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Abstract: Customer churn is a critical issue impacting enterprises and organizations, particularly in
the emerging and highly competitive telecommunications industry. It is important to researchers
and industry analysts interested in projecting customer behavior to separate churn from non-churn
consumers. The fundamental incentive is a firm’s intent desire to keep current consumers, along
with the exorbitant expense of gaining new ones. Many solutions have been developed to address
customer churn prediction (CCP), such as rule-based and machine learning (ML) solutions. However,
the issue of scalability and robustness of rule-based customer churn solutions is a critical drawback,
while the imbalanced nature of churn datasets has a detrimental impact on the prediction efficacy of
conventional ML techniques in CCP. As a result, in this study, we developed intelligent decision forest
(DF) models for CCP in telecommunication. Specifically, we investigated the prediction performances
of the logistic model tree (LMT), random forest (RF), and Functional Trees (FT) as DF models and
enhanced DF (LMT, RF, and FT) models based on weighted soft voting and weighted stacking
methods. Extensive experimentation was performed to ascertain the efficacy of the suggested DF
models utilizing publicly accessible benchmark telecom CCP datasets. The suggested DF models
efficiently distinguish churn from non-churn consumers in the presence of the class imbalance
problem. In addition, when compared to baseline and existing ML-based CCP methods, comparative
findings showed that the proposed DF models provided superior prediction performances and
optimal solutions for CCP in the telecom industry. Hence, the development and deployment of
DF-based models for CCP and applicable ML tasks are recommended.

Keywords: telecommunication; customer churn; decision forest; machine learning; ensemble

1. Introduction

Customers are considered significant entities for any company in an industry full
of vibrant and challenging businesses. In a competitive industry, when customers have
multiple service providers to choose from, they may quickly switch services or even
suppliers [1]. This switch (customer churn) may be caused by unhappiness, rising costs,
poor quality, a lack of features, or privacy issues [2]. Several companies across different
sectors, including banking services, airline services, and telecommunications, are directly
affected by customer churning [3–6]. These companies increasingly focus on creating and
sustaining long-term connections with their current customers. This tendency has been
observed in the telecommunications sector.
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Inarguably, continuous expansion and advancement in the telecommunications sector
significantly boosted the range of companies in the sector, increasing competition [7]. In
other words, the telecommunications sector is experiencing significant customer churn due
to tough competition, crowded markets, a dynamic environment, and the introduction of
new and tempting packages. In this rapidly changing sector, it has become necessary to
optimize earnings regularly, for which numerous tactics, such as bringing in new customers,
up-selling current customers, and extending the retention time of existing customers, have
been advocated. However, as has been observed from existing studies and reports, obtain-
ing new customers might be more costly for businesses than retaining current customers.
Predicting the probability of customer churning is fundamental to finding remedies to
this issue [8–10]. A major key purpose of Customer Churn Prediction (CCP) is to aid the
creation of strategies for retaining customers that increase business revenue and indus-
trial recognition. Nonetheless, companies in the Telecommunications sector now hold a
wealth of information about their clients, such as call logs (domestic and international),
short messages, voicemail messages, profiles, financial information, and other important
details. This information is strategic and crucial for predicting which customers are at the
point of churning. Companies must accurately predict the customer’s behavior before it
happens [11,12].

There are two approaches to managing customer churn: (1) reactively and (2) proac-
tively. In the reactive mode, the organization anticipates the consumer to terminate before
offering enticing retention incentives. However, under the proactive method, the probabil-
ity of churn is foreseen, and appropriate incentives are presented to consumers. Described
in another way, the proactive approach is regarded as a binary classification problem
wherein churners and non-churners are differentiated [1,13].

Several approaches, including rule-based and machine learning (ML)-based solutions,
have been developed to address CCP. However, the lack of scalability and robustness of
rule-based CCP models is a significant disadvantage [14,15]. In the case of the ML-based
models in CCP, several methods have been developed with relative success. This is due
to the disproportionate structure of churn datasets which has a derogatory effect on the
effectiveness of typical ML approaches in CCP [16,17]. That is, it is critical to utilize clean
and well-structured datasets in CCP as the performance of ML techniques is heavily reliant
on the dataset’s characteristics. In other words, the frequency of class labels in a dataset is
crucial for developing effective ML models. In practice, the distribution of class labels is
uneven and, in several instances, significantly biased. This intrinsic inclination is referred
to as the class imbalance problem [18,19].

The class imbalance issue happens when there is a significant disparity in the class
labels (Majority and Minority). The inadequately distributed class labels make ML model
generation difficult and, in most cases, inaccurate [20,21]. Consequently, CCP exhibits
the class imbalance problem since there are more instances of non-churners (majority)
than churners (minority). It is imperative to develop effective ML-based CCP models to
accommodate the class imbalance problem [15,17].

This study pays close attention to class imbalance while developing ML-based CCP
models with high prediction performance. Intelligent decision forest (DF) models such
as Logistic Model Tree (LMT), Random Forest (RF), Functional Tree (FT), and enhanced
variations of LMT, RF, and FT based on weighted soft voting and stacking ensembles are
utilized for CCP. DF models generate extremely efficient decision trees (DTs) utilizing the
prowess of all attributes in a dataset based on the diversity of tree models and predictive
performance. This characteristic of DF is contrary to conventional DTs that utilize only a
portion of the attributes [22]. LMT as a DF method combines logistic regression (LR), and
DT induction approaches into a distinct model component. The crux of LMT is introducing
an LR function at the leaf nodes by gradually improving superior leaf nodes on the tree.
Similarly, FT results from the functional induction of multivariate DTs and discriminant
functions. That is, FT uses positive induction to hybridize a DT with a linear function,
creating a DT with multivariate decision nodes and leaf nodes that employ discriminant
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functions to make predictions. Also, RF as a DF model is the collection of unrelated trees
working together as a group (forest). RF creates subsets of data attributes that are used to
create trees and then subsequently merged.

Furthermore, enhanced DF models based on weighted soft voting and stacking ensem-
ble techniques are proposed. In this context, the weighted soft voting ensemble considers
the probability value of each DF model in predicting the appropriate class label, while the
stacking ensemble method takes advantage of the efficacy of multiple DF models. Our
choice of weighted soft voting and stacking ensemble methods over other ensemble meth-
ods (hard voting, multischeme, dagging, bagging, and boosting) is based on their ability
to handle uncertainty in the generated probability point and final decision process. These
ensemble methods are suggested to augment the prediction performances of DF models
to generate robust and generalizable CCP models. In addition, the synthetic minority
over-sampling technique (SMOTE) is deployed as a viable solution to resolve the latent
class imbalance problem in customer churn datasets.

The primary goal of this study is to investigate the effectiveness of DF models (LMT,
RF, FT, and their enhanced ensemble variants) for CCP with the occurrence of the class
imbalance problem.

The following is a summary of the primary accomplishment of this study:

1. To empirically examine the effectiveness of DF models (LMT, RF, FT) on both balanced
and imbalanced CCP datasets.

2. To develop enhanced ensemble variants of DF models (LMT, RF, FT) based on
weighted soft voting and stacking ensemble methods.

3. To empirically evaluate and compare DF models (LMT, RF, FT) and their enhanced
ensemble variants with existing CCP models.

Additionally, the following research questions (RQs) are being addressed in this study:

1. How efficient are the investigated DF models (LMT, FT, and RF) in CCP compared
with prominent ML classifiers?

2. How efficient are the DF models’ enhanced ensemble variations in CCP?
3. How do the suggested DF models and their ensemble variations compare to existing

state-of-the-art CCP solutions?

The rest of the paper is structured as follows. Section 2 provides an in-depth examina-
tion of current CCP solutions. Section 3 describes the experimental framework and focuses
on the proposed solutions. Section 4 discusses the research observations in depth, and
Section 5 ends the study.

2. Related Works

This section investigates and examines existing CCP solutions that employ different
ML-based algorithms.

CCP solutions based on ML algorithms have received much attention in the literature.
Several studies in this field have employed baseline ML classifiers for CCP. Brandusoiu
and Toderean [23] implemented a support vector machine (SVM) utilizing four distinct
kernel functions (Linear Kernel, Polynomial Kernel, Radial Basis Function (RBF) Kernel,
and Sigmoid Kernel) for CCP. Findings from their results showed that SVM based on
the Polynomial kernel had the best prediction performance. However, only one SVM
and its variants were considered. The effectiveness of the implemented SVMs was not
examined with other baseline ML methods. In another similar study, Hossain and Miah [24]
investigated the suitability of SVM for CCP but on a private dataset. Although more
kernel functions were investigated in this case, SVM based on linear kernel had the best
performance. Also, Mohammad, et al. [25] explored the deployment of an Artificial Neural
Network (ANN), LR, and RF for CCP. They reported that LR had superior performance
compared to ANN and RF. Kirui, et al. [26] deployed Bayesian-based models for CCP.
Specifically, Naïve Bayes (NB) and Bayesian Network (BN) were used for CCP. New
features were generated based on call details, and customer profiles were used to train NB
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and BN. From the experimental results, the performance of NB and BN were superior when
compared with Decision Tree (DT). Also, Abbasimehr, et al. [27] compared the performance
of ANFIS as a Neuro-Fuzzy classifier with DT and RIPPER for CCP. The experimental
results revealed that the performance of ANFIS was comparable to that of DT and RIPPER
and produced fewer rules. Despite the successes of baseline ML classifiers, the problem of
parameter tuning and optimization (SVM, LR, ANN, BN) is a major drawback.

To enhance the performances of baseline ML models in CCP, some studies introduced
feature selection (FS) processes to select relevant features for CCP. Arowolo, Abdulsalam,
Saheed and Afolayan [2] combined the RelieFf FS method with Classification and Re-
gression Trees (CART) and ANN for CCP. Zhang, et al. [28] used features selected by the
Affinity Propagation (AP) method on RF for CCP. Lalwani, Mishra, Chadha and Sethi [1], in
their study, deployed a gravitational search algorithm for the FS method and subsequently
trained some baseline classifiers such as LR, SVM, DT, and NB for CCP. Also, Brânduşoiu,
Toderean and Beleiu [8] applied Principal Component Analysis (PCA) for dimensionality
reduction with SVM, BN and ANN. It was observed that the deployed PCA positively
enhanced the prediction performances of the experimented models. However, selecting
an appropriate FS method for CCP could lead to another problem such as a filter rank
selection problem. In addition, some of the applied FS methods such as PCA tend to give
the features another representation which is often not appropriate.

Some current studies focused on the use of deep learning (DL) approaches like Deep
Neural Network (DNN), Stacked Auto-Encoders (SAE), Recurrent Neural Network (RNN),
Deep Belief Network (DBN), and Convolution Neural Network [4,9,15,29–32]. Wael Fujo,
Subramanian and Ahmad Khder [15] developed a Deep-BP-ANN method for CCP. In the
proposed method, two FS methods (Lasso Regularization (Lasso) and Variance Thresh-
olding methods) select relevant and irredundant features. Thereafter, the Random Over-
Sampling method is deployed to address the class imbalance problem. Deep-BP-ANN is
developed based on diverse hyperparameter methods such as Early Stopping (ES), Model
Checkpoint (MC), and Activity Regularization (AR) techniques. Observation from their
results showed the increased effectiveness of Deep-BP-ANN over existing methods such
as LR, NB, k Nearest Neighbour (kNN), ANN, CNN, and Lion Fuzzy Neural Network
(LFNN) based on its selection of optimum features, epochs, and the number of neurons.
Karanovic, Popovac, Sladojevic, Arsenovic and Stefanovic [29] highlighted the suitability
of CNN for CCP. The suggested CNN had an accuracy of 98% over Multi-Layer Perceptron
(MLP). A similar finding was reported by Agrawal, et al. [33] when they deployed CNN
for CCP. Also, Cao, Liu, Chen and Zhu [9] utilized SAE for features extraction and LR
for CCP. Specifically, SAE is pretrained with its parameters tuned based on Backward
Propagation (BP), and then the extracted features are classified by LR. It was observed
that the suggested method had a comparable CCP performance. However, there is still
room for improvement, particularly in parameter settings. Despite studies indicating that
DL approaches are gaining attention and, in some situations, outperforming standard ML
methods, the concerns of the system (hardware) reliability and hyper-parameter tweaking
are some of its significant constraints.

In addition, substantial initiatives have been proposed to boost the efficacy of the
baseline ML classifiers via ensemble techniques. Shabankareh, et al. [34] proposed stacked
ensemble methods using DT, chi-square automatic interaction detection (CHAID), MLP,
and kNN with SVM in pairs. The experimental results indicated that the suggested stack
ensembles are superior in performance to the individual DT, CHAID, MLP, kNN, and
SVM. Mishra and Reddy [10] compared the performance of selected ensemble methods
with baseline classifiers such as SVM, NB, DT, and ANN. Their findings supported the
ensemble methods over selected classifiers in terms of performance. Xu, et al. [35] deployed
stacking and voting ensemble methods on CCP. Initially, a feature grouping operation
based on an equidistant measure was deployed by the authors to extend the sample space
and reveal hidden data details. The suggested ensemble method was based on DT, LR, and
NB. Reports from their study further support the effectiveness of ensemble methods over
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single classifiers in CCP. Saghir, et al. [36] implemented ensemble-based NN approaches
for CCP. The Bagging, Adaboost, and Majority Voting ensemble methods were developed
based on MLP, ANN, and CNN. As observed in their results, in most cases the ensemble-
based NN methods are superior to their counterparts. Although the effectiveness of the
proposed methods was not correlated with conventional ML methods, the ensemble-based
NN approach performed relatively well. In another context, Bilal, et al. [37] successfully
combined clustering algorithms and classification algorithms for CCP. Specifically, four
different clustering methods, k-means, x-means, k-medoids, and random clustering, were
combined with seven classifiers (kNN, DT, Gradient Boosted Tree (GBT), RF, MLP, NB, and
kernel-based NB) based on boosting, bagging, stacking and majority voting. Aside from the
ensemble methods being superior, it was also observed that the classification algorithms
were better than the clustering algorithms even though the clustering techniques do not
have to train any model. Nonetheless, although ensemble approaches have been proposed
to accommodate imbalanced datasets, they are not considered a feasible solution to the
class imbalance problem.

Summarily, numerous CCP models and methods have been suggested, ranging from
conventional baseline ML models to advanced methods based on DL, ensemble, and neuro-
fuzzy approaches (See Table 1). However, developing new methodologies for CCP is an
ongoing research project due to its significance in business research and development, par-
ticularly in customer relationship management (CRM). In addition, reports from previous
studies have indicated that the class imbalance problem can affect the efficacy of ML-based
CCP solutions. Hence, this research presents DF models and their ensemble-based variants
for CCP.

Table 1. An overview of notable current CCP studies.

References Dataset Technique Class Imbalance Limitations

Brandusoiu and
Toderean [23] Kaggle Dataset SVM (Poly, Lin,

RBF, Sig) N/A
Parameter setting and

runtime overhead
of SVM

Hossain and Miah [24] Private Dataset
SVM (Gaussian, Poly,

Lin, Sig, Laplacian,
ANOVA-RBF)

N/A
Parameter setting and

runtime overhead
of SVM

Mohammad, Ismail, Kama,
Yusop and Azmi [25] Kaggle Dataset ANN, LR, and RF N/A

Platform dependence
and parameter setting

(ANN and LR)

Kirui, Hong, Cheruiyot
and Kirui [26]

European Telecomm
Dataset NB and BN Random Sampling Zero frequency problem

Abbasimehr, Setak and
Tarokh [27] Kaggle Dataset

Adaptive Neuro-Fuzzy
Inference System

(ANFIS)
N/A High runtime overhead

Arowolo, Abdulsalam,
Saheed and Afolayan [2] Kaggle Dataset CART and ANN N/A Underfit trees and class

imbalance

Zhang, Li, Xu and Zhu [28] Private Dataset
AP for feature selection

and RF for
classification

N/A
Parameter setting and

optimal cluster number
of AP

Lalwani, Mishra, Chadha
and Sethi [1] Kaggle Dataset

GSA for feature
selection, LR, SVM, DT,

and NB for
classification

N/A
Parameter setting and

runtime overhead (SVM
and LR)

Brânduşoiu, Toderean and
Beleiu [8] Kaggle Dataset

PCA for feature
extraction, SVM, BN,

and MLP for
classification

N/A Platform dependence
and parameter setting
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Table 1. Cont.

References Dataset Technique Class Imbalance Limitations

Wael Fujo, Subramanian
and Ahmad Khder [15]

IBM and Cell2Cell
Datasets Deep-BP-ANN Random

Over-Sampling
Platform dependence
and parameter setting

Karanovic, Popovac,
Sladojevic, Arsenovic and

Stefanovic [29]
Orange Dataset CNN N/A Platform dependence

and parameter setting

Cao, Liu, Chen and Zhu [9] Private Dataset SAE and LR N/A Platform dependence
and parameter setting

Shabankareh, Shabankareh,
Nazarian, Ranjbaran and

Seyyedamiri [34]
Kaggle Dataset

Stack Ensemble: SVM
with DT, CHAID, MLP,

and kNN
N/A Parameter setting of

SVM, MLP, and kNN

Mishra and Reddy [10] Kaggle Dataset Bagging and Boosting
Ensemble N/A Biasness and High

computational cost

Xu, Ma and Kim [35] Kaggle Dataset
Stacking and Voting

Ensemble based on LR,
DT, and NB

N/A High computational cost

Saghir, Bibi, Bashir and
Khan [36]

Kaggle and UCI
Datasets

Ensemble (Bagging,
Boosting, and Majority

Voting) NN
N/A High computational cost

Bilal, Almazroi, Bashir,
Khan and Almazroi [37]

Kaggle and UCI
Datasets

Ensemble of Clustering
and Classification

Techniques
N/A

Parameter setting and
optimal cluster number
of clustering techniques

Agrawal, Das, Gaikwad
and Dhage [33] Kaggle Dataset CNN N/A Platform Dependence

and parameter setting

Beeharry and Tsokizep
Fokone [16]

Duke and Kaggle
Datasets

Voting Ensemble
Method N/A High computational cost

3. Methodology

This section outlines the research methodology utilized in this research work. De-
tails on the deployed DF models and their enhanced ensemble variations are specifically
illustrated. Also presented are the performance assessment measures, the experimental
framework, and the studied CCP datasets.

3.1. Logistic Model Tree (LMT) Algorithm

The Logistic Model Tree (LMT) method combines LR with the DT approach. It can
generate a model with excellent prediction performance while delivering an explainable
structure [38]. Specifically, LMT is essentially a DT with LR functions at the leaves. Every
inner node, as in conventional DTs, is coupled with a test on one of the features. The node
contains k child nodes for a nominal feature with k values, and instances are sorted along
one of the k branches based on the feature value. The node includes two child nodes for
numeric features, and the test consists of comparing the feature value to a certain threshold:
an instance is sorted down the left or right branch if its value for that feature is less or more
than the threshold, respectively [39]. LMT is a tree structure composed of a set of inner
or non-terminal nodes N and a set of leaves or terminal nodes T. Let A indicate the entire
set space, which is covered by all features contained in the data. The resulting tree thus
provides a discontinuous partition of A into sections At, and each section is depicted by a
leaf in the tree:

A =∪
i∈I

Ai, Ai ∩ Ai′ = ∅ f or i 6= i′ (1)
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Contrary to conventional DT, the leaves i ∈ I are connected to an LR function and not
a class label. The LR function fi considers a subset Bi ⊆ B of all features in the data, and
models the class membership probabilities as:

Pr(G = j | X = x) =
eFj (x)

∑J
k=1 eFk (x)

(2)

where
Fj(x) = α

j
0 + ∑

bεBi

α
j
v × v (3)

3.2. Functional Tree (FT) Algorithm

Functional Trees (FT) combines multivariate DTs and discriminant functions using
constructive induction. FT is also a generalization of multivariate trees with features at
leaf and decision nodes. In other circumstances, FT combines nodes and leaves features
for generating classification trees, such that decision nodes are formed depending on the
development of the classification tree, and functional leaves are built when the tree is
pruned [40,41]. For prediction tasks, FT may be used to predict the value of class variables
for a given dataset. Specifically, the dataset traverses the tree from root to leaf, expanding
the dataset’s collection of features at each decision node using node-built functions. The
node’s decision test is then used to decide the path the dataset will take. Finally, the dataset
is labeled as a leaf using either the function based on the leaf or the leaf-related constant [42].
The main difference between DT and FT is that DT splits the input data into tree nodes
by comparing the value with a constant of certain input attributes, whereas FT uses LR
functions for internal node splitting (called oblique split) and leaf prediction.

To avoid overfitting, FT utilizes the gain ratio function as the splitting criterion to
select an input feature to split on, the standard DT (that is C4.5) for tree construction, and
iterative reweighting (LogitBoost) to fit the LR functions at leaves with least-squares fits for
each class Ta, as shown in Equation (4).

fTa =

10

∑
a=1

βaVa + β0 (4)

where βa is the co-efficient of the ith component in the input vector Va.
In this research work, FT with leaves was selected and implemented because of its

usage of functional models as leaves instead of a splitting test. A similar method is utilized
in developing the Naive Bayes Tree (NBTree) and the M5 model tree. It entails limiting
the test feature selection to the original features. However, the constructor function is still
implemented at each node and is subsequently utilized for pruning [40]. As a result, the
original features are employed to form the decision nodes. In summary, FT with leaves
divides input space into hyper-rectangles, and the data in each partition is fitted using a
constructor function.

3.3. Random Forest (RF) Algorithm

The random forest (RF) idea is to construct binary subtrees utilizing training bootstrap
samples from the learning sample L and randomly choose a portion of X at each node. The
DF model selects the categorization with the most votes out of all the trees in the forest. RF
is typically defined by its bootstrapping aggregation and its randomized selection concepts.
If a dataset has N instances, about 2/3 of the original size is randomly determined by
bootstrapping N times. The remaining occurrences have been examined as an out-of-bag
set. The set of out-of-bag observations is made up of observations that were not utilized
to create the subtrees. They were used to evaluate the error prediction. A random feature
selection is used at each node to generate a decision node. When m is the number of
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features, the size of the feature evaluated at each split is generally equal to m or m/2 [43].
Since no pruning is done, all the sub-trees are maximum trees. Each DT is trained using
the concept of RF. Specifically, each classifier’s (DT) training set is formed by randomly
selecting N instances with replacement, where N is the size of the original training set. The
learning system develops a classifier (DT) from the instance and combines all the classifiers
(DTs) created from the various trials to build the final classifier. To classify an instance, each
classifier registers a vote for the class to which it belongs, and the instance is labeled as a
member of the class with the most votes. If more than one class earns the most votes, the
winner is chosen randomly. Every tree in the forest is formed on an independently drawn
bootstrap copy of the input data. Observations not included in this copy are “out-of-bag”
for this tree [44]. The prediction error of the DF is determined by calculating predictions
for each tree on its out-of-bag observations, averaging these predictions over the whole DF
for each observation, and then comparing the expected out-of-bag response with the real
value at this observation. The bootstrapping concept works by minimizing the variance of
an unbiased base learner, such as a DT. The random selection of features minimizes the
correlation between trees in the DF, increasing the DF’s predictive power [45].

In summary, the selected DFs (LMT, FT, and RF) goal is to guarantee that relevant
attributes are chosen or retained on the resulting DT. However, other forms of DFs, such as
Random Subspace (RS) and Extremely Randomized Trees (ERT), have been reported to be
effective. These methods (RS and ERT) adopt the random feature weights and sub-spacing
method, which creates and assigns weights at random, resulting in a mismatch in feature
weights and erratic performance for low and large dimensional datasets. As a result, the
assurance that relevant attributes will be chosen or maintained on an ongoing basis is not
guaranteed [46,47].

3.4. Enhanced Ensemble Variations
3.4.1. Weighted Soft Voting Ensemble Decision Forest Method (WSVEDFM)

The weighted Soft Voting Ensemble Decision Forest Method (WSVEDFM) is a simple
approach for combining the results of the baseline DF models (in this case, LMT, FT, and
RF). It enables DF models to predict the class of each instance of the dataset, and the
class label of each occurrence is then determined using a weighted average mechanism.
The weighted average is a modified version of simple averaging, where the prediction
of each DF model is multiplied by its weight, and then their average is computed. This
strategy often eliminates overfitting and produces a better prediction model. Specifically,
WSVEDFM assigns a weight Wj to each DF model Dj. In this scenario, the instance’s label
D may be calculated using:

T(X) = arga=1....n Max(Da(X)) (5)

where

Da(X) =
1
N

N

∑
m=1

Qm(wa|x) (6)

3.4.2. Weighted Stacking Ensemble Decision Forest Method (WSEDFM)

Weighted Stacking Ensemble Decision Forest Method (WSEDFM) is a process in which
all DF models (LMT, FT, and RF) are stacked one on top of the other, with the output
from the model underneath being sent to the model above it. Depending on the learning
technique employed, the process of stacking can assist in decreasing bias or variance error.
WSEDFM employs a set of heterogeneous DF models as base classifiers, the predictions
of which are used to train a meta-classifier (in this case Forest Penalizing Attribute (FPA)
algorithm), which provides the final prediction. The meta classifier (FPA) corrects any mis-
takes produced by the underlying DF models, improving generalization and performance.
The choice of FPA as a meta classifier is based on its ability to accommodate variations by
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considering the weights assignment and weight increments methods for its classification
process [47,48].

3.5. Experimental Procedure

This section describes the experimental procedure utilized in this study, as presented
in Figure 1. The outlined procedure is aimed at empirically analyzing and substantiat-
ing the efficacy of investigated DF models and their enhanced ensemble variations in
CCP. Specifically, two phases of experimentation were designed and investigated, and
the prediction performances of the resulting CCP models were compared in a fair and
coherent method.

Figure 1. Experimental Framework.

Phase 1: Initially, the prediction performances of the DF models (LMT, FT, and RF)
and selected ML classifiers with diverse computational properties on the original CCP
datasets were investigated. Specifically, these included renowned ML classifiers such as
Bayesian-based classifier (NB), Tree-based classifier (Decision Stump (DS)), and Instance-
based classifier (kNN). The purpose of this experimentation is to evaluate the prediction
performances and effectiveness of the DF models in CCP with imbalanced datasets. There-
after, the class imbalance problem was resolved by deploying SMOTE data sampling
method. SMOTE is a prominent data sampling strategy utilized to address the problem
of class imbalance [21,49]. The investigated DF models and selected ML classifiers are
deployed on the new (balanced) CCP datasets. Findings from this experiment will indicate
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the efficacy of the investigated models on balanced CCP datasets and demonstrate the
impact of the data sampling method on DF models in CCP.

Phase 2: Similarly, the prediction performances of the enhanced ensemble variants
of the DF models on both original and new (balanced) CCP datasets will be investigated.
Specifically, the proposed WSVEDFM and WSEDFM will be deployed on the original and
SMOTE-balanced CCP datasets. For a fair comparison, the performance of the WSVEDFM
and WSEDFM will be compared with prominent homogeneous ensemble methods such as
Bagging and Boosting methods. This comparison aims to validate the effectiveness of the
WSVEDFM and WSEDFM for CCP with or without the class imbalance problem. Also, the
prediction performances of DF models, WSVEDFM, and WSEDFM will be compared with
existing CCP solutions.

The experimental findings and conclusions derived from the results (Phase 1 and
Phase 2) are utilized to address the research questions listed in Section 1. The CCP datasets
were partitioned into Train (70%) and Test (30%) for models for each experimental phase.
Following that, SMOTE was used to balance the training datasets, which were then utilized
for training the experimental models using the 10-fold cross-validation (CV) approach.
For the construction and assessment of CCP models, the K-fold (k = 10) CV technique is
utilized. The 10-fold CV option is justified by its capacity to generate CCP models with
little influence on the problem of class imbalance [21,50–53]. The training and testing
datasets were produced randomly, with no duplications or shared values. Finally, the
average of the ensued results is used as the final evaluation criterion for each analyzed
dataset. Furthermore, each experimental step was performed ten times. To eliminate bias,
each experiment was repeated 100 times [54–56]. The Waikato Environment for Knowl-
edge Analysis (WEKA) machine learning library [57] and R programming language [58]
were used for the experiments on an Intel(R) CoreTM computer equipped with an i7-6700
processor operating at 3.4 GHz with 16 GB RAM.

3.6. Telecommunication Customer Churn Datasets

For the experimentation phase of this research work, two CCP datasets with diverse
characteristics were used for training and testing the CCP models. The first dataset (here-
after referred to as Dataset 1) was obtained from the Kaggle ML repository [59–61], and the
second dataset (hereafter referred to as Dataset 2) was downloaded from the UCI ML repos-
itory [59,62]. The selected CCP datasets are publicly available and are regularly utilized in
existing CCP studies [14,17,34,59,62]. Dataset 1 is primarily derived from the IBM business
analytics community, which describes information about a telecommunication company
that provided voice and internet services for customers. Specifically, Dataset 1 consists of
3333 instances, out of which 2850 are non-churners (NC), and 483 are churners (C) with
21 features. Dataset 1 has a churn rate of 14.49% and an imbalance ratio (IR) (NC/C) of
5.9. Similarly, Dataset 2 has 5000 instances, out of which 4493 are non-churners while 507
are churners, meaning that Dataset 2 has a churn rate of 10.14% and an IR of 8.86. Further
description of Dataset 1 and Dataset 2 is presented in Table 2.

Table 2. Description of CCP datasets.

Dataset Features Instances Churners Non-Churner Churn Rate IR

Dataset 1 20 3333 483 2850 14.49% 5.9

Dataset 2 18 5000 507 4493 10.14% 8.86

3.7. Performance Assessment Measures

Accuracy, F-measure, Area under the Curve (AUC), and Mathew Correlation Co-
efficient (MCC) evaluation metrics were utilized in this research work to evaluate the
prediction capabilities of different CCP models. The selection of these performance indica-
tors is made based on the widespread and consistent usage of these assessment metrics for
CCP in existing studies [14,17,34,59,62,63]. MCC is particularly regarded as dependable
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because it considers all quadrants from the generated confusion matrix for each developed
model [63,64].

4. Results and Discussion

In this section, results and findings obtained from the experimental procedure shown
in Section 3.3 are presented and analyzed. The effectiveness of the CCP models will be
discussed based on their respective prediction performances with or without the class
imbalance problem. That is, the efficacies of the CCP models studied on both original and
balanced (SMOTE) CCP datasets will be investigated.

Tables 3 and 4 present the comparison of CCP performances of DF models (LMT,
FT, and RF) against ML classifiers (NB, kNN, and DS) on the original Datasets 1 and 2.
The selected ML classifiers were chosen based on their prediction performances in ML
tasks and distinct computational properties. In addition, Tables 5 and 6 show the CCP
performance of the DF models with the ML classifiers on SMOTE-balanced Dataset 1 and
Dataset 2. The data sampling method (SMOTE) was deployed to address the inherent class
imbalance problem in CCP datasets. In addition, the deployment of balanced datasets
on the CCP models will indicate the impact of data sampling on CCP models. To de-
velop effective CCP models, enhanced ensemble variants of the DT models (WSVEDFM
and WSEDFM) were deployed on the original and balanced versions of Dataset 1 and
Dataset 2. Specifically, Tables 7–10 present the CCP performances of each of the DF models
and their enhanced ensemble variants on the original and balanced studied customer
churn datasets respectively. This analysis will show how the different DF models can
work with imbalanced and balanced datasets. For a fair comparison, the CCP perfor-
mances of DF models are further compared with renowned ensemble methods such as
Bagging and Boosting. Finally, the CCP performances of the high-performing DF models
are contrasted with current state-of-the-art CCP models. Consequently, the experimental
results are aided by graphical representations to demonstrate the relevance of the observed
experimental findings.

Table 3. The CCP performance of DF models and ML classifiers on Dataset 1.

Accuracy (%) AUC F-Measure MCC

NB 88.24 0.834 0.834 0.465

kNN 83.38 0.603 0.821 0.237

DS 86.56 0.603 0.841 0.317

* LMT 94.75 0.905 0.945 0.777

* FT 94.42 0.905 0.942 0.763

* RF 90.97 0.896 0.895 0.581
* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.

Table 4. The CCP performance of DF models and ML classifiers on Dataset 2.

Accuracy (%) AUC F-Measure MCC

NB 89.86 0.503 ? ?

kNN 81.90 0.510 0.820 0.020

DS 89.86 0.496 ? ?

* LMT 89.86 0.500 ? ?

* FT 89.86 0.500 ? ?

* RF 89.49 0.508 0.850 0.003
* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.
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Table 5. The CCP performance of DF models and ML classifiers on Balanced (SMOTE) Dataset 1.

Accuracy (%) AUC F-Measure MCC

NB 78.33 0.866 0.883 0.567

kNN 88.27 0.881 0.883 0.767

DS 64.84 0.65 0.863 0.346

* LMT 93.60 0.971 0.966 0.872

* FT 94.83 0.975 0.968 0.897

* RF 92.14 0.943 0.945 0.843
* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.

Table 6. The CCP performance of DF models and ML classifiers on Balanced (SMOTE) Dataset 2.

Accuracy (%) AUC F-Measure MCC

NB 77.21 0.825 0.772 0.545

kNN 83.91 0.839 0.839 0.678

DS 87.84 0.499 0.500 0.257

* LMT 91.59 0.896 0.876 0.752

* FT 94.26 0.973 0.942 0.883

* RF 90.32 0.880 0.503 0.806
* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.

Table 7. The CCP performance of DF models and their Enhanced ensemble variants on original
Dataset 1.

Accuracy (%) AUC F-Measure MCC

LMT 94.75 0.905 0.945 0.777

FP 94.42 0.905 0.942 0.763

RF 90.97 0.896 0.895 0.581

WSVEDFM 95.81 0.951 0.958 0.879

WSEDFM 95.53 0.948 0.955 0.865

Table 8. The CCP performance of DF models and their Enhanced ensemble variants on original
Dataset 2.

Accuracy (%) AUC F-Measure MCC

LMT 89.86 0.5 ? ?

FP 89.86 0.5 ? ?

RF 89.49 0.508 0.850 0.003

WSVEDFM 89.86 0.555 0.855 0.030

WSEDFM 89.86 0.545 0.850 0.025

Table 9. The CCP performance of DF models and their Enhanced ensemble variants on balanced
Dataset 1.

Accuracy (%) AUC F-Measure MCC

LMT 93.60 0.971 0.966 0.872

FP 94.83 0.975 0.968 0.897
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Table 9. Cont.

Accuracy (%) AUC F-Measure MCC

RF 92.14 0.943 0.945 0.843

WSVEDFM 96.31 0.990 0.987 0.940

WSEDFM 96.31 0.989 0.983 0.946

Table 10. The CCP performance of DF models and their Enhanced ensemble variants on balanced
Dataset 2.

Accuracy (%) AUC F-Measure MCC

LMT 91.59 0.896 0.876 0.752

FT 94.26 0.973 0.942 0.883

RF 90.32 0.880 0.503 0.806

WSVEDFM 96.57 0.988 0.965 0.981

WSEDFM 96.43 0.986 0.964 0.971

4.1. CCP Performance Comparison of the DF Models and ML Classifiers

In this section, the CCP performance of LMT, FT, and RF as DF models are compared
with the ML classifiers on original and SMOTE-balanced Dataset 1 and Dataset 2 as outlined
in Section 3.3 (Phase 1).

Table 3 illustrates the CCP performances of LMT, FT, and RF and the selected ML
classifiers (NB, kNN, and DS) on Dataset 1 (Kaggle Dataset). It can be observed that the
DF models were superior in prediction performances when compared to the experimented
ML classifiers based on the studied performance metrics. Concerning accuracy values,
LMT recorded the highest of 94.75% amongst the DF models, followed by FT and RF,
respectively. As for the ML classifiers, NB performed best with 88.24% prediction accuracy.
However, LMT, FT, and RF had +7.38, +7.0, and +3.09% accuracy increments compared
to NB. The LMT, FT, and RF’s superior prediction accuracy values over NB, kNN, and
DS, even on an imbalanced Dataset 1, highlights their resilience and usefulness for CCP.
A similar occurrence can be observed regarding AUC values as the duo of LMT and FT
both had the highest AUC values of 0.905 while RF had 0.896. The AUC values of these
DF models were superior to that of NB (0.834), kNN (0.603), and DS (0.603). Also, the
DF models obtained a strong ratio of sensitivity and recall, with LMT and FT having
f-measure values of 0.945 and 00942, respectively. It is worth noting that the ML classifiers
also had comparable f-measures, but they were still lower than those of the DF models.
This observation confirms the performance stability of the DF models in CCP compared
to experimented ML classifiers. In the case of the MCC values, the performances of the
DF models are notably comparable, as LMT (0.777) was slightly better than FT (0.763).
The other ML classifier had lower MCC values which indicate no conformity between the
predicted and observed values. Figure 2 illustrates a graphical depiction of the CCP of the
experimented models.

From Dataset 2 (presented in Table 4), the DF models had comparable performance
to the ML classifiers in terms of accuracy, AUC, f-measure, and MCC values. It was also
discovered that the DF model experimental results on Dataset 2 are somewhat lower than
those of Dataset 1. LMT, FT, and NB had similar prediction accuracy values (89.86%), and
their respective AUC values are average (LMT: 0.5, FT: 0.5, NB: 0.503). Also, it can be
observed that the f-measure and MCC values of some of the implemented models (NB,
DS, LMT, and FT) are missing, and some models recorded poor performance based on
f-measure and MCC values. This observation can be attributed to the nature and data
quality of Dataset 2. That is, the presence of class imbalance (as indicated in Table 2) (IR
of 8.86) had a derogatory effect on the implemented DF and ML models. Figure 3 depicts
DF’s and the ML classifiers’ CPP performances.
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Figure 2. CCP Performance of DF models and ML Classifiers on Dataset 1.

Figure 3. CCP Performance of DF models and ML Classifiers on Dataset 2.

Based on the relative prediction performances of the DF models, which may have been
affected by the latent class imbalance problem, the IR values for Dataset 1 and Dataset 2 are
5.9 and 8.86, respectively (See Table 2). Hence, this research work explored the prediction
performances of the DF models and ML classifiers on balanced (SMOTE) CCP datasets. It
is worth noting that the purpose of the SMOTE data sampling method is to eliminate the
class imbalance issue as identified in Dataset 1 and Dataset 2 (See Table 2). Besides, the
choice of SMOTE technique is due to its reported effectiveness and frequent deployment in
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current research. Specifically, Tables 5 and 6 show the experimental results of DF models
and ML classifiers on the balanced (SMOTE) Dataset 1 and Dataset 2, respectively.

As seen in Table 5, the DF models (LMT, FT, and RF) are still superior to the ML
classifiers (NB, kNN, and DS) on all performance parameters tested. FT and RF have
a prediction accuracy of 94.83% and 92.14%, which are (+0.43%, +1.29%) better than FT
and RF on original Dataset 1. Similar trends were observed in the performance of the DF
models with AUC and MCC values. For instance, significant increments were observed in
the AUC values of LMT (+7.3%), FT (+7.73%), and RF (+5.25%) on the balanced dataset
compared with the original Dataset 1. Also, it was discovered that the ML classifiers
had improved prediction performances based on AUC and MCC values. Specifically, the
highest improvements in AUC values were attained by kNN (+46.1%) and DS (+7.79%). In
addition, there was a notable increase in MCC value in NB (+21.9%), kNN (+223%), and
DS (+9.15%). In terms of f-measure values, kNN (+7.55%) improved the most, followed
by NB (+5.88%) and DS (+2.61%) in that order. However, in terms of the accuracy values,
NB (−11.23%) and DS (−22.78%) had negative improvements, which may be due to the
model overfitting observed in their respective CCP on the original dataset. This finding
further affirms the importance of not using the accuracy value as the only performance
metric since it does not represent the performance of an ML model adequately. On the
SMOTE-balanced Dataset 1, the CCP performance of the DF models and the ML classifiers
improved generally, but the DF models still achieved the highest overall performance. This
finding could be related to deploying the data sampling (SMOTE) method to address the
class imbalance issue in Dataset 1. Figure 4 depicts the performance of DF models and ML
classifiers on CCP performance on the balanced Dataset 1.

Figure 4. CCP Performance of DF models and ML Classifiers on balanced (SMOTE) Dataset 1.

Additionally, Table 6 displays the experimental results of the DF models and ML
classifiers on balanced Dataset 2. The DF models still produced the best CCP performance
based on all performance criteria analyzed. Balanced Dataset 1 showed a similar outcome
to the experimental findings on balanced Dataset 2. That is, the DF models and the
ML classifiers improved their CCP performance. As indicated in Table 6, FT (+4.89%),
LMT (+1.63%), and RF (+0.93%) outperformed their respective CCP capabilities on the
original Dataset 2. In terms of AUC values, the DF models (LMT (+79.2%), FT (+94.6%),
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and RF (+73.23%)) all showed significant improvement. The analysis based on the f-
measure metric yielded similar results. Except for RF, the f-measure values of LMT, FT,
and the ML classifiers improved. In terms of the MCC measure, the DF models showed
significant incremental improvements in their respective MCC values, which showed a
strong relationship between the observed and predicted outcome. Other ML classifiers
(NB, kNN, and DS) also showed comparable MCC values. Figure 5 depicts the DF models
and ML classifiers’ CCP performance on the balanced Dataset 2.

Figure 5. CCP Performance of DF models and ML Classifiers on balanced (SMOTE) Dataset 2.

The following observations were noticed based on the preceding experimental results
assessments on studied CCP datasets:

1. The DF models (LMT, FT, and RF) outperformed the ML classifiers (NB, kNN, and
DS) in CCP. It is worth noting that the experiment ML classifiers were chosen based
on their use and performance in current CCP studies and ML tasks.

2. The use of the SMOTE data sampling approach not only solved the class imbalance
issue but also enhanced the CCP performances of the DF models and ML classifiers.

3. The DF models can predict customer churn effectively with or without a data sampling
strategy.

These experimental findings verify and substantiate using DF models (LMT, FT, and
RF) for CCP. DF models enhanced ensemble variants (WSVEDFM and WSEDFM), on
the other hand, were created to improve the DF models CCP performance. Section 4.2
presents and discusses the empirical assessment of experimental outcomes of WSVEDFM
and WSEDFM methods.

4.2. CCP Performance Comparison of DF Models and Their Enhanced Ensemble Variants
(WSVEDFM and WSEDFM)

This section compared the CCP performances of the DF models with their enhanced
ensemble variants on the original and balanced CCP datasets. Specifically, Tables 7 and 8 display
the experimental results based on the original Dataset 1 and Dataset 2, while Tables 9 and 10
show the results on balanced Dataset 1 and Dataset 2 as outlined in Section 3.3 (Phase 2).

Tables 7 and 8 display the detection performances of LMT, FT, RF, WSVEDFM, and
WSEDFM on original Dataset 1 and Dataset 2. On Dataset 1 (Table 7), both WSVEDFM
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and WSEDFM outperformed the DF models. WSVEDFM recorded a prediction accuracy
value of 95.81%, an AUC value of 0.951, an f-measure value of 0.958, and an MCC value
of 0.879. Likewise, WSEDFM showed a similar prediction accuracy value of 95.53%, an
AUC value of 0.948, an f-measure value of 0.955, and an MCC value of 0.865. Significantly,
the AUC value of 0.951 and 0.948 achieved by WSVEDFM and WSEDFM, respectively,
demonstrate the efficacy of the two models (WSVEDFM and WSEDFM) in distinguishing
churners from non-churners with a high degree of certainty. Similarly, relatively high MCC
values achieved by WSVEDFM (0.879) and WSEDFM (0.865) indicate a positive correlation
between the observed and the predicted CCP outcome. Also, from the experimental results
on Dataset 2 (Table 8), WSVEDFM and WSEDFM were superior to the DF models on
studied performance metrics. However, the performances of the models on Dataset 2 were
not as effective as the performance on Dataset 1. This concern is due to the inherent data
quality issues with Dataset 2. In addition, the CCP performance of LMT, FT, RF, WSVEDFM,
and WSEDFM on balanced Dataset 1 and Dataset 2 were analyzed. This contraction is
intended to determine the impact of deploying SMOTE data sampling method on the CCP
performance of WSVEDFM and WSEDFM methods. That is, to investigate if the CCP
performance of WSVEDFM and WSEDFM will be improved on balanced CCP datasets.
Tables 9 and 10 show the CCP performances of LMT, FT, RF, WSVEDFM, and WSEDFM on
balanced Dataset 1 and Dataset 2.

On the balanced Dataset 1, WSVEDFM and WSEDFM outperformed LMT, FT, and
RF, as shown in Table 9. For instance, WSVEDFM and WSEDFM demonstrated significant
increment in prediction accuracy values above LMT (+2.89%), FT (+1.56%) and RF (+4.53%)
respectively. Furthermore, WSVEDFM (0.990) and WSEDFM (0.989) demonstrated +1.54%
and +1.44% increment in AUC values over FT (0.975) which had the best AUC values from
the DF models respectively. Also, there is a significant difference in the MCC values of
the WSVEDFM and WSEDFM over the individual DF models. WSVEDFM (0.981) and
WSEDFM (0.971) showed +11.1% and +9.97% increment in MCC values over FT (0.883)
which also happened to have the best MCCC values from the DF models. A similar
trend was also detected in experimental results from the balanced Dataset 2. As shown
in Table 10, WSVEDFM (96.57%) and WSEDFM (96.43%) recorded +2.45% and +2.30%
increment in prediction accuracy values over FT (94.26%). Also, the AUC and MCC values
of WSVEDFM (96.57%) and WSEDFM (96.43%) are superior to any DF models. Although
amongst the DF models (LMT, FT, and RF), FT had the best CCP performance on both
balanced Dataset 1 and Dataset 2; however, the DF models CCP performances are still
outperformed by their enhanced ensemble variants (WSVEDFM and WSEDFM). Based on
the results of the experimental tests reported here, it can be concluded that the upgraded
variants (WSVEDFM and WSEDFM), particularly WSVEDFM, are more effective than any
of the DF models (LMT, FT, and RF) in CCP tasks.

In addition, for more generalizable results and assessment, the CCP performances
of WSVEDFM and WSEDFM methods are compared with prominent ensemble methods
such as Bagging and Boosting. Bagging and Boosting ensemble methods have been reported
to have a positive impact on its base model by amplifying prediction performance [65,66].
Section 4.3 presents a detailed analysis of the comparison of the proposed ensemble meth-
ods (WSVEDFM and WSEDFM) with Bagged and Boosted DF models on both original and
balanced CCP datasets.

4.3. CCP Performance Comparison of Enhanced DFEnsemble Variants, Bagging and Boosting
Ensemble Methods

In this section, further assessment and performance comparisons were conducted to
validate the effectiveness of WSVEDFM and WSEDFM for CCP processes. Specifically, the
proposed DF ensemble variants were compared with Bagged and Boosted DF models on
both original and balanced (SMOTE) Dataset 1 and Dataset 2. Tables 11–14 outline the
CCP performance and comparison of WSVEDFM and WSEDFM with the Bagged DF and
Boosted DF models on original and balanced CCP datasets.
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Table 11. The CCP performance comparison of WSVEDFM and WSEDFM with Bagged and Boosted
DF models on Dataset 1.

Accuracy (%) AUC F-Measure MCC

BaggedLMT 95.21 0.914 0.951 0.801

BaggedFT 95.44 0.918 0.953 0.807

BaggedRF 90.16 0.898 0.881 0.533

BoostedLMT 94.18 0.911 0.932 0.756

BoostedFT 93.49 0.903 0.940 0.721

BoostedRF 91.36 0.899 0.900 0.602

* WSVEDFM 95.81 0.951 0.958 0.879

* WSEDFM 95.53 0.948 0.955 0.865
* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.

Table 12. The CCP performance comparison of WSVEDFM and WSEDFM with Bagged and Boosted
DF models on Dataset 2.

Accuracy (%) AUC F-Measure MCC

BaggedLMT 87.20 0.515 0.843 0.012

BaggedFT 89.86 0.497 ? ?

BaggedRF 89.72 0.521 0.850 0.001

BoostedLMT 85.14 0.523 0.834 0.007

BoostedFT 85.44 0.534 0.836 0.016

BoostedRF 88.72 0.516 0.849 0.016

* WSVEDFM 89.86 0.555 0.855 0.030

* WSEDFM 89.86 0.545 0.850 0.025
* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.

Table 13. The CCP performance of DF models and their Enhanced ensemble variants on balanced
Dataset 1.

Accuracy (%) AUC F-Measure MCC

BaggedLMT 95.50 0.986 0.955 0.910

BaggedFT 95.96 0.985 0.960 0.919

BaggedRF 92.30 0.971 0.923 0.846

BoostedLMT 95.43 0.984 0.954 0.909

BoostedFT 95.36 0.984 0.954 0.907

BoostedRF 92.30 0.973 0.923 0.847

* WSVEDFM 96.31 0.990 0.987 0.940

* WSEDFM 96.31 0.989 0.983 0.946
* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.

As shown in Tables 10 and 11, the Bagged and Boosted DF models had comparable
performances as the WSVEDFM and WSEDFM on Dataset 1 and Dataset 2, respectively. In
some cases, the differences in the prediction accuracy and f-measure values of the proposed
DF ensemble variants and the Bagged and Boosted DF modes are insignificant. However,
the WSVEDFM and WSEDFM are still superior in performance. For instance, WSVEDFM
(0.951) and WSEDFM (0.948) had a +3.59% and +3.27% increment in AUC values over
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Bagged FT (0.918), which had the highest AUC value amongst the Bagged and Boosted
DF models. A similar trend was observed with the MCC values with WSVEDFM (0.879)
and WSEDFM (0.865), recording a +9.74% and +7.99% over Bagged FT (0.801). Contrary to
the findings from Table 11, the CCP performance of the studied models on Dataset 2, as
shown in Table 12, is relatively good. This could be related to the observed data quality
problem (high IR) in Dataset 2. However, on a general note, the WSVEDFM and WSEDFM
outperformed the Bagged and Boosted DF models, although the CCP performances of
the Bagged DF models are better than the Boosted DF models. This finding can be due to
the independent and parallel mode of model development in the Bagging method, which
reduces variances amongst its base models and avoids model overfitting. In addition, the
CCP performances of WSVEDFM and WSEDFM with Bagged and Boosted DF models
on balanced Dataset 1 and Dataset 2 were compared. Tables 13 and 14 display the CCP
performances of WSVEDFM, WSEDFM, Bagged DF models, and Boosted DF models on
balanced Dataset 1 and Dataset 2, respectively.

Table 14. The CCP performance of DF models and their Enhanced ensemble variants on balanced
Dataset 2.

Accuracy (%) AUC F-Measure MCC

BaggedLMT 88.56 0.934 0.886 0.771

BaggedFT 88.56 0.928 0.886 0.771

BaggedRF 90.06 0.945 0.901 0.801

BoostedLMT 87.99 0.932 0.880 0.760

BoostedFT 88.26 0.934 0.883 0.766

BoostedRF 89.97 0.930 0.900 0.799

* WSVEDFM 96.57 0.988 0.965 0.981

* WSEDFM 96.43 0.986 0.964 0.971
* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.

As shown in Tables 13 and 14, it can be observed that there are significant improve-
ments in the performances of the WSVEDFM and WSEDFM over the Bagged and Boosted
DF models on the balanced Dataset 1 and Dataset 2. Specifically, from Table 13, WSVEDFM
and WSEDFM had a +0.36% increment in prediction accuracy values more than the best
performer (Bagged FT) in this case. Also, a +2.29% and +2.94% increment in MCC values
of WSVEDFM and WSEDFM over Bagged FT was observed. In the balanced Dataset 2
(See Table 14), WSVEDFM and WSEDFM had a +7.23% and +7.07% increase in prediction
accuracy value over BaggedRF. Based on MCC values, WSVEDFM and WSEDFM achieved
+22.47% and +21.22% increment over Bagged RF. From the Bagged and Boosted DF models,
BaggedRF had the best performance on balanced Dataset 2.

In summary, based on the observed experimental findings on the analyses of the
experimental results of the WSVEDFM, WSEDFM, Bagged DF models, and Boosted DF
models on the balanced Dataset 1 and Dataset 2, it is fair to assert that the enhanced DF
ensemble variants are more suitable for CCP than the prominent Bagged and Boosted
DF models. Nonetheless, the CCP performances of the DF models and their enhanced
ensemble variants are compared with existing CCP models in Section 4.4.

4.4. CCP Performance Comparison of DF Models and Their Enhanced Ensemble Variants with
Existing CCP Methods

For comprehensiveness, the CCP performances of the LMT, FT, RF, WSVEDFM, and
WSEDFM are compared to those of current CCP solutions. Tables 15 and 16 show the
CCP performance of proposed DF models and current CCP solutions on Dataset 1 and
Dataset 2, respectively.
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Table 15. The CCP performance of proposed DF methods and existing models on Dataset 1.

Accuracy (%) AUC F-Measure MCC

* LMT 93.60 0.971 0.966 0.872

* FT 94.83 0.975 0.968 0.897

* RF 92.14 0.943 0.945 0.843

* WSVEDFM 96.31 0.990 0.987 0.940

* WSEDFM 96.31 0.989 0.983 0.946

Tavassoli and Koosha [59] (BNNGA) 86.81 - 0.688 -

Ahmad, Jafar and Aljoumaa [60] (SNA + XGBOOST) - 0.933 - -

Jain, et al. [67] (CNN+VAE) 90.00 - 0.930 -

Saghir, Bibi, Bashir and Khan [36] (BaggedMLP) 94.15 - 0.874 -

Jain, et al. [68] (LogitBoost) 85.24 0.717 0.810 0.160

Jeyakarthic and Venkatesh [69] (P-AGBPNN) 91.71 - 0.951

Praseeda and Shivakumar [70] (PFLICM) 95.41 - - -

Dalli [71] (Hyper-Parameterized DL with RMSProp) 86.50 - - -

* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.

Table 16. The CCP performance of proposed DF methods and existing models on Dataset 2.

Accuracy (%) AUC F-Measure MCC

* LMT 91.59 0.896 0.876 0.752

* FT 94.26 0.973 0.942 0.883

* RF 90.32 0.880 0.503 0.806

* WSVEDFM 96.57 0.988 0.965 0.981

* WSEDFM 96.43 0.986 0.964 0.971

Tavassoli and Koosha [59](BBNGA) 77.50 - 0.773 -

Saghir, Bibi, Bashir and Khan [36] (Bagging) 80.80 - 0.784 -

Shaaban, Helmy, Khedr and Nasr [62] (SVM) 83.70 - - -

Bilal, Almazroi, Bashir, Khan and Almazroi [37]
(KMed+GBT+DL+DL+Voting) 94.06 - 0.745 -

Bilal, Almazroi, Bashir, Khan and Almazroi [37]
(KMed+GBT+DL+DL+Stacking) 94.65 - 0.796 -

Bilal, Almazroi, Bashir, Khan and Almazroi [37]
(KMed+GBT+DL+DL+Adaboost) 94.70 - 0.806 -

Bilal, Almazroi, Bashir, Khan and Almazroi [37]
(KMed+GBT+DL+DL+Bagging) 94.12 - 0.746 -

* The superior CCP performances are bold and type-faced, and the proposed DF models are designated by
an asterisk.

As presented in Table 15, the CCP performance of the DF models and its enhanced
ensemble variants are compared with that of Tavassoli and Koosha [59], Ahmad, Jafar
and Aljoumaa [60], Jain, Khunteta and Shrivastav [67], Saghir, Bibi, Bashir and Khan [36],
Jain, Khunteta and Srivastava [68], Jeyakarthic and Venkatesh [69], Praseeda and Shivaku-
mar [70], and Dalli [71] on Dataset 1. These existing CCP models range from ensemble
methods to sophisticated DL methods. For instance, Tavassoli and Koosha [59] developed
a hybrid ensemble (BNNGA) method for CCP, which had a prediction accuracy value of
86.81% and an f-measure value of 0.688. Similarly, Saghir, Bibi, Bashir and Khan [36] de-
ployed a Bagged MLP, while Jain, Khunteta and Srivastava [68] used a LogitBoost approach
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for CCP. However, the CCP performances of the DF models and their enhanced ensemble
variants are superior to these ensemble-based CCP models in most cases. Using another
approach, Ahmad, Jafar and Aljoumaa [60] combined Social Network Analysis (SNA) and
XGBoost for CCP. The SNA was deployed to generate new features for the CCP. Also,
Jain, Khunteta and Shrivastav [67] enhanced CNN with a Variable Auto-Encoder (VAE).
Although their AUC value of SNA+XGBoost is quite significant and the prediction accuracy
and f-measure of CNN+VAE is above 90%, there CCP performance are still less than that of
the proposed methods. Praseeda and Shivakumar [70] used a probabilistic-based fuzzy
local information c-means (PFLICM) for CCP. PFLICM is a clustering based approach and
it had a prediction accuracy value of 95.41%. In addition, Dalli [71] hyper-parameterized
DL+RMSProp and Jeyakarthic and Venkatesh [69] designed an adaptive Gain with Back
Propagation Neural Networks (P-AGBPNN) for CCP process. These methods are based on
enhanced DL techniques with comparable CCP performance. In summary, the proposed
DF models and its enhanced ensemble variants are superior to examined existing CCP
models with different computational processes on Dataset 1.

Furthermore, Table 16 presents the CCP performance comparison of the DF models
and their enhanced ensemble variants with CCP solutions of Tavassoli and Koosha [59],
Saghir, Bibi, Bashir and Khan [36], Shaaban, Helmy, Khedr and Nasr [62], and Bilal, Al-
mazroi, Bashir, Khan and Almazroi [37]. These existing CCP solutions were developed
with Dataset 2 as utilized in this study. Specifically, Saghir, Bibi, Bashir and Khan [36]
deployed a Bagging ensemble approach for CCP with a prediction accuracy value of 80.80%
and an f-measure value of 0.784. Also, Shaaban, Helmy, Khedr and Nasr [62] used a
parameterized SVM for CCP. The relatively low CCP performances of these methods, when
compared with the proposed DF methods, could result from the failure to address the class
imbalance problem in their respective studies. In addition, Bilal, Almazroi, Bashir, Khan
and Almazroi [37] combined clustering and classification methods for CCP. Specifically,
Kmediod was combined with a gradient boosting technique (GBT), and the resulting model
is evaluated using diverse ensemble techniques such as Bagging, Stacking, Voting, and
Adaboost. While the CCP performance of their method was comparable to the proposed
DF models, the high computational complexity of their methods is a concern. Regardless,
the DF models and their enhanced ensemble variants are superior to the existing CCP
models evaluated on Dataset 2.

4.5. Answers to Research Questions

Based on the investigations, the following findings were obtained to answer the RQs
posed in the introduction section.

RQ1: How efficient are the investigated DF models (LMT, FT, and RF) in CCP as compared
with prominent ML classifiers

The experimental findings showed that the investigated DF models (LMT, FT, and RF)
outperformed the prominent ML classifiers in terms of CCP performance. This higher CCP
performance was demonstrated on both Dataset 1 and Dataset 2.

RQ2: How efficient are the DF models’ enhanced ensemble variations in CCP?

The WSVEDFM and WSEDFM outperformed the individual DF models and the
Bagged and Boosted individual DF models on both the original and balanced (SMOTE)
CCP datasets. Furthermore, the SMOTE methodology we used addressed the intrinsic
class imbalance issue seen in the CCP datasets and improved the CCP performances of the
suggested DF models, notably the WSVEDFM and WSEDFM techniques.

RQ3: How do the suggested DF models and their ensemble variations compare to existing
state-of-the-art CCP solutions?

Furthermore, observable findings indicated that the suggested DF models (LMT,
FT, and RF) and enhanced ensemble variants (WSVEDFM and WSEDFM) outperformed
current CCP solutions on the studied CCP datasets in most cases.
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5. Threats to Validity

This section describes the validity threats faced during the experiment. According to
Zhang, Moro and Ramos [11], CCP is becoming increasingly relevant, and evaluating and
limiting threats to the validity of experimental results is an important component of any
empirical study.

External validity: The potential to generalize the experimental research is important
to its validity. The kind and number of datasets utilized in the experimental phase may
affect the generalizability of research findings in several ways. As a result, two major and
frequently used CCP datasets with a diverse set of features (Kaggle (20) and UCI (18))
have been identified. These datasets are freely accessible to the public and are widely used
for training and evaluating CCP methods. Furthermore, this study provided a complete
analysis of the experimentation method, which might assist in the reproducibility and
validity of its methodological approaches to diverse CCP datasets.

Internal validity: This concept highlights the significance and regularity of datasets,
ML techniques, and empirical analysis. As such, notable ML approaches developed and
used in previous research are used in this study. The ML techniques were selected for their
merit (effectiveness) and diversity. In addition, to prevent unexpected errors in empirical
findings, the investigated CCP models were systematically implemented (trained) on
the chosen CCP datasets using the CV approach, and each experiment was repeated
10 times for thoroughness. However, future studies may examine other model assessment
methodologies and tactics.

Construct validity: This issue is related to the choice of evaluation criteria used to
evaluate the efficiency of CCP models that have been investigated. Accuracy, AUC, f-
measure, and MCC were all used in this research work. These metrics offered a detailed
and complete empirical analysis of the CCP models used in the experiment. Furthermore,
the DF models we used for CCP were developed specifically to determine the churning
process and status.

6. Conclusions and Future Works

In this research work, DF models and their enhanced ensemble variants were de-
veloped for customer churn prediction. Specifically, LMT, FT, RF, Weighted Soft Voting
Ensemble Decision Forest Method (WSVEDFM), and Weighted Stacking Ensemble Decision
Forest Method (WSEDFM) were developed and tested on original (imbalanced) and bal-
anced (SMOTE) telecommunication customer churn datasets. Experiments were conducted
to examine the efficacy and applicability of the suggested DF models. Empirical results
showed that the DF models outperformed base-line ML classifiers such as NB, kNN, and
DS on the imbalanced and balanced Kaggle and UCI telecommunication customer churn
datasets. This discovery validates the applicability of DF models for CCP. Furthermore, the
enhanced ensemble versions of the DF models (WSEDFM and WSVEDFM) beat Bagged
and Boosted models on imbalanced and balanced datasets, indicating their usefulness in
CCP. Furthermore, the suggested DF models (LMT, FT, RF, WSVEDFM, and WSEDFM)
outperformed the best models in the literature on Kaggle and UCI telecommunication
customer churn datasets. As a result, this research recommends deploying suggested DF
models for CCP.

As a continuation of this research work, we intend to investigate the spotting and
removal of outliers and extreme values, which could contribute to improved outcomes
(CCP models). Also, the characteristics of projected customer churns were not explored in
this research work, though they may be relevant to corporations deciding whether to retain
certain churn customers. As a result, good churn clients may have a higher lifetime value.
Nonetheless, we hope to address these critical concerns in future research work.
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