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Abstract: This paper proposes a new method to determine the optimal size of a photovoltaic (PV) and
battery energy storage system (BESS) in a grid-connected microgrid (MG). Energy cost minimization
is selected as an objective function. Optimum BESS and PV size are determined via a novel energy
management method and particle swarm optimization (PSO) algorithm to obtain minimum total cost.
The MG was designed to use its own energy as much as possible, which is produced from renewable
energy resources. Since it is a grid-connected system, it can demand energy from the grid within
the determined limit with penalty. It differs from the studies in the literature in terms of optimizing
both parameters such as PV and BESS size, being a grid-connected self-contained MG structure and
controlling the grid energy by an energy management algorithm and optimizing the parameter via
PSO with an energy management system (EMS). Results are compared for different PV and BESS.
Moreover, effectiveness of the novel energy management method with PSO is compared with the
genetic algorithm, which is the one of the well-known optimization algorithms. The results show
that the proposed algorithm can achieve optimum PV and BESS size with minimum cost by using
the new energy management method with the PSO algorithm.

Keywords: energy management; energy storage; microgrid; particle swarm optimization; photo-
voltaic systems

1. Introduction

Today, fossil fuels such as coal, oil and natural gas are the main sources of electrical
energy generation. However, these fuels cause greenhouse gas emissions and environ-
mental pollution. In addition, while the world energy demand is increasing year by year,
fossil fuels’ reserves are limited and are about to deplete. Nevertheless, new restrictions are
performed by environmental policies to reduce greenhouse gases emissions [1]. The Paris
agreement, which was signed by 192 countries plus the European Union, is a promising
example to deal with climate change. Countries that signed the agreement are planning to
reduce their greenhouse gases emissions [2]. Renewable energy resources (RESs) such as
photovoltaic and wind energy systems are environmentally friendly and good alternatives
to fossil fuel since they do not cause any harmful gas emissions.

The number of grid-connected RES installations has been increasing year by year.
Along with many advantages, these systems have some disadvantages such as inter-
mittency that can cause scheduling, frequency, and voltage regulation problems on the
grid [3,4]. Conventional generation systems with fossil fuels have slower responses to
regulate frequency deviation in the short term [5]. With the increase in the number and
total capacity of the RES installation, these problems and risk on power system stability
have become more severe. Installing larger RES systems may overcome this problem [4].
However, it results in high investment cost. Battery energy storage systems (BESS) show up
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as an effective solution for this problem [3]. A BESS can be advantageous to maintain the
balance between supply and demand with its fast dynamic response characteristics com-
pared to conventional generators or other types of energy storage systems [6]. Particularly
modern distribution networks are attracting attention for the solution of nanogrid (NG)
and microgrid (MG) challenges. Hereby, BESSs are considered as a significant element of
modern MGs and smart grids [7].

The MG is a concept that enables effective integration of distributed generation (DG) re-
sources [8]. It is a controllable small network that combines RESs, conventional sources and
loads in both grid-connected (on-grid) and island mode (off-grid) [9]. Figure 1 demonstrates
a typical MG with these two operation modes [10]. Since DGs’ power output characteristics
are different from conventional generation systems, the MG should handle power quality
problems by itself such as unpredicted fluctuation, robustness of reactive power support,
resilience and a reliable system. The BESS is a good choice for maintaining resiliency and
reliability with fast and adaptable characteristics. BESS can store the remaining power for
later use, thus compensating for unexpected power outages and fluctuations in the RES.
Although BESSs and PVs have great advantages in the MG system, they also have some
disadvantages. Size and cost are gaining importance as high capacity causes increases in
cost and size, while low capacity may not be enough to prevent unexpected power prob-
lems and may not meet load demand. Consequently, BESS size must be carefully calculated
to determine the optimum size for a given system [8]. Moreover, research has shown that
BESSs that are optimally sized for the current loads provide the best performance [11].
Thus, system designers need to find the optimal BESS size according to the specific system
to obtain an efficient, reliable, and economical MG system [9].
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In the literature, generally one parameter is kept constant and the other parameter
is optimized in PV and BESS optimization studies. In most PV and BESS systems, the
PV size is kept constant and the BESS size is optimized. A similar approach is used for
structures with an energy management system (EMS), and most of them are proposed
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for island mode operation. BESS sizing is performed according to the system parameters
with various methods. Some of the methods can be performed identically to any sized
system [10]. Mathematical-based optimization methods are also used for sizing problems.
Dynamic programming (DP) and linear programming (LP) are examples of mathematical
methods [10]. DP is used in [12], but it is difficult to apply to large-scale systems [13]. LP
optimization is chosen as a simpler method in [13], and it is implemented for a small energy
storage system (ESS) in [14]. However, it has some problems when it is applied to large
scale systems. As a result, LP and DP are not good tools for complex systems [10]. As a
remedy, different optimization techniques that are named as probabilistic methods (PMs)
have been developed. The Markov chain decision method (MCDM) is one of them and is
used for battery sizing optimization due to its simple structure. Energy storage devices are
scheduled optimally with an MCDM in [15]. However, probabilistic methods are effective
when the number of optimized criteria is less (generally one) [10]. These methods are
not suitable for optimizing the two parameters together in interaction with the energy
management system in the structure that is the subject of this study.

Since RES output is uncertain, metaheuristic approaches are suggested in many ap-
plications. Metaheuristic methods give more accurate results on large and nonlinear
optimization problems [16,17]. The Genetic Algorithm (GA) is used for cost reduction and
optimization of the energy storage system in a hybrid energy system in [18]. The bottleneck
of GA is that its results are not conclusive [13]. The Bat Algorithm (BA) is used to find opti-
mum BESS size for a grid-connected low-voltage MG in [19]. The Grey Wolf Optimization
(GWO) algorithm is chosen for optimum BESS sizing and decreasing fuel usage, and GWO
performance is compared with BA and PSO in [20]. The Artificial Bee Colony algorithm
(ABC) is used to calculation of optimal battery size and operation for revenue increasing in
a hybrid power system [21]. The Grasshopper Optimization Algorithm (GOA) is another
method used for optimal battery, PV, wind, and diesel sizing in a microgrid [22]. Particle
Swarm Optimization (PSO) has simplicity and ease of use among other metaheuristic
optimization algorithms, yet it can present a high convergence rate [8]. Its robustness of
convergence comes from being less dependent on setting initial points among other meth-
ods. The PSO algorithm also needs less parameters than other metaheuristic algorithms. In
addition to these, it needs lower data storage [8]. The PSO-based frequency control method
for an off-grid microgrid is implemented to evaluate optimum BESS size and reduction in
cost [23]. The PSO algorithm is used to find optimum battery size and minimum cost for a
grid-connected residential system that currently has an available PV system [24]. Similarly,
PSO is selected for battery capacity optimization and effective battery installation for an
island mode microgrid in [25]. PSO is used for optimal sizing of wind, PV and tidal as a
primary and battery as an auxiliary source considering the reliability index [25]. PSO is also
proposed to determine optimal BESS with load shedding [5]. The objective of this paper is
to enhance frequency control by load shedding, and thus, operation cost reduces. The cost
optimization of a PV and BESS system in the grid-connected MG using PSO is proposed
in [26]. However, this study does not use an energy management system.

In this paper, optimum energy storage and PV size considering cost minimization
is determined based on the novel energy management method, and the PSO algorithm
is proposed for a grid-connected microgrid. In past studies, various algorithms were
used for different systems for optimization. According to the literature study, although
the PSO algorithm is a common and well-known algorithm, it has not been used as an
optimization algorithm for both PV and BESS sizing. In the majority of studies, one of
the parameters is kept constant (mostly PV size), and the remaining parameters (mostly
battery size) are optimized. In a limited number of studies, the PSO algorithm is used
to determine optimal size of the PV system and BESS but only for island mode systems.
Most of the remaining studies have not used cost minimization as an objective function
or energy management system. A limited number of studies used cost minimization
as an objective function or energy management system but with different optimization
algorithms [1,8,9,11–13,15,16,18–27]. This paper presents cost minimization as an objective
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function by finding both optimum PV and BESS sizes and proposes a new optimal energy
management method for a grid-connected MG. It is applied to a grid-connected microgrid
that consists of a PV system with battery storage. MG is allowed to import energy from the
grid with penalty. Thus, by allowing a limited amount of energy to be taken from the grid,
it provides a more optimum structure by minimizing the effects of possible instantaneous
high power demands. This paper focuses on determining the optimum PV and BESS sizes
when the MG supplies energy as much as possible to its loads. The purpose is to create
self-sufficient MG with limited grid support by considering cost minimization and defining
optimum BESS and PV sizes. Studies are carried out for two different scenarios. In addition,
the proposed energy management system with a PSO-based method is compared with
GA, which is a well-known optimization algorithms. The results show that the proposed
algorithm can achieve optimum PV and BESS size with minimum cost by using the new
energy management method with a PSO algorithm. The proposed energy management
method provides more flexibility to system designers for various system constraints. This
can be accomplished by its configurable parameters. Thus, the new energy management
method with PSO can be applied for various systems.

2. System Configuration and Modelling

The grid connected microgrid structure used in this paper is shown in Figure 2. It
consists of the BESS, PV, AC bus, grid and load. It is connected to the grid via the AC
bus. The battery and PV are connected to the DC bus via DC/DC converters that charge
the battery from the PV throughout the DC bus. The DC bus is connected to the AC
bus through the DC/AC inverter. The energy management system tracks load demand,
available PV power and battery energy level, and it controls charge/discharge status of the
battery and decides whether to demand energy from the grid.
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Solar PV module performance is affected by irradiation, pollution, aging, shading and
ambient temperature. Since the aim of this study is not maximum power point tracking
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design, the effects of these parameters will not be examined, and the net output power of
the system will be used directly from the previously obtained data. Two different data sets
were used to create different scenarios: case 1 and case 2. The data sets used in this study,
which show the relationship between the power produced by the PV system and the load
demand, are given in Figure 3a,b. The PV data in Figure 3a are obtained by taking the daily
average of the annual data of the International Energy Agency (IEA) future prospect. To
test the proposed system for another scenario, the PV and load data in Figure 3b are scaled
from data published by the Belgian electricity system operator.

Figure 3. Average load demand and single PV module output for: (a) case 1; (b) case 2.

The converter efficiency that affects the amount of energy from the PV to the load is
given as 95%. Thus, total PV output to load is:

Ppv(t) = Ppvgen(t)× ηconv (1)

where Ppvgen(t) is generated power from the PV modules during time interval t, ηconv is
the converter efficiency, and Ppv(t) is transferred power from the PV to load during time
interval t.

The power generation capabilities of PV modules deteriorate from year to year due
to aging. Thus, the economic life of a PV is considered as 25 years in this study, and PV
modules are considered, as they will not be replaced during system cost calculation. The
cost and other parameters are listed in Table 1.

Table 1. PV cost parameters.

Parameter Value Unit

Efficiency (nPV) 95 %
Capital, Operation and Maintenance Cost 97 USD/Unit

As is known, the minimum and maximum of battery state of charge (Bsoc) should be
defined to prevent shortening the battery life. Bsoc can be given as:

Bsoc(t) = [Ebat(t)/Ebat,rated(t)]× 100% (2)

where Ebat(t) is battery energy level and Ebat,rated(t) is rated energy capacity [28]. Overcharg-
ing and deep discharging of the battery should be prevented, as it will reduce its lifespan
and cycle life. Thus, the following limits are defined:

Ebat,min(t) ≤ Ebat(t) ≤ Ebat,max(t) (3)

where Ebat,min(t) is minimum energy limit, and it is defined as 0.48 kWh. Ebat,max(t) is a
single battery module’s maximum energy limit and it is defined as 2.4 kWh.
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Battery charging and discharging action defined as below, respectively [28]:

Ebat(t)[EPV(t)− ELoad(t)/ηinv]× ηBch (4)

Ebat(t)[ELoad(t)/ηinv − EPV(t)]× ηBdch (5)

where EPV(t) is the generated energy, and ELoad(t) is the load demand during time interval t.
ηBch, ηBdch and ηinv are battery charging, discharging and inverter efficiencies, respectively,
which are defined as 95%.

The capacity of battery modules will also decrease over time. In this work, battery
module life is taken as 8 years. Battery modules are replaced three times during system
cost calculation. Accordingly, BESS cost and other parameters are given in Table 2.

Table 2. BESS cost parameters.

Parameter Value Unit

Efficiency (nBESS) 95 %
Capital, Operation and Maintenance and Replacement Cost 493 USD/Unit

Changes in the efficiency of system elements can cause errors. In addition, since the
battery capacity and PV must be a certain level as an integer (selected unit has a certain
value), it will cause some errors. They can be minimized by reducing the PV unit power
and battery unit capacity values. However, using a small PV module and batteries with
small capacities may not be both practical and economical. More precisely, this is another
optimization problem.

3. Proposed Algorithm

The proposed algorithm will be given in sequence as the objective function, energy
management strategy for grid-connected and island modes and the proposed PSO algo-
rithm. First, the PSO algorithm generates random PV and BESS sizes. The proposed energy
management algorithm, which also will be explained later, uses these sizing values and
generates PV and BESS power output according to the inputs and constraints.

3.1. Objective Function

In this study, the energy cost is chosen as an objective function. The goal is to obtain
minimum total energy cost for the MG without compromising defined constraints; thus,
the optimum PV and BESS size can be found.

The energy cost (EC) is calculated as:

EC = (PVTotal,energy × PVcos t) + (BESSTotal,energy × BESScos t) (6)

Here, PVTotal,energy and BESSTotal,energy are total output energy of PV and BESS, respec-
tively. They are generated from the energy management algorithm in a defined time span.
PVcos t and BESScos t are the cost of PV and BESS, which include the capital, replacement,
operation and maintenance costs.

3.2. Energy Management Strategy

The management of the power flow is an important process for optimizing the system
components and the efficient operation of the system. The proposed energy management
strategy can be divided into two parts as island mode and grid-connected mode operation.
Figure 4 shows the flowchart of the proposed energy management strategy.
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In the island mode, the MG operates without grid support. The load demand can be sat-
isfied by PV generation and/or BESS available capacity. There is always a balance between
the available PV power, BESS capacity and load. Net energy (Enet(t) = EPV(t) − ELoad(t)) is
followed, and it is decided that the battery is charged if Enet(t) > 0 and BSOC(t) < Ebat,max(t).
Batteries are charged with EBch(t) until their Ebat,max(t) level. If BESS reaches its charge
limit and there is still available power in the PV system, this remaining power cannot be
used or sold to the grid due to the island mode operation. If Enet(t) = 0, then there is no
excess energy, and thus, load demand is equal to PV generation. If there is not enough PV
generation to satisfy load demand (Enet(t) < 0), EMS controls Bsoc(t) level at that time. If
BESS has available energy, batteries can be discharged until their Ebat,min(t) level. Finally, if
both Enet(t) < 0 and BSOC(t) < ELoad(t), but there is still some available PV power generation
(that is, 0 < EPV(t) < ELoad(t)), then batteries are charged by PV power.
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For the grid-connected mode operation, the MG operates with grid support. In this
study, the aim is to find optimum PV and BESS size for mostly self-sufficient MG in a yearly
period. The grid energy is only used for supplying load demand if there is not enough
energy in the PV and batteries. In this study, the grid is not used for charging batteries. It is
assumed that it is costly to obtain energy from the grid. Thus, there is a grid cost limitation.
The MG can be partially or fully supplied from the grid only for a limited time when there
is either no or not enough energy in the BESS and PV. The EMS tracks the current energy
level of the system components, the status of the PV system and BESS, and if there is not
enough energy to be able to supply the load demand (EPV(t) + BSOC(t) < ELoad(t)), then the
MG can obtain energy from the grid with penalty. There is a flag that holds the record of
obtained energy from the grid. If energy from the grid exceeds a previously defined limit
value, the flag increases. Hence, the PSO algorithm, which is explained below, decides to
increase the PV or BESS module capacity to minimize the dependency of grid connectivity
by considering the total installation cost.

3.3. PSO Algorithm

The PSO algorithm presents a model of flight patterns of birds and their social be-
havior for the optimization model, which was proposed by J. Kennedy and R. Eberhart in
1995 [29,30]. Its ties artificial life to the behavior of animal groups, such as bird flocking,
fish schooling and swarming theory [30]. The simple explanation of the PSO model can be
explained as follows. Each single bird is pointed in the Cartesian Coordinate System (CCS).
Their initial location and velocity are assigned randomly. Then, the algorithm is executed
with “the nearest proximity velocity match rule”; thus, every bird has the same speed
as their closest neighbor. Since iteration maintains in the same direction, all the points
will have the same velocity. Because of the simplicity of this structure and not exactly the
same as in real situations, a random variable is added to the speed point. In each iteration,
aside from meeting “the nearest proximity velocity match”, each speed will be added with
a random variable that provides convergence to the real case. In this model, every bird
can find their maximum points. These can only be local maximum points. After every
bird meets, in other words, birds finish their movement on the coordinate system, all the
maximum points will be found. The highest value of these maximum points is the global
maximum point [31,32].

In this study, PSO is used to find the minimum points, meaning minimum cost.
Particles represent PV and BESS module counts (or sizes), and they are initialized randomly
in the CCS. nPop is the swarm size, and it is defined as 50, which means 50 particles. The
maximum iteration, MaxIt, count is set to 100. The inertia coefficient is set to 1. There are
two acceleration coefficients, and both of them are selected as 2.5. Each particle’s velocity is
zero at the beginning. The objective function, which is explained in the previous section, is
called in every iteration to calculate the particle’s total cost. Each particle’s cost is compared
with each other’s and the best cost, which is the minimum, is saved as the global best cost.
In every iteration, PSO generates random PV and BESS sizes, and their costs are compared
with the global best. The lowest value is saved as the new global best. At the end of all
iterations’ location, which means PV and BESS sizes, of the global best cost is the optimal
point [16,33]. Each PV and BESS has a position, and these positions have a velocity. The
velocity of the kth particle is:

vj
k,new = wvj

k,old + c1r1(xj
k,pbest − xj

k) + c2r2 (7)

where vj
k,new refers to the recent velocity of the kth particle at jth iteration, the w refers to

the inertia weight, vj
k,old refers to previous velocity of the kth particle at the jth iteration, c1

and c2 are the acceleration constants, and r1 and r2 pair are randomly determined numbers
between 0 and 1. The position of the kth particle is renewed as below [16]:

xj
k,new = xj−1

k,old + vj
k,new (8)
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where xj−1
k,old is the previous position of the kth particle from the past iteration [16]. The posi-

tion x is the size of PV and BESS, and in this study, their minimum value is VarMin = 1 and
maximum value is VarMax = 50. Figure 5 shows the flowchart of the applied PSO algorithm.
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4. Results and Discussion

In this paper, optimal sizing of the PV and BESS for MG, which can be operated in
island mode and grid-tied mode, is carried out with two different data sets. The data are
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yearly average of a single PV output and the load. Yearly PV generation data have been
taken from the IEA database. Then, they are degraded to 24 h by calculating average values
for every hour. Yearly load data have also been taken from the IEA database, but some
arbitrary changes have been applied on that data to create the desired test system. Then,
they have been degraded to 24 h by calculating average values for every hour for case 1. In
the second scenario, the data published by the Belgian electricity system operator is used
by scaling. For each case, island and grid-connected mode operations are performed at
the same time. The optimization algorithm computes the optimum PV and BESS size with
regard to optimization parameters and the total cost of the system for case 1 and case 2.
The total system cost includes cost of energy, battery and PV module cost, installation cost,
battery degradation, and battery and PV lifetime/replacement cost.

First, the PSO algorithm generates a random PV and battery module size between
1 and 50. The first module (or particle) count is equal to npop; thus, it is 50. That is,
50 parameters are spread out to different locations randomly at the beginning. Within each
iteration, this spreading continues with different velocities depending on c1, c2, w, and
wdamp (damping ratio) values. These are the values that affect the speed and accuracy of the
parameter reaching the optimum point. They can be close to the optimum point at the end,
but they may take a long time to reach the optimum point due to their slowness. Contrarily,
they can find the optimum point fast, but accuracy may not be guaranteed.

The PSO parameters are chosen to obtain faster and more accurate results. The
population size is set to 50, the maximum number of iterations is set to 200, c1 and c2
are set to 2.5, and wdamp is set to 0.99. The number of battery and PV modules is limited
from 1 to 50. Then, the novel energy management algorithm calculates total PV and BESS
power outputs and how much energy is needed from the grid to supply loads. Here,
providing uninterrupted power to the loads is the main concern. For this purpose, the
energy management algorithm can decide to demand energy from the grid. However, it
should be a limited time and level that is defined by the grid total cost parameter at the
system design stage. If the MG loads cannot be supplied by any source, there will be a
large increase in the total cost. This effect is controlled by another parameter such as the
penalty parameter, and thus, the cost increases. The algorithm selects an optimum level
of the PV system and BESS capacity to supply the load with the energy required in a day.
After the energy management algorithm is calculated for daily total average PV and BESS
energy output, total energy cost can be found. The calculated energy cost is compared by
the PSO algorithm for every particle, which equals npop = 50, along with iterations. The
best particle cost over 50 particles (npop count) is found, and this is called the “particle best
cost”. This is saved for the next iterations. The particle best cost can be updated with a new
value at the next iteration by a particle that holds lower cost. Thus, after all iterations are
completed, the best updated “particle best cost” value will be the “global best”. This shows
the calculated optimum PV and BESS size with minimum cost with defined constraints.
The best particle costs between each of the 50 particles inside an iteration and every best
cost throughout the iterations can be seen in Figure 6a,b for case 1 and case 2.

At the first iterations, the PSO algorithm generates lower PV and BESS module counts,
which means that the PV and the BESS particles are far from the optimum point. (Cost can
be seen on the second y-axis in Figure 6a,b. The y1-axis and y2-axis scales are different).
Since loads are supplied mostly from the grid, the cost is increasing. After defined the
maximum grid cost is exceeded, the total system cost increases faster due to the penalty
factor, and the system can obtain supply mostly from renewable energy resources (because
increasing the rate of renewable energy use decreases the system total cost). After 200 itera-
tions, calculations were performed by the energy management algorithm. It was found that
the optimum PV and BESS module counts were 47 and 28, respectively, and the total cost
was USD 40.972 for case 1. Similarly, it was found that the optimum PV and BESS module
counts were 24 and 28, respectively, and the total cost was USD 24.186 for case 2.

To prove the results obtained from the proposed method, the total cost variation of
the system according to different PV and battery sizes and penalty factor are given in
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Figure 7a,b, respectively. At the first point in Figure 7a, there are 45 PV modules and
five battery modules. The total system cost at this first point is USD 49.993. In the first
area (depicted in Figure 7a), while the number of PV modules is decreasing, the number
of battery modules is increasing. It should be considered that the energy cost penalty
highly affects the total system cost. The total system cost is increasing slowly until the
sixth calculation point. Then, when the number of PV modules is too low, the system cost
increases rapidly. At the eighth calculation point, there are five PV modules and 40 battery
modules, and this is the highest cost in the figure, which is USD 127.040. At this point, there
are not enough PV modules to supply the loads, and there are not enough PV modules to
charge this amount of battery modules. Thus, the loads are supplied from the grid for a
longer period. At this longer period, as an option, the cost can be increased excessively
or the maximum limit can be set in order to prevent taking more energy from the grid.
In this study, the maximum level of energy cost that can be taken from the grid has been
determined. After reaching the maximum allowable grid supply limit cost, the energy
management algorithm cuts off the electricity. Eventually, the total cost will be high in this
situation. In the second area, while the number of PV modules has increased, the number of
battery modules is low. In this case, the total cost is decreasing because there will be more
PV modules to generate energy to supply the loads in the daytime. PV modules can also
charge batteries when the number of PV and battery modules are closer to the optimum
point. Thus, BESS can supply the loads at night when there is no PV energy. In the third
area, both the number of PV and battery modules are increased. The total cost decreases,
but at the 18th point, it increases again due to the increased number of battery modules. At
the fourth calculation area, both the numbers of PV and battery modules are decreased,
and the total cost also starts to decrease. Finally, the number of PV and battery modules
reaches the optimum point, such that the total cost is at the lowest value at the 20th point.
There are 47 PV modules and 28 battery modules. Total system cost is USD 40.972 at the
20th point. The same study was carried out for case 2. It can be seen from Figure 7b that
the cost of the system for 24 PV modules and 28 batteries is USD 24.186. This means that
the loads of the MG can be fully supplied by PV and BESS in the daytime, and they can be
supplied by BESS most of the night. Therefore, MG can be supplied mostly by its RES, and
its dependency to the grid is low. However, the total system cost rises as the number of
battery and PV modules continues to decrease because the system needs to import more
energy from the grid, which increases the grid supply cost. Another reason is that as the
number of both PV and battery modules continues to decrease, the longer the blackout
durations occur and thus the penalty cost increases.
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As can be seen, this process is not simple, such as defining the number of PV and
battery modules regarding the known changing load demand. PV generation changes
according to irradiation and weather conditions. There is an allowed grid supply limit that
is defined at the system design stage. Therefore, the energy management algorithm should
decide when to charge and discharge the batteries, and when to obtain energy from the grid
by considering cost. Eventually, the results show that the proposed optimization algorithm
correctly determines the optimum PV and BESS size within the defined constraints. The
proposed energy management system with the PSO algorithm has some advantages and
superiorities. It also needs only a few initial parameters. In addition, it can be used
with different algorithms. Furthermore, the constraints and parameters used in the energy
management strategy are also configurable such that they can be easily adapted for different
systems. The flexible nature of the proposed approach is its most important strength.
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In order to test the performance of the PSO-based method with the energy management
algorithm, its performance is compared with GA, which is the one of the well-known
optimization algorithms. The obtained results with the GA are shown in Figure 8a,b for
case 1 and case 2, respectively. The parameters used in the GA algorithm are as follows:
the population size is set to 50, the maximum number of iterations is set to 200, crossover
rate = 1, mutation rate = 0.04, and the number of battery and PV module is limited from
1 to 50. As can be seen in Figure 8a,b, the novel energy management method with the
PSO algorithm gives better performance than the novel energy management method with
the GA algorithm. In addition, the energy management method with GA found that the
optimum PV and BESS modules count as 47 and 28, respectively, and the total cost is
USD 40.972 at the 192nd iteration for case 1 and the PV and BESS modules count as 24
and 28, respectively, and the total cost is USD 24.186 at the 187th iteration for case 2. It
takes more time to find the global point than the proposed algorithm. Furthermore, this
comparison is proven that the proposed novel energy management system can also work
with other algorithms.
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Comparisons between existing studies and the proposed study are given in Table 3.
A close examination of Table 3 provides an idea of the difference between the proposed
system and the other algorithms. In past studies, various algorithms have been used for
different systems for optimization. This study differs from other studies in the following
aspects. As can be seen from the table, some of the studies in the literature do not use the
PSO algorithm for both PV and BESS sizing. In most of the studies, one of the PV and BESS
parameters was kept constant, and the other parameter was optimized. Although the PSO
optimization algorithm has been proposed for both PV and BESS in a limited number of
studies, they have only been used for island mode systems. Most of the remaining studies
did not use cost minimization as an objective function or energy management system. A
limited number of studies have used cost minimization as an objective function or energy
management system, but with different optimization algorithms.
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Table 3. Comparison of existing system and proposed system.

Ref. Optimization
Algorithm(s)

Number of Opt.
Criteria System Size Type of RES Operation Mode EMS Objective

Function
Purpose of

the ESS

[11] MILP Less Large PV, BESS Grid
connected Yes

Minimization of the total annual
cost (including both energy and
battery degradation-based costs)

Energy sustainability

[12] DP Less Small PV, BESS Grid connected No

Determination of the optimal ESS
charging and discharging
trajectory with minimum
operational cost

Energy sustainability

[13] LP Less Small PV, Wind, BESS Grid connected No
Minimizing the operational costs
of the MG and
BESS sizing optimization

Peak shaving

[15] MCDM
Should be less for
better
effectiveness

Small BESS (storage
plant) Grid connected Yes

Calculating the storage power
references that maximize the
financial gains

Energy sustainability,
energy arbitrage

[18] GA More Large PV, Wind, Diesel
generator, BESS Off-grid No

Minimization of the system cost
and loss of power
system probability

Energy sustainability

[19] Improved
BAT More Large

Fuel Cell,
Micro Turbine, PV,
Wind, BESS

Grid
connected Yes Minimizing the operation cost

MG operation management
studies with regard to
operation, maintenance and
financial points

[20] GWO More Large
Fuel Cell, Micro
Turbine, PV, Wind,
BESS

Grid connected No Minimizing the operation
dispatch costs

Energy sustainability,
energy arbitrage

[21] ABC Average Average Wind, Hydro,
BESS Grid connected No Maximization of the revenue Energy sustainability,

energy arbitrage

[22] GOA More Small
PV, Wind, Diesel
generator,
BESS

Off-grid Yes Minimization of the DPSP
and COE Energy sustainability

[23] PSO Less Small PV,
BESS Off-grid No Minimization of total BESS cost Frequency control of the

stand-alone microgrid



Appl. Sci. 2022, 12, 8247 15 of 18

Table 3. Cont.

Ref. Optimization
Algorithm(s)

Number of Opt.
Criteria System Size Type of RES Operation Mode EMS Objective

Function
Purpose of

the ESS

[24] PSO Less Small PV,
BESS Off-grid No

Minimization of battery capacity
to prevent destabilization
of system

Energy sustainability

[25] PSO More Small

Wind,
PV,
Tidal,
BESS

Off-grid Yes
Minimize the annualized cost of
the generation system with the
constraint having reliability index

Energy sustainability,
reliability improvement

[26] Modified
PSO Less Large PV,

BESS
Grid
connected No Minimize the size and site of

installation of the PV system

Energy sustainability,
power loss min. and voltage
profile enhancement of the
radial distribution network

[27] PSO Less Large PV,
BESS

Grid
connected No Maximize the cost profitability of

the system Energy sustainability

Current
paper PSO More

Small
(can be
applicable to
large systems)

PV,
BESS

Off-grid
and
Grid
Connected

Yes
Minimize the cost of the system
by finding optimum BESS and
PV size

Energy sustainability for
self-sufficient system, and it
can control grid connection
by EMS when it is needed
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5. Conclusions

This study presents a PSO-based algorithm with a new energy management strategy
to find the optimum PV and BESS size for a grid-connected MG. The MG can operate in
island mode and, if necessary, in grid-connected mode with some limitations. The MG
structure is designed in such a way that it can demand energy from the grid when there is
not enough energy in the PV system and BESS. However, the amount of demanded energy
is limited by the system authorities. The aim is to find an optimum PV and BESS size by
considering the defined energy cost. This allows the microgrid to be supported from the
grid in critical situations, although supplying loads from the RES has priority, regardless of
whether the system will demand energy from the grid and/or the amount of energy to be
demanded from the grid can be configured with the proposed energy management method.
Therefore, the energy management algorithm can be reconfigured and used for various
systems and different constraints. To validate the proposed approach, various calculations
are carried out for different PV and BESS sizes. Furthermore, to prove the effectiveness of
the new energy management method with PSO, it has been compared with GA. Results
show that the PSO-based algorithm with the energy management strategy can determine
the optimum PV and BESS size, with the minimum cost defining the system constraints.
Consequently, PV and battery sizes have been optimized together with the proposed PSO
algorithm and novel energy management system. The effectiveness of the system is also
explained by comparing the results with different algorithms.
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Nomenclature

ABC Artificial Bee Colony
BA Bat Algorithm
BESS Battery energy storage system
BESSTotal,energy Output energy of BESS
Bsoc Battery state of charge
CCS Cartesian Coordinate System
COE Cost of energy
c1, c2 Acceleration constants
DPSP Deficiency of power supply probability
DG Distributed generation
DP Dynamic programming
Ebat Battery energy level
Ebat,max Battery module’s maximum energy limit
Ebat,min Battery minimum energy limit
Ebat,rated Battery rated energy capacity
EC Energy cost
ELoad Load demand energy
EMS Energy management system
Enet Net energy

https://www.elia.be/en/grid-data?csrt=17010711133344377898
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EPV PV generated energy
ESS Energy storage system
GA Genetic Algorithm
GOA Grasshopper Optimization Algorithm
GW Grey Wolf Optimization
IEA International Energy Agency
LP Linear programming
MaxIt Maximum iteration count
MCDM Markov chain decision method
MG Microgrid
NG Nanogrid
npop Particle population count
PBAT Battery power
PGRID Grid power
PINV-Load Inverter power
PM Probabilistic methods
PPV PV power
Ppvgen Generated power from PV
PREN Renewable power
PSO Particle Swarm Optimization
PV Photovoltaic
PVTotal,energy Output energy of PV
RES Renewable energy sources
SOC State of charge
V Velocity
VarMax Maximum value of the size of PV and BESS
VarMin Minimum value of the size of PV and BESS
w Inertia weight
wdamp Damping ratio
ηBch Battery charging efficiency
ηBdch Battery discharging efficiency
ηconv Converter efficiency
ηBES Battery energy storage efficiency
ηinv Inverter efficiency
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