling smart entities.

Tayyaba et al. (2020) [9]
SDN-based vehicular networks for optimising resource

allocations according to the changing demands and
network dynamics in vehicular networks.

Proved the performance gain in the data centres and
carrier networks by using SDN.

A performance deficiency shown by the DNN in terms of
resource allocation time and accuracy.

Tahkkar et al. (2020) [10] Discussed various IDS placement strategies and IDS
analysis strategies in the IoT architecture.

Combined ML and DL techniques for detecting attacks
in the IoT networks to ensure improved performance

compared with the performance of individual
DL algorithms.

Issues such as IDS administration, securing IDS
communication, use of standardised datasets and building

techniques for correlating alerts need to be addressed.

Ma et al. (2020) [12]
Proposed a framework involving data acquisition,
integration and use of forecasting to drive resource

management and network optimisation.
Made the enablers drive the proactive optimisation. Challenges to complete the circle of making online data a

reliable data source.

Fang et al. (2019) [19]

Introduced intelligence by exploring ML techniques to
authenticate the complex time-varying environment

under unknown network conditions and unpredictable
dynamics, supporting radically new applications of 5G

and beyond wireless networks.

Modelled the attributes independently by using the
parametric learning methods on the basis of the specific

form of training functions so that the uncertainties
caused by the complex time-varying environment may

be circumvented.

Utilisation of ML techniques for other security
applications, such as anomaly/fault/intrusion detection,
access control and authorisation, mainly because of their

ability to provide continuous protection for legitimate
communications in 5G and beyond networks.

Sim et al. (2018) [14] Proposed FML for base station adaptability in 5G VANET. Low complexity and a scalable online learning
algorithm for mmWave base stations using FML.

Exploring a hybrid solution between tracking individual
vehicles and increasing the overall network capacity.

Baz et al. (2018) [15] Proposed a novel algorithm to improve the performance
of SDNs by using the Bayesian ML.

Allowed each switch to infer the underlying stochastic
process by which the controller generates the flow rules
and to predict the suitable rules for those packets that

have no match in the flow table.

The throughput of the standard OpenFlow protocol
affecting the performance of the network from the

observation of the decline rates of the throughput that is
proportional to the traffic rates.

Qin et al. (2018) [16]
Proposed an SCOD algorithm using the ML approach

based on partial KPI statistics that are a large-scale
collection of MDT reports.

Fairly allocated resources to outage users for
compensation, considering the dynamic and dense

deployment of small cell environment learning
approach based on partial KPI statistics.

Exploring from the domain of ML to create a
self-organised network in the end-to-end intelligence of

5G networks.

Huang et al. (2017) [11] Studied state-of-the-art DL models, including RNN, 3D
CNN and a combination of CNN and RNN.

A multitask learning architecture using DL networks for
mobile traffic forecasting to extract geographical and

temporal traffic features.
Can be a solid benchmark for hybrid DL models.
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Table 2 shows that considerable reliable research on 5G overcomes various issues
and challenges using ML. However, ML requires computational resources to train the
models and process the incoming data. Therefore, we can reduce the time-consuming
and computationally expensive efforts whilst finding an optimal combination of hyperpa-
rameters by understanding the hyperparameter tuning for each prediction model. This
hypothesis is supported by a previous study [20], which showed that the sensitivity of
the models differs from that of their hyperparameters. Therefore, parameter tuning can
enhance model performance.

3. Experiment Setup and ML Tuning Parameters

ML, a subset of the artificial intelligent technology that learns patterns from empir-
ical data, has been used in classification, regression and control applications. Wireless
systems can accommodate varying traffic loads and data requirements in future cellular
communication technologies by implementing ML as a subcarrier spacing prediction for 5G
systems. In addition, ML implementation can aid in efficient spectrum utilisation, enabling
abundant resources to cooperate with the exponential increase in user demands. Figure 1
shows the fundamental process of ML algorithms in which a dataset is supplied to the ML
training platform. In our case, the dataset consists of packet size, data rate, total data size
and numerology used. An additional optimisation is necessary if the accuracy does not
seem promising after the ML model is built. This procedure is repeated until the method’s
accuracy converges as intended. The trained ML algorithm is then further evaluated on a
new dataset to ensure that the system continues to produce accurate results.
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3.1. Setup Summary

Developing a rigorous test for assessing ML models is essential to ensure that the
results obtained can be trusted and used to make selections amongst the tested models.
Based on [21], the selection of ML models entails (1) selecting a hyperparameter metric
to assess a model’s skill, (2) establishing a baseline performance against which all model
evaluations can be compared and (3) splitting the data into training and test sets using a
resampling technique to simulate how the final model is used. Given the ML selection
process, we can comprehensively assess the effects of hyperparameter tuning on the model’s
prediction accuracy using a single train-test split of the data to evaluate the model’s
performance quickly, as shown in Figure 1.

Four ML models, namely, KNN, CART, RF and SVM, are observed in our study
because these models are the most common ML algorithms used for classifying. The grid
search algorithm is used to iterate between the tuning value and observe the behaviour
of the hyperparameter for each model. Grid search is a method for finding the best
hyperparameters of Algorithm 1. It is used to find the parameters that optimise the
objective function, thereby improving results. Grid search involves randomly varying
each parameter and testing their effects on performance. The optimisation process can be
repeated many times until convergence (i.e., when no further improvement occurs). This
approach is a quick way to develop algorithms that can solve complex problems efficiently
whilst minimising overfitting. Overall, the implementation and performance analysis of the
four ML algorithms are conducted with the caret module in R using RStudio software and
run on a laptop with the following specifications: Windows 10, Intel(R) Core(TM) i76500U
CPU @ 2.50 GHz and 16 GB of RAM.
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Algorithm 1 Observing the accuracy of the model based on its hyperparameter changes

1 function caret;
Input: Model type KNN, CART, SVM, RF
Output: Subcarrier spacing prediction

2 validation index = createDataPartition(dataset, p = 0.80);
3 validation = dataset[-validation index];
4 set.seed();
5 if model = CART then
6 return tunegrid = expand.grid(maxdepth));
7 end
8 if model = KNN then
9 return tunegrid = expand.grid(k));
10 end
11 if model = SVM then
12 return tunegrid = expand.grid(sigma, C);
13 end
14 if model = RF then
15 return tunegrid = expand.grid(mtry);
16 end
17 fit.model = train(predict, data=dataset, model = model, tunegrid)
18 results = resamples(list(model);
19 summary(results);
20 write.csv([[”results”]]);

3.2. Brief Summary of the Selected ML Model

When employing ML models, tuned parameters are vital in obtaining high-accuracy
outcomes. Each classifier has unique tuning steps and customised parameters; therefore,
the users must understand the utilised ML model. This section offers a brief description of
the ML models, with a focus on their working principles and hyperparameters.

(a) K-Nearest Neighbours

KNN algorithm relies on classification and clustering as its foundational processes.
Rule induction, segmentation, anomaly detection and visualisation are examples of high-
level algorithms that use these two processes. The underlying distance metric considerably
impacts the model outcome for the clustering and classification techniques. Euclidean
distance, longest common subsequence and edit distance with a real penalty are some of the
distance metrics used in time series classification and clustering applications, as presented
in Figure 2 [22]. Setting the hyperparameter right is critical because of the ability of the
hyperparameter to improve the distance measurement accuracy. The main hyperparameter
value for KNN is the k value, which indicates the count of the nearest neighbours. Setting
this parameter to the lowest feasible value whilst considering the measure’s quality may
minimise the calculation time for certain elastic measures [23]. In addition to its ease of
implementation, KNN has the benefit of working well with vast amounts of noisy training
data [24]. However, a major drawback is that for every new instance, all the distances
from K neighbours must be computed; this step consumes much computing time and
resources [25]. Therefore, the k values must be established appropriately for error rate
reduction [26].

(b) Classification and Regression Trees (CART)

Predictive ML techniques, such as the decision tree approach, are also widely utilised
for classification and regression. The CART model, a variation in the decision tree approach,
is represented by a binary tree with split rules at each root node. The split condition is
applied to the root node, and the decision procedure is sequentially performed for each
subroot node. Each root node is considered to have a single input variable, ‘x’, representing
the variable and any splits on it to visualise the aforementioned scenario well. At the
leaves, ‘y’ is an output variable that predicts the output. The categorical prediction uses
the choice of entropy, whereas the continuous prediction relies on the sum of square
errors. This method simplifies ML for novice users by providing an easy-to-understand
and visible model. It also needs minimal data preprocessing and can handle categorical
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and numerical data types. However, the CART model is an unstable paradigm and it may
occasionally result in a complicated tree structure that is not sufficiently generalised [27].
The complexity parameter (cp) is utilised as a tuning parameter in the CART model to
increase its performance and solve the issues mentioned. It penalises the tree if it has an
excessive number of splits; in most cases, the default setting is set at 0.01. In particular,
small trees are produced with the increase in the cp value. Figure 3 depicts the final tree
generated using the CART model.
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(c) Random Forest (RF)

An ensemble learning approach known as RFs or random decision forests can also
be utilised to classify and predict data. RF provides strong ensemble classifiers with a
capacity to generate a large number of trees using random bootstrapped samples of the
training dataset, as demonstrated in Figure 4. Two parameters are modified in RF, namely,
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the number of trees (ntree) and the number of variables or features (mtry) [28]. The ntree
parameter allows experimentation with the number of trees based on the data size and
type. However, using more than the required number of trees may be unnecessary because
it may not negatively impact the model [29]. The mtry parameter refers to the number of
variables randomly chosen as potential candidates at each split. The default value of mtry
is usually the number of predictor variables, as shown in [30]. The RF model is more time
consuming and difficult to understand and analyse than the decision tree because it creates
many trees [31]. In this study, we evaluate a wide range of values for ntree and mtry to
determine the optimum values for the best RF model performance.
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(d) Support Vector Machine

SVM models use a hyperplane with the greatest margin to categorise between classes.
The hyperplane is defined by the support vectors; SVMs successfully handle a wide range
of ML problems that are neither linear nor separable [32]. The regularisation parameters,
such as cost and sigma, must be determined before training an SVM classifier to utilise the
model fully [33,34]. The cost parameter allows the alteration of the training data stiffness
by determining the misclassification limit for the nonseparable training data. In addition,
SVM uses sigma in smoothing the class dividing hyperplane in the Gaussian RBF kernel.
The class dividing hyperplane’s form may influence the classification accuracy results
when the cost parameter value is increased, whereas decreasing the value can lead to
an overfitted model [35]. The impact of sigma and cost is shown in Figure 5 [36]. The
SVM performance improves when the number of dimensional spaces is larger than the
entire sample set size, resulting in an excellent option for working with high-dimensional
data [37]. Including subset training points in the decision function also enhances this model
memory. However, SVM has a downside, that is, the prediction task becomes substantially
computationally expensive when the dataset is extensive, resulting in SVM’s long training
time [38]. Furthermore, the performance of the algorithm also suffers if the dataset contains
many overlapping classes [39]. Therefore, assessing these issues concerning our dataset is
interesting. In particular, various values for both parameters are explored in this study to
determine the ideal SVM model.
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4. Parameter Tuning Results

In this section, we discuss the effects of tuning the hyperparameter on each of the
models presented in Section 3. Each model is trained using the same dataset and given a
range of parameter tuning values to be evaluated. The hyperparameters discussed in this
section are the k values for KNN, cp for CART, ntree and mtry for RF and sigma and cost
for SVM.

(a) KNN—Accuracy versus the number of neighbours

The KNN classifier uses the class properties of its k closest neighbours to categorise the
predictors. Therefore, the k value is a critical factor in the KNN algorithm’s performance
and serves as a primary tuning parameter. In this study, we tested a range of k values from
1 to 50 to determine the best value for the KNN classifier parameter. This value range was
chosen because it was not excessively large enough to cause considerable computation time.
Then, the effects of varying the k values (or the number of neighbours) on the KNN model’s
accuracy can be observed. Therefore, the link between the number of neighbours and the
accuracy of the KNN model can be observed by manipulating different k values. As seen
in Figure 6, an initial 100% accuracy was reported between k values 1 and 20. However,
the accuracy dropped considerably to ~90% between the k values 20 and 30. Then, an
uneven plateau was detected. The link between the size of neighbours and the classification
error rate is not uniform, as shown by these imbalanced binary class issues. The results
indicate that the model becomes too specific and fails to generalise well when the k values
are set too low. Furthermore, the model tends to be highly sensitive to noise, resulting in
an overfitting model. We can conclude from Figure 6 that if the k values chosen are too
large, the model becomes too generalised and fails to predict the data points accurately in
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both the training and test sets, resulting in underfitting. However, small datasets may not
always benefit from a high k value. A high k value is not always the best choice for a large
dataset because its results are not always better than the results of a low k value [40].
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(b) Classification and Regression Trees—Accuracy versus Max Tree Depth

As mentioned in Section 3, the CART model uses split conditions that are applied to
the root node, and the decision procedure is repeated sequentially for each subroot node.
The term max depth refers to the maximum depth to which the tree can grow. The larger
the tree is allowed to grow further into the data, the more intricate the model becomes. As
stated in [41,42], small trees are preferred as they are simple to print and display to subject
matter experts. They also have a low likelihood of overfitting the dataset. A range of max
depth values from 1 to 10 was chosen as our initial observation parameter to study the
behaviour of the CART model. Based on our observation, our CART subcarrier prediction
model in Figure 7 depicts an exponential increase in accuracy for a max depth range of 1
to 3. It starts to plateau at 100% accuracy as the max depth increases. The results indicate
that the CART model prefers trees with a small number of nodes. Although increasing the
max depth yields high accuracy cross-validation results, it overfits the training data and
fails to capture important patterns as expected. A similar result is shown in [43] where the
CART model easily overfits. Overcomplex trees may be created with low predictive ability.
However, the decision tree’s ability to detect patterns and interactions in the training data
may be compromised if the max depth is too low. Consequently, the testing error also
increases. Therefore, achieving an optimum depth value between the two extremes of being
either too high or too low is a challenge.

(c) Random Forest

RF is a classification and prediction technique that employs many decision trees and
two tuning parameters, ntree and mtry. The ntree and mtry parameters considerably affect
the performance of the RF classifier, as detailed in Section 3.2. As summarised in [44],
ntree is the number of generated randomised trees. Predicting with a large number of
trees improves the stability and accuracy of the results and the ntree value of 500 is usually
used when the model is deployed for real-world practice. In comparison, mtry is the size
of the randomly selected feature set, where the small value of mtry results in diversity
in the model. The range of the values of mtry used in this study is from 1 to 10, and
the values of ntree which further evaluate the characteristics of the RF model towards
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this tuning parameter are 100, 200, 500 and 1000. The graph in Figure 8 shows that a
constant 100% cross-validation accuracy was obtained when the model was fed with all
mtry and ntree values. We anticipate that the model can make 100% correct predictions
regardless of the predictors utilised because of the small size and simplicity of the training
dataset. However, the accuracy decreases when a large, sophisticated training dataset is
used because of the increase in the number of predictors used, as demonstrated in [44].
Therefore, further investigation into the number of predictors is required to determine the
model’s best performance.
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(d) SVM—Support vector machine accuracy versus sigma

Multiple values for cost and sigma were examined to determine the ideal values for
the SVM model. In particular, the values chosen were sigma = 2ˆ(−25, −20, −15, −10,
−5, 0) and cost C = 3ˆ(−7, −6, −5, −4, −3, −2, −1, 1, 2, 3, 4, 5, 6, 7). The resulting
cross-validation accuracy values are shown in Figure 9. We observe that the cost value
acquires saturation accuracy at approximately 65% for all cases. However, we can break
the saturation point and increase the prediction accuracy by an additional 10% to 11% by
further increasing the sigma and cost parameter. In our case, a low-cost value results in low
accuracy, as a high tolerance level of misclassification causes poor performance as the cost
parameter controls the model’s flexibility and ability to generalise. Therefore, with a low
cost, samples inside the margins are penalized less than with a higher cost. The changes in
the sigma parameter in our SVM models also show that this parameter controls the level of
nonlinearity introduced in the model. Figure 9 shows that high accuracy is achieved when
the sigma value is minimal because a low sigma value results in a highly linear decision
boundary. In contrast, the decision boundary tends to be linear as we increase the sigma
value, resulting in high inaccuracies in prediction. This result emphasises the importance
of carefully determining the sigma and cost values as it may results in high computational
time and prediction accuracy.
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Our results indicate that RF consistently generates the most accurate outcomes, fol-
lowed by KNN, CART and SVM. This result is supported by [45–48], which indicated that
RF generally has the best predictive performance. Although SVM contributes the least to
cross-validation accuracy, its difference from the other ML models is not considerable; the
average accuracy of these models is approximately 67%. Although SVM can perform well
in unbalanced datasets, research in [49] demonstrated that the sample size and imbalanced
data of the training samples have a larger effect on the classification accuracy of KNN
and RF than on SVM, particularly when small and balanced training datasets are used.
Additionally, our research highlights the importance of traditional parametric approaches
in ML modelling when the datasets show a considerable degree of variation, which may
cause the overfitting of the ML model. Thus, the interpretability, speed and generalisation
capabilities of a simple algorithm make it a feasible alternative, particularly when the
expected accuracy differences compared to other models are small [50].
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5. Conclusions

This article provides a comprehensive observation of a scenario in which different
hyperparameters of multiple ML model methods for 5G communication system subcarrier
spacing prediction are manipulated. Resource optimisation is crucial because 5G is expected
to be an important enabler in the information and communication technology industry by
supporting diverse incoming services with various requirements. Our results show that the
optimal hyperparameter setting for ML models directly impacts the model’s performance.
This observation emphasises the importance of hyperparameter tuning to understand how
the ML models respond to the data used. Although multiple automated optimisation
solutions exist, their advantages and drawbacks vary when they are applied to various
levels of difficulty, most notably the challenges associated with the 5G technology. Given
the modest size and simplicity of the dataset used, the RF model showed the greatest
overall performance in terms of accuracy and consistency across all parameters employed.
The relationship between the size of neighbours and the classification error rate is not
necessarily linear for models such as KNN because small datasets may not always benefit
from a large k value. Moreover, our observation of the CART model indicates that trees with
a minimal number of nodes are preferable. They are straightforward to print and present
to subject matter experts. They also have a low chance of overfitting the dataset whilst
achieving 100% correctness. The deployment of ML as a subcarrier spacing prediction for
5G systems will make the wireless systems highly flexible and capable of accommodating
varying traffic loads and data requirements in the future.
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